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Preface

Mechanics of rigid bodies moving in three-dimensional spaces represents
a fundamental pillar for many engineering sciences.

Part I of this book is aimed particularly at undergraduate students
who already have some background in statics and dynamics of particles
and planar systems, but who wish to extend their knowledge towards
three-dimensional problems involving rigid bodies, and towards varia-
tional methods.

Part II of this book is aimed particularly at graduate students in-
terested in further deepening and extending their knowledge on these
topics, applied to multibody systems.

For all introduced concepts, many practical examples and problems
for self-study are included. Problems and examples are categorized
according to their level. This level is depicted by a certain number of
gimbals:

Problem 99.1 Quick knowledge clarification or check; answers can
(almost) directly be found in text.

Problem 99.2 Full problem requiring several steps.

Problem 99.3 Advanced problem, for readers who want extra knowl-
edge or challenge.

For selected problems, answers and solutions are provided in the end of
this book. Those problems are marked in the end with ⊲ for an answer
and with ◮ for a full solution. Also, some problems have hints, which
are printed as footnotes and upside-down.

Particular emphasis is placed on gradually enabling readers to in-
dependently solve real engineering problems, with confidence in the
correctness of their solution. Therefore, this book provides ample and
detailed guidance on how to check plausibility and rigorously question
own results. Explicit recommendations are provided at the end of the
first five chapters of part I. Also many problems are provided that,
instead of relying on worked-out exemplary solutions, are designed to
guide readers in the process of verifying own results.
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4 PREFACE

The initial basis for part I of this book were the lecture and lec-
ture slides of the course “Rigid-Body Dynamics” (formerly named “Ad-
vanced Dynamics”) at the Faculty of Mechanical, Maritime and Mate-
rials Engineering at TU Delft, by the authors. An earlier version of part
I appeared as the first edition of this book in 2017.

The basis for part II of this book were the lecture and lecture slides of
the course “Multibody Dynamics” at the same faculty at TU Delft, by
the author Arend Schwab. This part was added in the second edition.

Both lectures continue to exist, and the two parts of this book func-
tion as readers. Therefore, the authors have taken care to keep both
parts of this book readable independently, although readers may find it
useful to also consult the respective other part of the book when looking
for background or further information. This independence necessarily
means that some of the content provided in part I is repeated in part
II in slightly modified form.

This third, fully revised edition differs substantially from the previous
ones. The notation in general has been improved, in particular the way
in which 3-D coordinate systems are described with the usage of triads.
Moreover, the notation used in part I, rigid-body dynamics, and part
II, multibody dynamics, are now more in agreement. Finally, the num-
ber of problems throughout the whole book has been enlarged and now
covers a larger range of difficulty level. In part I, many guided problems
have been added. These guided problems find their origin in homework
assignments and assist the reader, in a step-by-step manner, to solve a
complex problem. In part II, a considerable number of advanced prob-
lems with answers and solutions have been added. These problems find
their origin in homework assignments and exam questions. Extensive
solutions are included to guide the reader in understanding the material
at hand in self-study.

Editorial support and review for earlier editions of part I was pro-
vided by Pier de Jong, Bram Smit, Johan Schonebaum, and Frederik
Lachmann. The initial transcription from the lecture was performed by
Johan Schonebaum. Many problems and examples were created with
contributions from Wouter Wolfslag, Daniel Lemus, Bram Smit, and
Patricia Baines. Critical review was also performed by Wouter Wolfs-
lag and Mukunda Bharatheesha. Several attentive students identified
errata in the first edition and thereby contributed to the second edition,
especially Roelf-Jilling Wolthuis, Louisa Preis, and Martijn van Veen.

Richard van der Linde contributed to the multibody dynamics lec-
ture. Editorial support to revise and re-format the lecture notes was
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provided by Pier de Jong.
For this third edition, Daniel Lemus has contributed ideas for im-

proved notations of triads. Pier de Jong continued to support the au-
thors by answering formatting questions.

Jaap Meijaard has provided meticulous reading and excellent sugges-
tions for improvement for all editions.

The authors would like to thank all contributors.
The authors have done their best to write carefully, and have placed

no deliberate errors in the book, but are quite familiar with their own
imperfections. They therefore ask the readers to be indulgent and assure
them that e-mails from them calling attention to errors or containing
suggestions for improvement of the book will be gratefully received and
very much appreciated.

Heike Vallery, h.vallery@tudelft.nl
Arend L. Schwab, a.l.schwab@tudelft.nl

Delft, The Netherlands
August, 2020
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Part I

Rigid-Body Dynamics
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Overview of Part I

The first chapter of this part contains a brief review of general mechanics
background and also introduces some main notations used in the book.

Following up on these basics, Chapter 2 reviews basic dynamic con-
cepts involving particles and systems of particles, using fixed coordinate
systems.

When transitioning from 2-D to 3-D rigid-body dynamics, description
of orientation requires particular attention. Therefore, two chapters are
dedicated only to kinematics involving rotating bodies and coordinate
systems, namely Chapter 3 and Chapter 4.

To derive the equations of motion of mechanical systems, four al-
ternative methods will be introduced: Work and Energy in Chapter 5,
Newton-Euler in Chapter 6, Virtual Work in Chapter 7, and Lagrange’s
method in Chapter 8. Practical guidance and advice is provided on
when to choose which method for a particular problem at hand.

An introduction to numerical simulation of dynamic systems is pro-
vided in Chapter 9. This chapter can mostly be read independent of
the previous, and some readers may prefer to read it first instead of
last. That way, the different methods to derive the equations of mo-
tion can directly be translated to numerical simulations of the treated
mechanical systems.

For further reading, we recommend classical mechanics and dynamics
books, of which we like to mention here: Whittaker [75], Hamel [28],
Sommerfeld [67], Pars [54], and Goldstein [25]. In particular we like
to draw attention to the very readable book by Cornelius Lanczos on
variational principles in mechanics [39].
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1 Notations and Background

This chapter introduces some general notations used in this book, and
it reviews a few selected concepts of mechanics that will be needed
frequently in the following chapters. For readers unfamiliar with these
topics, more detailed information is for example given in [4].

All following content relies on solid knowledge of the mathematical
tools presented in Appendix A and Appendix B. Deeper coverage of
the mathematical prerequisites can for example be found in [40, 57, 70].

1.1 Notations

1.1.1 Typesetting of Scalars, Vectors, and Matrices

Scalars, vectors, unit vectors and matrices in this book are typeset as
depicted in Table 1.1.

Table 1.1: Notation of scalars, vectors, unit vectors and matrices

This book Handwriting
Scalars F
Vectors F

Unit vectors ê

Matrices R

Note that we often use the same letter when we refer to a vector’s
magnitude, so for example a could be used to refer to the magnitude
|a| of a vector a. However, such a relationship must still always be
explicitly defined.

1.1.2 Sub- and Superscripts

A position vector that points to a point A from a point P will be denoted
as rA/P (which reads: “position of A with respect to P”). Analogous
notation will be used for other relative quantities, such as linear or
angular velocity.
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4 1 NOTATIONS AND BACKGROUND

Problem 1.1 The simplest walker [19, 63], a 2-D model of a bipedal
mechanism, consists of only three particles: two feet, each of mass m, and
a hip mass M . Massless legs connect the particles and are hinged at the
hip (see Figure 1.1). The model can walk down a slope of angle γ under the
influence of gravity g.

Use vector addition (see Appendix A.1) to calculate the location rD/A of
the swing foot with respect to the stance foot, as a function of the position
vector rB/A of the hip with respect to the stance foot A and the relative
position vector rD/B of the swing foot with respect to the hip.a

Figure 1.1: 2-D walker.

aHint : ComparetoExampleA.1.

For components of m-dimensional vectors, we use the index notation:

r =
(
r1 r2 . . . rm

)T
. (1.1)

Elements of m×n-dimensional matrices receive two indices, for row and
column:

A =







a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn






. (1.2)

In case we operate in R
3 and with Cartesian coordinate systems, we

also often use the names of the axes as indices (for example x, y, z)
instead of the numerical values 1, 2, 3, to allow quick association.

In this book, we will frequently make use of different coordinate sys-
tems and associated triads, which are a set of three unit vectors that
define the axis directions. To indicate that the components of a vector
are expressed in a particular triad, we use a left superscript. Thus, the
vector Br is the same vector as Nr, just for the former the components
are expressed in a triad B, and for the latter the components are ex-
pressed in a triad N . So, the difference is in the projection onto different
axes (see also Appendix A.4). In case we use an inertial triad N , we
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1.1 NOTATIONS 5

often drop the superscript and only write r. This is sufficient for the
first two chapters in this book, where we do not yet deal with rotating
coordinate systems or triads. Mapping between different triads will be
explained in Chapter 3. Also more sub- and superscript notations are
introduced in the following chapters.

1.1.3 Drawing Vectors

If we label an arrow in a drawing with a vector symbol (so a boldface
variable), for example F , then this label refers to the definition of the
vector including its magnitude and direction. The direction drawn for
the arrow is merely an illustration. This notation is particularly used
if the direction of the vector is unknown or changes.

In contrast, if we label an arrow with a scalar variable name F (so
typeset regular), this scalar value is the magnitude of the vector, and
the direction of the vector is defined by the drawn direction of the arrow.
We do allow this scalar value F to take on a negative value (even though
the magnitude of a vector is strictly seen always positive), in order to
enable inversion of the vector’s direction later on: When defining a force
vector or vector component, we do not need to know in which direction
it points, we only need to know its line of action. This implies that
an arrow labeled with −F is equivalent to an arrow pointing in the
opposite direction and labeled F . Particularly when a vector is split
into components along specific axis directions, we will use scalar labels
for these components.

Example 1.1 A body is cut free from a frictionless surface, the ground.
Figure 1.2 shows three different ways to draw the forces between body and
ground.

Figure 1.2: Equivalent drawings of force vectors, with vector (left) and scalar labels.

If the force vector acting on the body is labeled by N , then the reaction
force (following Newton’s third law, see Section 1.2.5) to this vector, drawn
as acting on the ground, must be labeled with −N (note the minus sign),
to make clear that the direction is opposite (Figure 1.2, left). If the force
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6 1 NOTATIONS AND BACKGROUND

vector acting on the body is labeled by a scalar N and drawn upward, and
its reaction force is drawn as pointing downward, then that reaction must be
labeled by N as well, not by −N (Figure 1.2, center). Alternatively, and still
formally correct, one could draw the same reaction force vector as pointing
upward and label it by −N (Figure 1.2, right). However, this is discouraged
as it can be confusing.

A vector pointing into or out of of the paper plane (Figure 1.3, top
row) is drawn following the analogy of a dart: We indicate vector com-
ponents pointing into the plane by ⊗ and those pointing out by ⊙.

Vectors that encode rotational information, such as moments (see
Section 1.2.1), will be drawn as in the bottom row of Figure 1.3, with
a double arrowhead in the plane. The right-hand rule for rotations
states that if the thumb points in direction of the arrow, the curled
fingers of one hand indicate the positive direction of a moment or angle
(Figure 1.3, center).

Figure 1.3: Notation for a vector that is perpendicular to the plane of drawing imag-
ined as a dart (top); the right-hand rule to indicate positive direction of
a rotation/moment about an axis (center and bottom).

1.1.4 Units

In mechanics, we often deal with quantities that have a measurement
unit, like forces, velocities, or positions. Each such quantity is the prod-
uct of a number and a measurement unit. This also holds for compo-
nents of vectors or matrices. Generally, the letters of units are printed
in roman (upright), those of scalar variables in italic.

Example 1.2 Force can be expressed as the product of a numerical
value and the measurement unit Newton: F = 3 ·N = 3N

Expressions may contain mixtures of quantities given with their nu-
merical value and quantities given as variables. Also in those cases, one
must pay attention to consider both factors (numerical value and unit)
that compose each quantity, and not to insert or omit units.
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1.1 NOTATIONS 7

Example 1.3 For a particle of mass m = 3kg having acceleration
vector a, the resultant force vector F on the particle can be calculated as:
Correct is: F = m · a = 3kg · a.
Incorrect is: ✭✭✭✭✭✭❤❤❤❤❤❤F = 3 · aN.

Example 1.4 The derivative θ̇ of an angle θ is given as a constant value
of θ̇ = 2 rad/s. At time t = 0, the angle is zero as well. So, the angle θ is a
function of time t:

θ =

∫

θ̇ dt = 2 rad/s · t. (1.3E)

At t = 3 s, the angle is calculated as:

θ = 2 rad/s · 3 s = 2 · 3 · rad/s · s = 6 rad. (1.4E)

Problem 1.2 A particle performs a harmonic oscillation, such that its
location coordinate x is a function of amplitude x0, angular frequency Ω,
and time t:

x = x0 sin(Ωt). (1.5P)

Fill in suitable units for x, x0, Ω, and t and check the equation for consistency.
Be aware that the argument of the sin-function does not have units.a

aHint :

Recallthedefinitionoftheunitradian,implyingthat1rad=1.

Following the ISO norm [34] and the “Red Book” [13], for quantities
that have a measurement unit, the numerical value of a quantity Q is
denoted by {Q}, and the measurement unit is denoted by [Q], such that

Q = {Q} · [Q]. (1.6)

Therefore, the numerical value can also be denoted as {Q} = Q/[Q].

Example 1.5 A mass m = 3.5 kg has the numerical value {m} = 3.5
and the unit [m] = kg. The same quantity value can be expressed as 3500 g.
Then, the numerical value is {m} = 3500, and [m] = g.

Square brackets are a common source of mistakes. Such brackets only
have meaning when placed around the physical quantity. Square brack-
ets should not be placed around the unit.

Example 1.6 For time t,
good use is: t/s = 4, or [t] = s,
not good use is: ✘✘✘✘❳❳❳❳t = 4 [s], or✚

✚❩
❩t [s].

Incorrect square brackets are often found in axes labels of plots. The
SI [5] advises division, as in a label like (for the example of time): t/s.
Also possible are round brackets [33, 56]: time t (s).
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8 1 NOTATIONS AND BACKGROUND

A general advice is to work as long as possible with variables, and
only to substitute numbers and units in the final solution. Units almost
always help as part of plausibility checks for calculations.

Problem 1.3 Which of these expressions make correct use of units, for
mass m, time t, force F , angular velocity ω, and angle θ?

A. m = 20
B. m = 3N
C. F = 3 ·m [N]
D. F = 20N
E. [m] = kg
F. m/[m] = 20
G. t = 3 s
H. ω = 2 rad/s
I. θ = ω · t = 2 · t [s]
J. θ = ω · t, [ω] = rad/s, [t] = s, [θ] = rad
K. {m} = 20
L. ω = t2

M. ω = 1 rad/s · t2
N. ω = 1 rad/s3 · t2
O. f(t) = cos(1 rad/s · t)
P. g(t) = e−t

Q. h(t) = sin(ωt) = sin(2t)

1.2 Basic Definitions and Tools Used in Mechanics

Readers are expected to have already knowledge on the branch of me-
chanics that is called statics. Statics deals with mechanical systems
that are at rest or move with constant linear velocity. It defines con-
ditions for forces and moments acting on or within these systems such
that the systems remain in this state. Statics and other branches of
mechanics share many important definitions and tools. In this section,
some of these concepts will be reviewed.

1.2.1 Definition of a Moment

The moment , often also called torque1, of a force F with respect to
point P is defined as:

MP := rA/P × F , (1.7)

1The term torque is often used for a couple and for a torsional moment; a moment
about a longitudinal axis. An example is the torque a motor applies to a shaft.
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 9

where the vector rA/P is a vector from point P to point A, the point
of application of the force. Note that from the definition of the cross
product, it follows that A may in fact be any arbitrary point on the line
of action of F (see Problem 1.5). Also note that the order in which this
cross product is written matters, as F × rA/P = −MP .

Problem 1.4 Calculate the moment about point P using (1.7), for
force F = (3, 4, 0)TN, if the position vector of the point of application of
this force, A, with respect to point P is rA/P = (2, 3, 0)T m. Draw all three
vectors in the XY -plane and apply the right-hand rule of Figure 1.2 to check
the direction of the moment vector. Then, choose another point A′ on the
line of action of the force to calculate the moment and compare results.

If two force vectors act on a rigid body and if these two forces have
parallel lines of action, equal magnitude, but opposite direction, then
the sum of these two forces (also called a force couple) is the zero vector.
However, the forces still cause a moment vector. This couple moment
vector does not depend on the point of reference P , so it is a free vector .

Problem 1.5 Use the definition of the cross product to show that
when calculating the moment vector MP of a force vector F about point P
according to (1.7), it does not matter which vector rA/P you choose from
point P to the line of action of the force.a

aHint :

Trythesetwoapproaches:a)Drawtheparallelogramspannedby
positionandforcevectorandshowthatneitherthemagnitudenor
thedirectionofthecrossproductchangeswhentheforceshifts
alongitslineofaction.Use(A.2)andtheright-handrule.b)
Describeanarbitrarypointsonthelineofactionofaforceas
alinearcombinationofapositionandadirectionvector.Then,
calculatethecrossproductofthepointwiththeforcevector.

1.2.2 Force System Resultants: Equipollence

When several forces and moments act on a rigid body, it is always
possible to formulate an equivalent system that consists of 1) one single
resultant force vector acting at an arbitrary point O and 2) one couple
moment vector. Equivalence, or more precisely equipollence, means that
the effect of the original and of the reduced force/moment system on
the rigid body is identical. This leads to the following steps:

1. To determine the magnitude and direction of the resultant force
F r, all N original force vectors F i need to be summed:

F r =

N∑

i=1

F i. (1.8)
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10 1 NOTATIONS AND BACKGROUND

2. The associated resultant couple moment vector M r equals the
moment caused by the N original forces and K original couple
moments about the same point O:

M r =
K∑

j=1

M j +
N∑

i=1

ri × F i, (1.9)

where the ri are the position vectors of the points of application
of the N original forces with respect to point O.

Simplifying even further, it is also always possible to find an equiva-
lent system that contains only one single force vector and a single couple
moment vector that is parallel to the force vector’s line of action.

Problem 1.6 For an original system of N forces F i, i = 1 . . .N , set up
an algorithm (set of equations) that allows determining the resultant force
vector, one point on its line of action, and a resultant couple moment vector
that is parallel to this line of action. Test using an example.a

aHint :

Theresultantforcevectordeterminesthedirectionofanypossible
couplemoment.Therefore,expressthecouplemomentvectoras
aproductofitsmagnitudeanddirection,whichcontainsonlyone
scalarunknown.Todeterminethelocationofthelineofactionof
thisforceaswellasthemagnitudeofthecouplemoment,equate
themomentofalloriginalforcesandmomentsaboutapointOto
themomentoftheresultantforceandthecouplemomentvector.
Anypointonthelineofactionoftheforceisapossiblepointof
application.So,youcouldchooseapositionvectorthatisperpen-
diculartothelineofactionandonlyhasunknownlength.

1.2.3 Newton’s First Law and Static Equilibrium

In 1687, Isaac Newton (1642 - 1727) stated his three laws of motion [49].
The first law reads:

1. “Every body perseveres in its state of rest, or of uniform motion
in a right line, unless it is compelled to change that state by forces
impressed thereon.”

So, a particle that moves at constant linear velocity v will keep the
same velocity unless a force F acts upon it. Note that a particle at rest
has a constant velocity of zero.

∑

F = 0 ↔ v̇ = 0. (1.10)
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 11

Based on this law, static equilibrium of a rigid body is defined as a
state where the sum of all forces acting on the system is zero, as is the
sum of all moments acting on the body about any arbitrary point.

Note that the term equilibrium does not necessarily imply stable equi-
librium. For example, a ball in a convex valley resides in a stable equi-
librium, while the same ball balancing on top of a concave mountain
peak is in an unstable equilibrium. Stability can be investigated by an-
alyzing the system’s response to infinitesimally small perturbation from
its state of rest.

1.2.4 Center of Mass

The position vector rC/A from a point A to the overall center of mass
(CoM) of a system of N particles with masses mi is defined by:

rC/A :=

∑N
i=1miri/A
∑N

i=1mi

, (1.11)

where ri/A is the position vector of the i-th particle with respect to the
same point A.

When calculating the center of mass for a rigid body, the summation
turns into an integral:

rC/A :=

∫

m rP/A dm
∫

m dm
, (1.12)

where rP/A is the position vector of the center of mass P of an infinites-
imally small volume element of mass dm in the body. The integral
resolves to a triple integral for the case of three-dimensional bodies.

In order to calculate the center of mass for a composite body where
the mass and center of mass of each individual element are known,
(1.11) can again be used. When dealing with hollow sections in systems
with homogeneous mass distribution, the calculation can be simplified
by considering first a solid structure and then considering each hollow
section as a body with negative mass.

Note that the centroid (geometric center), the center of mass, and
the center of gravity (point of application of the resultant gravitational
force) may all be different points. This is the case if mass distribution is
not homogeneous and/or if the gravitational field is not homogeneous.
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12 1 NOTATIONS AND BACKGROUND

Example 1.7 Three particles of massesm1, m2 andm3 are at locations
with position vectors r1, r2 and r3, respectively, with respect to a point O.
The values are given as:

m1 = 2kg, m2 = 3kg, m3 = 5kg, and

r1 =
(
5 10 1

)T
m, r2 =

(
−10 0 6

)T
m, r3 =

(
2 0 4

)T
m.

Their combined center of mass is given by:

rC =
1

m1 +m2 +m3
(r1 + r2 + r3)

=
1

(2 + 3 + 5) kg



2 kg





5
10
1



 m+ 3kg





−10
0
6



 m+ 5kg





2
0
4



 m





=
(
−1 2 4

)T ·m.

Problem 1.7 Use integration to calculate the center of mass of several
common bodies, such as a cone, a solid hemisphere, and a thin-walled hollow
cone. Assume homogeneous mass distribution.

Problem 1.8 A group of students constructs a top (Figure 1.4) from

• three orthogonally arranged wooden skewers, each of mass ms, length
l, and negligible thickness, and

• five pieces of cork, each of mass mk and negligible dimensions. The
center cork is positioned at a distance ∆ from the center A of skewer 1.

Figure 1.4: Top of skewers and corks.

(DIY-tip: use a screwdriver to drill a hole through the cork, after which it
is easier to put the skewer through the cork)

12 Advanced Dynamics © 2020 Vallery/Schwab
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 13

The construction is idealized, such that the skewers intersect in point
Q and the top’s center of mass C is on the z-axis defined by skewer 1.
The axes x and y point along skewers 2 and 3. Gravity with acceleration
constant g acts in negative vertical direction. An inertial XY Z coordinate
system has its origin on the ground and Z points up. A triad N is associated
with XY Z, and a triad B is associated with xyz. After building the top,
students realize that the top’s overall mass is M∗, and the center of mass
is not on the z-axis, but at the location C∗ with relative position vector
BrC∗/P = (xC∗ , yC∗ , zC∗)T with respect to point P . The students want to

add two more pieces of cork, each of mass M
∗

10 , to the skewers at yet unknown
locations D and E, in order to put the center of mass back on z.

Calculate the components of suitable relative position vectors BrD/P and
BrE/P of these two pieces with respect to point P . Give these components
as functions of xC∗ , yC∗ , zC∗ , M∗, l, and ∆.

Remember that the cork pieces can only be put onto skewers, and that
they have negligible dimensions. ⊲◮

1.2.5 Newton’s Third Law of Motion

Newton’s third law of motion [49] states:

3. “To every action there is always opposed an equal reaction: or the
mutual actions of two bodies upon each other are always equal,
and directed to contrary parts.”

So, if an object a exerts a force F a on another object b, then b exerts
an equal and opposite force F b on a:

F a = −F b. (1.13)

The forces share the same line of action. Philosophically speaking: “A
force is never alone”; the action-reaction forces form a unit, the force
pair. When we discuss “generalized forces” in Chapter 7 and Chapter 8,
we will see that a force pair often even forms a single generalized force.

1.2.6 Definition of Internal and External Forces

Two types of forces are distinguished which act on a particle that is
part of a system of N particles: external forces F i and internal forces
f ij , such that the sum of all forces acting on a particle is:

F i +

N∑

j=1

f ij . (1.14)

Advanced Dynamics © 2020 Vallery/Schwab 13



14 1 NOTATIONS AND BACKGROUND

The external force vector F i is defined as the sum of all forces that act
on particle i by sources outside the system.

Internal forces f ij are the forces that act between particles in a sys-
tem. For example, if a spring interconnects two particles in one system,
then the spring force is called an internal force. The subscript ij means
“acting on particle i, exerted by particle j”. Note that f ij = 0 for
i = j. Figure 1.5 illustrates the particles and forces.

Figure 1.5: Two particles i and j with internal and external forces acting on them.

According to Newton’s third law (1.13), there must be an equal and
opposite reaction exerted on particle j, namely

f ji = −f ij. (1.15)

Therefore, over the entire system of particles, the sum of all these in-
ternal forces is zero:

N∑

i=1

N∑

j=1

f ij = 0. (1.16)

Note that the interpretation of a force as being internal or external
depends on the chosen definition of system boundaries. We tend to see
gravity as an external force, because we consider Earth just in terms of
providing us with an inertial coordinate system, but not as being part
of our mechanical system. In case we do consider Earth as part of the
system (like in a study on planetary motions), then gravity suddenly
becomes an internal force. This demonstrates that the idea of internal
and external is simply a matter of system definition.

1.2.7 Moments of Internal and External Forces

The resultant moment of internal forces acting on a system is zero, as
will be shown in the following.
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 15

Figure 1.6 shows again two particles i and j of a system of particles
with internal and external forces acting on them. We define a rela-
tive position vector ρi of the i-th particle with respect to an arbitrary
reference point Q, such that

ri = rQ + ρi. (1.17)

This implies that ρi points from Q to the particle. This is for brevity
of notation, as ρi is shorter than the more consistent naming ri/Q of
the relative position of i with respect to Q.

Figure 1.6: Definitions of the absolute and relative position of particles i and j, as
well as of internal and external forces acting on the particles.

To obtain the resultant moment of all forces acting on particle i about
the arbitrary point Q, we take the cross product of the particle’s relative
position vector ρi and the external and internal forces:

MQ,i = ρi ×



F i +
N∑

j=1

f ij



 . (1.18)

Summing over all particles gives the resultant moment of all forces act-
ing on the system:

MQ =
N∑

i=1

ρi ×



F i +
N∑

j=1

f ij





=

N∑

i=1

(ρi × F i) +

N∑

i=1



ρi ×
N∑

j=1

f ij



 .

(1.19)

Because of Newton’s law of action and reaction (1.15), we know that
for each internal force f ij , there is always a counter-force f ji acting in
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16 1 NOTATIONS AND BACKGROUND

opposite direction, with the same magnitude and on the same line of
action. That means that whichever point is chosen as a reference point,
the moment pairs about this point will cancel:

ρi × f ij = −ρj × f ji. (1.20)

Therefore, the sum of moments of all internal forces is zero, and (1.18)
simplifies to

MQ =

N∑

i=1

(ρi × F i). (1.21)

This proves that internal forces cannot cause net moments on a system,
regardless of the choice of reference Q.

1.2.8 Free-Body Diagrams

A free-body diagram (FBD) helps to understand and visualize a problem
and is used to define system boundaries and variables. It is a simplified
drawing of (a part of) a mechanical system with all forces, moments
and dimensions. The name is slightly misleading, as FBDs cannot only
be drawn for single rigid bodies. They can also be established for parts
of bodies or for systems of bodies or particles. These are the steps to
draw a FBD:

1. Draw the system in a free state, i.e. “cut” the system at convenient
locations and draw outlined shapes of the separate pieces. Each
cut will introduce new external (formerly internal) action-reaction
forces at the system boundaries. Some helpful guidelines:

a) Always draw the system in a generic state. So for example
if you draw the FBD of a pendulum, draw it with a generic
angle, and not in upright or downright position, as those are
special cases.

b) Whenever possible, choose your system boundaries such that
you expose only action-reaction forces that you are actually
interested in calculating. Otherwise, extra equations and
unknowns are introduced, complicating calculations.

2. Establish at least one coordinate system: Choose a clearly defined
position for the origin. Check if rotating and/or translating the
coordinate system can make things easier.
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 17

3. Indicate all known and unknown external forces and moments that
act on the system, on the correct locations (e.g. external loads,
support reactions, weight). Some rules:

a) Do not show internal forces or moments.
b) If a connection prevents movement in a particular direc-

tion, then forces/moments are drawn in that direction, see
Figure 1.7a and Figure 1.7b.

c) If a segment is split in two, the forces and moments acting
on the two segments in the separated FBDs are equal in
magnitude and opposite in direction.

d) Forces acting on a rigid body may be shifted along their lines
of action (sliding vectors), see Figure 1.7c.

e) Couple moments acting on a rigid body may be placed any-
where (they are free vectors), see Figure 1.7c.

4. Label all forces and moments with unique names.
5. Label all necessary dimensions (distances and angles) to calculate

moments of forces with respect to relevant reference points like
the center of mass.

(a) For a pendulum, the sup-
port is replaced by forces
transmitted by the hinge
joint.

(b) For a clamped beam, the
supporting wall is re-
placed by the forces and
moment it exerts.

(c) Forces may be shifted
along their lines of ac-
tion; moments are free
vectors.

Figure 1.7: Examples for drawing components of FBDs (notice that these are not

complete FBDs).

A FBD must include all relevant information of the original drawing,
particularly all information to establish the sums of forces and moments.
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Example 1.8 Figure 1.8 shows a homogeneous block sliding down a
slope (left), and its FBD (right).

Figure 1.8: Sliding block and corresponding FBD.

A frequent mistake when drawing FBDs for dynamical systems is to
already consider the specific movement the system performs. For exam-
ple, if a particle rotates about one axis, one may be tempted to draw a
force in radial direction based on previous knowledge on dynamics and
the intuition that there must be a radial force sustaining this rotation.
This is a critical mistake, as it defies the purpose of a FBD, reducing
it to a confirmation of one’s own intuition. Such a procedure exposes
subsequent calculation to omissions. A FBD must contain all the pos-
sible reaction forces generated at the system boundaries, only based on
the nature of the connection, and disregarding information that is given
on the system’s movement. Consequently, an FBD drawn to determine
static equilibrium looks identical to one intended to derive a system’s
equations of motion (EoM), as will be done in later chapters.

Example 1.9 A cylindrical bar (Figure 1.9) has a body-fixed coordi-
nate system uvw associated with triad B. The bar can rotate with variable
angular speed ψ̇ about the Z-axis of an inertial coordinate system XY Z,
associated with triad N . The Z- and w-axis always coincide and the angle
between the Y - and v-axis is denoted by ψ.

Figure 1.9: A rotating bar and sliding ring.
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1.2 BASIC DEFINITIONS AND TOOLS IN MECHANICS 19

A ring with massm can slide without friction on the bar and has a position
vector Bρ = (d, 0, 0)T, with respect to the origin of the coordinate systems.
Herein, d = d(t) is a variable in time t. The radius, width, and thickness of
the ring are not negligible. There is no gravity.

Draw a FBD of the ring, in a suitable projection into a 2-D plane.

Exemplary solution
It is convenient to choose an orthographic projection into the uw-plane.

The FBD (Figure 1.10) reflects that except for sliding in u-direction and
rotating about that axis, the ring cannot move relative to the bar. Rep-
resenting these constraints for the other two translations and for the other
two rotations, forces and moments need to be drawn in those directions,
respectively.

Figure 1.10: Free-body diagram of the ring.

Problem 1.9 A solid wheel (Figure 1.11) rolls without slipping in a
steady circular motion with constant angle θ and constant ground radius R
in positive direction about the Z-axis (Figure 1.11). Its center of mass C has
speed vC . The wheel is modeled as a thin disk with radius r and mass m.

Figure 1.11: A disk rolling in a steady motion.

A coordinate system uvw rotates around an inertial Z-axis, such that the
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disk’s current ground contact point P is always on the u-axis.
Draw a FBD of the wheel, projected into the uw-plane. Use only scalar

labels by resolving all force and moment vectors into their components, in
such a way that there is a minimal number of labels. ◮

Drawing FBDs often leaves a choice how to apply the principle of
equipollence, as reviewed in Section 1.2.2. To indicate that a body
can neither translate in one particular direction x nor rotate about an
axis y perpendicular to x, there are two main choices to represent both
constraints:

• Drawing a force in direction of x at an unknown location, and
specifying as unknowns the magnitude of the force and a param-
eter describing its location in y-direction. In that case, no addi-
tional moment vector needs to be drawn. However, one is making
the implicit assumption that the force will never be zero in com-
bination with a nonzero moment, which needs to be verified.

• Letting the force act at a pre-specified location (for example a
rigid body’s center of mass) and also adding a moment vector in
y-direction. Then, the two unknowns are the magnitudes of the
force and of the moment vector.

The second option (also chosen in Figure 1.10) is more generic and
safer in terms of avoiding possible mistakes in assumptions. However,
in the case of unilateral contact, where it is not possible to exert a
pure moment without a force, it is advisable to choose the first option,
particularly when aiming for easy possibilities to later check results.
Note that this option was also chosen in Figure 1.8.

Example 1.10 A cone rolls on the ground (Figure 1.12). It has mass
m, uniform density ρ, base radius R, height H and center of mass C.

Figure 1.12: Cone

The figure indicates an inertial XY Z coordinate system, and a rotating
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coordinate system uvw. The v-direction is always aligned with the cone’s
ground contact line, and w is always vertical. The cone rolls (possibly with
slipping) on the XY -plane, and its tip always remains in the origin O. It is
subjected to gravity with field strength g in negative Z-direction.

Draw a free-body diagram (FBD) of the cone projected onto the vw-plane.
Show distributed loads only by their resultant, and leave out all components
of these reactions which are zero.

Exemplary solution
A possible FBD for the cone is shown in Figure 1.13.

Figure 1.13: Exemplary FBD for the rolling cone.

One may ask why it contains a moment component about the w-axis, but
not about the other axes. To understand this, one has to consider the type of
constraint and use equipollence, as reviewed in Section 1.2.2: The resultant
vertical ground reaction force Fw, representing the centroid of the distributed
load acting on the cone, has been drawn at a (yet unknown) distance a from
the origin O. This way, there is no additional constraint moment about the
u-axis to be considered. Alternatively, using equipollence one could draw
this resultant force acting in the origin, in which case an additional moment
component about the u-axis would appear.

The occurrence of a couple moment component about the u-axis with-
out any resultant vertical force is impossible given the unilateral contact.
Drawing the force at the unknown distance a and solving for a has a clear
advantage for results checking: A value for a being negative or larger than√
H2 +R2 would be implausible, because the resultant ground reaction force

can only be applied within the base of support of the cone.
A similar relationship holds for the force component in u-direction and the

moment about the w-axis, although here it is possible that a pure (friction)
couple moment can be transmitted without any resultant force Fu being
present. The resulting redundancy would need to be resolved for a given
situation by an additional condition during the calculations. For example,
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by stating that the couple moment about the w-axis is only considered in
case Fu resolves to be zero, or by forcing b to be zero.

About the v-axis, no moment can be transmitted as none of the potential
distributed loads in the line contact has any lever arm.

Problem 1.10 The cone of Example 1.10 is now at rest. Use the FBD
and static equilibrium in that case to calculate the distance a between the
cone’s tip and its center of pressure, so the resultant vertical ground reaction
force.

1.3 Introduction to Dynamics

1.3.1 Kinematics and Kinetics

Dynamics is the branch of mechanics that deals with moving systems.
It allows to analyze movements, as well as to determine the relation-
ship between the movement and the forces and moments causing this
movement. Accordingly, dynamics is split into two main branches, kine-
matics and kinetics:

• Kinematics is the domain in mechanics that describes motions,
without considering the cause of these motions.

• Kinetics is the domain in mechanics that finds the relationships
between motion and its causes (i.e. forces and moments). From
these relationships, we will derive the equations of motion (EoM).

1.3.2 Kinematics in Fixed Coordinate Systems

In a fixed (or inertial) Cartesian coordinate system, the position vector
rP , velocity vP and acceleration aP of a point P are defined as follows:

Position rP := XP n̂1 + YP n̂2 + ZP n̂3, (1.22)

Velocity vP := ṙP = ẊP n̂1 + ẎP n̂2 + ŻP n̂3, (1.23)

Acceleration aP := v̇P = r̈P = ẌP n̂1 + ŸP n̂2 + Z̈P n̂3. (1.24)

The vectors n̂1 = (1, 0, 0)T, n̂2 = (0, 1, 0)T, n̂3 = (0, 0, 1)T are unit
vectors in the direction of respectively the inertial X-, Y - and Z-axes.
These vectors are constant, their derivatives with respect to time are
zero vectors. The scalars XP , YP and ZP are coordinates of P in XY Z.

Velocity and speed are not synonymous. Velocity is a vector with
magnitude and direction. Speed is the (signed) magnitude of velocity.
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Problem 1.11 Calculate the velocity vector of the center of mass of a
system of particles as a function of the particles’ individual velocity vectors.a

aHint :

Dothisbytakingthederivativeof(1.11)withrespecttotime.

Problem 1.12 A particle’s movement is described by its Cartesian
position vector as a function of time t:

r(t) =
(
sin (3t/s) 3 cos (2t/s) sin2(2t/s)

)T
m. (1.25P)

Calculate the particle’s acceleration r̈(t) as a function of time. Use the
product and the chain rule, as described in Appendix B.1. Note that you
can simplify your result using a trigonometric addition formula. ⊲

1.3.3 Signs

Clear definition of signs is paramount in obtaining reliable results. Fre-
quently, students believe that a sign mistake is a minor mistake, or that
it can be fixed later on by intuition, when the final result appears to be
in the wrong direction. Both assumptions are utterly untrue and dan-
gerous for many real-world problems. Therefore, we will spend some
time to revise rules for how “positive” and “negative” are determined.

For drawing vectors and labeling them, we already covered some prin-
ciples in 1.1.3. These are particularly relevant for FBDs.

Example 1.11 The cover of this book shows (almost) complete FBDs
of the rear frame and of the handlebar assembly of a bicycle with a special
steer-assist system. The action-reaction forces and moments that are drawn
between the two parts illustrate the difference between vector labels and
scalar labels on arrows in terms of signs, as explained in Section 1.1.3. For
example, while the reaction to force FC must be −FC , with a minus sign,
the reaction to the motor moment Tm is drawn in the opposite direction and
also labeled with a scalar Tm.

For components of position, velocity and acceleration vectors, special
care must be taken to keep definitions consistent, such that indeed vP =
ṙP and aP = v̇P , following (1.23) and (1.24).

Sign mistakes can be avoided by following these rules:

1. Variable distances or angles are defined by a line or arc with a
single arrowhead. The arrowhead ends where the point or line
segment is in a generic state. The arrow starts at a clearly de-
fined reference, for example a resting position for a distance, or a
vertical or horizontal line for an angle.
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2. Constant distances or angles are generally measured by lines or
arcs, respectively, with arrowheads on both sides. This is in fact
not a strict rule but a guideline. There are some exceptions, for
example when indicatig a radius, following rules of technical draw-
ing. In such cases, only one arrowhead is drawn.

3. Axis names should not be used to also denote dimensions. A new
name should be chosen for each specific dimension. For example,
the X-coordinate of point P should not be called X as well (like
the axis direction), a better name is XP .

4. Coordinates, so elements of a position vector, are defined positive
in positive axis direction, so if an arrow is to be labeled with a
positive coordinate, the arrowhead must be pointing in positive
axis direction. In case a point P is drawn at a location having
a negative X-coordinate, we still follow rule 1, which means that
the label of the arrow includes a negative sign, as in −XP .

5. Variables that are not coordinates or derivatives of already defined
variables may be defined positive in any direction2. This includes
angles.

Redundant measures are allowed, for example to measure the position
of a point with respect to two different references. However, one should
be aware of such redundancy to not miscount the number of unknowns
and equations for a given problem.

Example 1.12 In the Kenyan savannah, a lion (simplified as point
L) and a rhinoceros (point R) are approaching a waterhole at a speed vL
and vR, respectively, as depicted in Figure 1.14. An antelope (point A) is
simultaneously running away from the waterhole at speed vA.

The three animals have the respective distances dL, dR, and dA from the
waterhole. They are not changing directions but running in straight lines. All
the above-mentioned distances and speeds are positive in the given situation.

For now, we focus only on the lion and want to express its position and
velocity vectors as functions of the above variables.

Exemplary solution
We start by defining an inertial coordinate system. A convenient origin is

the center O of the waterhole. As directions, we choose the X-axis pointing
East, and the Y -axis pointing North. So, the right-hand rule dictates that
the Z-axis points vertically up.

2We will see later that variables that describe kinematic configuration without being
Cartesian coordinates can still be interpreted as generalized coordinates.
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Figure 1.14: A lion, a rhinoceros, and an antelope at a waterhole.

In the first drawing of Figure 1.15, we label the distance dL, using an
arrow with its tail connected to the fixed reference O, and its arrowhead
ending at the variable location of point L, the lion, following rule 1 above.

The arrowhead for the angle β follows the same rule. We choose to measure
the angle from the horizontal in such a way that clockwise movement of the
lion leads to an increase in β. This choice of direction is allowed following rule
5. Even though the animal does not change direction, there is no constraint
that keeps it from doing so. So, we choose not to follow rule 2, but to label
the angle also with only a singe arrowhead. This also enables later extension
of the problem to more generic movement with non-constant angle.

Figure 1.15: Describing kinematics of the lion. Left: Location in terms of distance
and angle. Center: Cartesian coordinates. Right: Velocity

In the second drawing, we label the coordinates of the lion, XL and YL,
following rule 3. Since the lion is on the left of the origin, while X points
right, the arrow has to be labeled with a negative sign, following rule 4.

The third drawing shows the lion’s velocity. By definition, the derivative
of a variable is positive if that variable increases (See Appendix B.1). There-
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fore, a vector labeled with ḋL needs to point outward. However, the lion’s
speed vL was defined positive for inward movement, so an arrow labeled with
this variable needs to be drawn pointing inward.

The position and velocity vectors can be populated with the correct com-
ponents. For position, we obtain the alternative expressions:

rL =





XL

YL
ZL



 =





−dL cosβ
dL sinβ

0



 (1.26E)

For velocity, there are various alternative expressions, which all need to be
consistent regarding their signs:

vL =





vL cosβ
−vL sinβ

0



 = ṙL =





ẊL

ẎL
ŻL



 =








−ḋL cosβ + dL✁
✁✕
0

β̇ sinβ

ḋL sinβ + dL✁
✁✕
0

β̇ cosβ
0








(1.27E)

The drawing in Figure 1.15 also shows that vL = −ḋL, so this is consistent.

Problem 1.13 Describing the movement of the rhinoceros and the
antelope in Example 1.12 requires careful handling of signs.

First, complete the three drawings in Figure 1.15 with the equivalent vari-
ables describing the kinematics of these two animals. Use the angle α for the
rhino. There is no need to consider an angle for the antelope.

Then, replace the
?
± in the below equations by a “+” or a “−”-sign:

The rhino’s position vector is:

rR =







?
± XR
?
± YR
?
± ZR







=






?
± dR cosα
?
± dR sinα

0




 (1.28P)

The rhino’s velocity vector is:

vR =






?
± vR cosα
?
± vR sinα

0




 =

?
± ṙR =







?
± ẊR
?
± ẎR
?
± ŻR







=







?
± ḋR cosα

?
± dR✓✓✼

0

α̇ sinα
?
± ḋR sinα

?
± dR✓✓✼

0

α̇ cosα
0







(1.29P)
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The antelope’s position vector is:

rA =







?
± XA
?
± YA
?
± ZA







=






0
?
± dA
0




 (1.30P)

The antelope’s velocity vector is:

vA =






0
?
± vA
0




 =

?
± ṙA =







?
± ẊA
?
± ẎA
?
± ŻA







=






0
?
± ḋA
0




 (1.31P)

◮

Problem 1.14 For all coordinates XL, XR, XA, YL, YR, YA and their
derivatives in Example 1.12 and Problem 1.13, indicate whether their values
are positive, zero, or negative in the described situation. ⊲

Problem 1.15 The animals of Example 1.12 and Problem 1.13 are
not running at constant speed. The lion and the rhino are decelerating, so
reducing their speed, at a rate of aL and aR, respectively. The antelope
is accelerating at a rate of aA. The three rates are all defined positive, so
{aL, aR, aA} > 0.

First, draw the acceleration with the above labels into Figure 1.15.
Second, write down the acceleration vector components as functions of

aL, aR, aA. Also specify for all variables v̇L, v̇R, v̇A, ẌL, ẌR, ẌA, ŸL, ŸR,
ŸA whether they currently have positive, zero, or negative values.

1.3.4 Newton’s Second Law of Motion

Newton’s second law of motion [49] is specifically relevant to the field
of dynamics, forming its fundament:

2. “The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which
that force is impressed.”

This means that when a resultant force acts upon an object, it will
evoke a change of the object’s velocity vector that is proportional in
magnitude to the force and that also occurs in the direction in which
the force acts. The constant of proportionality is defined as the mass m
of the object. So, Newton’s second law resolves to the known equation:

∑

F = mv̇ = ma. (1.32)
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Departing from the object being a single particle, we will show in the
next chapter that the formula also holds for a system of particles or
rigid bodies, where a is the acceleration of the CoM of the system.

1.4 Solving Problems in Mechanics

1.4.1 Question Answering Strategy

For most problems in mechanics, the recommended strategy is to:

• start the answer to each question by defining the strategy, us-
ing only symbolic equations. Only fill in details (such as vector
components or even numerical values) when really needed to com-
pute/simplify the answer.

• start at the end: With equations that contain the variable asked
for. Looking at those equations, and identifying which terms are
known and unknown, typically works better than trying to find
equations that contain parameters given in the problem and then
hoping to reach the correct answer.

• draw a FBD, even if it is not directly asked for. It will help to
precisely understand the question.

• define all variables not mentioned in the text explicitly by a figure
or algebraically, in order to be fully aware of their meaning.

• include units in all calculations with numerical values.

1.4.2 Checking Plausibility

In the end or during the calculations one needs to check if the obtained
(intermediate) results are correct. Some specific ideas for checking plau-
sibility and identifying inconsistencies are to:

• use units as a quick check: if units on both sides of an equal sign
do not match, the equation is incorrect.

• use clearly separate notations for vectors as a quick sanity check:
if a calculation involves division by a vector, or taking the cross
product of two scalars, it is incorrect.

• do the same question with a different coordinate system.
• check special cases where the answer is easier to find, for example

when some values or derivatives are 0. An intuitive special case
for dynamic systems is often static equilibrium.
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• solve the problem numerically, e.g. via MATLABTM, and compare
results.

• check vector directions independent of magnitudes
• check signs.
• differentiate a previously integrated term again.
• check dimensions of a variable, e.g. are vectors and scalars added?
• check different approaches (e.g. to determine the equations of mo-

tion, this book introduces four different approaches).
• compare to peers and discuss.

Example 1.13 This Example is about the ring on a rotating bar of
Example 1.9 on page 18. A student is uncertain about the correctness of the
equation of motion she derived in the body-fixed u-direction:

Fu = −m(d̈ sinψ + 2ḋψ̇ sinψ + dψ̈ sinψ + dψ̇2 cosψ), (1.33E)

where Fu is the sum of all forces acting on the ring in u-direction.
Check the plausibility of this equation with three different, independent

plausibility checks. Base one of the checks on FBD of the ring. For each
check, first state a precise condition you expect to hold for the equation, and
a reasoning why you expect this to hold. Only then, perform the check.

Exemplary solution

• A first check can be done on units.
Prediction and Reasoning: Units must be identical for any two terms
that are added or equated, so all terms in the equation must have the
same unit (Note that sine or cosine of an angle have no units.):

[Fu] = [m] · [d̈] = [m] · [ḋ] · [ψ̇] = [m] · [d] · [ψ̈] = [m] · [d] · [ψ̇2]. (1.34E)

Execution and Conclusion: It is easiest to check with SI units,

[Fu] = N, [m] = kg, [d] = m, [ḋ] = m/s, [d̈] = m/s2,

[ψ̇] = rad/s = s−1, [ψ̈] = s−2, [ψ̇2] = s−2.

Substituting these units, the left side of (1.34E) is a force with unit
N, and all terms on the right side of the equation have the same unit,
which also resolves to N (as N = kgm/s2).
So, this is plausible.

• A second check can be done for the special case of static equilibrium:
Prediction and Reasoning: Special case: In static equilibrium, so if all
derivatives are zero (d̈ = 0, ḋ = 0, ψ̇ = 0, ψ̈ = 0), the sum of forces (so
also the component Fu) acting on the ring must be zero.
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Execution and Conclusion: Substituting zeros for all derivatives gives

Fu = −0 · sinψ− 2 · 0 · 0 · sinψ− d · 0 · sinψ− d · 02 · sinψ = 0. (1.35E)

This fulfills the prediction and is therefore plausible.
• A third check can be done based on the FBD:

Prediction and Reasoning: The FBD shows that the sum of forces in
u-direction must always be zero, because there is no friction: Fu = 0.
This must hold for any physically plausible kinematic parameters.
Execution and Conclusion: A possible combination could be ψ = 0,
d > 0, and ψ̇ > 0. We do not even need to think about what feasible
accelerations and velocities in this case could be, because they do not
appear anymore once we substitute ψ = 0 in (1.33E):

Fu = −mdψ̇2 < 0. (1.36E)

This contradicts the prediction, so (1.33E) must be incorrect.

1.4.3 Frequent Mistakes

Some mistakes are particularly frequent, so it is likely that a calculation
failed a plausibility check because:

• Coordinate system were not clearly defined, and vectors expressed
in different coordinate systems mixed incorrectly. To remedy, it is
important to define all used coordinate systems (origin and axis
directions) and to draw them in a general state.

• Formulae were applied without checking their underlying assump-
tions. The first step is awareness that many formulae are true for
special cases only, and the second is to thoroughly check whether
the given problem really falls into that special case.

• Variables were implicitly (and inconsistently) defined. Variable
definitions should be made explict.

• Vectors and scalars were not cleanly separated. To remedy, clear
notations and typesetting often help.

• Units were omitted throughout calculations, and only later re-
generated based on prior assumptions on units of the resulting
variable. This hinders the use of units to spot mistakes.

• scalar equations from 2-D dynamics were used, thereby omitting
terms that only exist in 3-D.

• out-of-plane reaction forces and moments were omitted in FBDs.
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1.5 Summary

The importance of making and adhering to proper definitions, particu-
larly of signs, can hardly be overestimated. Lack of explicit definitions
is one of the most common sources of uncertainty and mistakes.

Free-body diagrams are the first step to solving most problems in
mechanics. An FBD must 1) be in a generic state, and include 2) a
coordinate system, 3) all external forces and moments, 4) unique labels
for these, and 5) dimensions needed to calculate moments.

When drawing FBDs, actual movement of the system must not be
considered. The focus should instead be on representing any cut kine-
matic constraints of the system via forces and moments.

If the line of action passes of a force F passes through point A, the
moment with respect to point P is:

MP := rA/P × F , (1.37)

With this and the principle of equipollence, equivalent force/moment
systems acting on a rigid body can be calculated.

The center of mass with respect to point A of a system of mass m,
which could be a system of N particles or a rigid body, is defined as

rC/A :=

∑N
i=1miri/A
∑N

i=1mi

, or rC/A :=

∫

m rP/A dm
∫

m dm
, respectively. (1.38)

Newton’s First Law states that a particle that moves at constant
linear velocity v will keep the same velocity unless a force F acts on it.

Newton’s Third Law is the law of action and reaction: If an object a
exerts a force on another object b, then b exerts an equal and opposite
force on a.

Kinematics is the domain of dynamics that describes motion. Velocity
and acceleration of a point P are defined as derivatives of the position
vector with respect to time:

vP := ṙP , aP := v̇P = r̈P . (1.39)

In the special case where the position vector components are coordi-
nates in an inertial Cartesian coordinate system, the derivatives can be
calculated by taking derivatives of the components.
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1.6 Problems

1.6.1 Guided Problems

Problem 1.16 A Tippe Top [68] (Figure 1.16) is a special kind of
top [12]. When it is spun on its spherical end under the influence of gravity
with field strength g, it will invert itself and will continue to spin on the
small peg.

Figure 1.16: Tippe Top.

The top is modeled as shown in the section view. The spherical part has
radius R and has a cap cut off at a from the sphere center. The cylindrical
hole has radius Rh and height hh, and the peg has radius Rp and height hp.
The complete top has mass M .

a. Calculate the position vector rK/C from the center of mass C to the
contact point K between ground and top as a function of the position
vectors rC/S and rS/K . Make a drawing in a suitable 2-D-projection
that shows the three vectors and the three points in a generic config-
uration of the top.

b. Draw a free-body diagram (FBD) of the top. Do this in a generic state,
and choose a projection that allows you to draw all vector components
in the plane or orthogonal to it. Use only scalar labels. Choose a
rotating coordinate system xyz to define your projection. Let the
coordinate axis directions define a triad F . Clearly define the origin
of your coordinate system, and state whether it translates or not, for
general motion of the top. Label all relevant points and dimensions.

c. Use equipollence and the cross product to derive an equivalent system
where all forces and moments act in the center of mass of the top.
Calculate the components of the resultant force and moment vectors
as functions of the given constantsM, g,R, the distance d between the
center S of the sphere and the center of mass C of the top, and the
variables you defined in your own FBD. Use your chosen coordinate
system, so express all vector components in F .
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d. Defining that a solid sphere with a cap of height (R− a) cut off has a
remaining volume of Vs, and that its center of mass is at a distance b
below the sphere’s center, calculate the distance d between the center
S of the sphere and the center of mass C of the tippe top as a function
of Vs, b, hh, hp, Rh, Rp, a and R.

e. For the volume Vs of a solid sphere that has a cap of height (R − a)
cut off, one can use the formula

Vs =
1
3π (R+ a)

2
(2R− a) . (1.40P)

Check (1.40P) for plausiblity using at least three different checks, with-
out re-calculating the equation yourself yet.

f. In an unknown triad G, someone calculated three vectors: The gravi-
tational acceleration Gg = (0, −g, 0)T, the contact total friction force
GF f = (Ffx, 0, Ffz)

T acting on the top, and the contact normal force
GF n = (0, Fny, 0)

T. Show mathematically that the gravitational ac-
celeration vector is parallel to the normal force vector. Then show
that the friction force is perpendicular to the normal force.

g. In dynamics, we often encounter Greek symbols. Someone labels the
angle between the peg axis and the vertical θ (so-called nutation),
the spin angle around the peg axis with ψ, and the rotation angle
about the vertical axis (so-called precession) with ϕ. Furthermore, an
angular speed is labeled with ω. These letters will be used especially
in Chapter 3 and Chapter 4.
How are these Greek lowercase letters pronounced and what are the
uppercase symbols? What is the alternative symbol for ϕ?

h. Figure 1.17 shows the three angles in three different orthographic pro-
jections of the tippe top into two-dimensional planes. Four (incom-
pletely drawn) moving coordinate systems are defined: XY Z, x′y′z′,
x′′, y′′, z′′, and x′′′, y′′′, z′′′. For each of the projections, apply the right-
hand rule to draw all missing axes of the coordinate system x′′y′′z′′

that are contained within the drawn plane or orthogonal to it.

Figure 1.17: Tippe Top projections.
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i. A student applies the Newton-Euler method (a technique to be treated
in Chapter 6) and derives the equations of motion of the top. One of
these equations results to be

Md(θ̈ sin θ + θ̇2 cos θ − ϕ̈ sin θ − 2ϕ̇θ̇ cos θ) = N −Mg, (1.41P)

with variables as defined before, gravitational acceleration g, and N
the normal force exerted on the top by the ground in upward direction.
The student wants to verify the result. Conduct at least three different,
independent plausibility checks on this equation.

j. Calculate the volume Vs via integration, and compare your result to
(1.40P). Make one or multiple drawings where you include and la-
bel all variables used in your calculations (including those that are
infinitesimally small).

k. Use integration to calculate the distance b as a function of R and a.
Make again drawings to define all variables.

Example 1.14 A force F applied at point P causes a moment MO =
rP/O × F about point O with position vector rP/O (see Figure 1.18). The
vectors have components

MO =





MX

MY

MZ



 , rP/O =





XP

YP
ZP



 , F =





FX
FY
FZ



 . (1.42E)

Figure 1.18: Illustration of a force and position vector of its point of application.

Consider two cases:

• Case I: rP/O known, F unknown,
• Case II: rP/O unknown, F known.

a. Show that for both cases we cannot determine the unknown vector
unambiguously. Do this by rewriting the cross product to a repre-
sentation with the tilde matrix and try to solve for the respective
unknown vector components. Alternatively, directly use the rank of
the tilde matrix to come to a conclusion.
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b. For a unique solution, we choose the constraint that the force is per-
pendicular to the position vector, rP/O ⊥ F . Describe this constraint
by a vector equation involving rP/O and F .

c. Combine the moment equation with the constraint from part b and
rewrite the equations to the form Ax = b. Do this for both cases,
such that x is rP/O or F , respectively a.

d. Now the numerical values of the moment are known:

MO =
(
4 2 1

)T
Nm. (1.43E)

Also one of the other vectors’ values are known:

• Case I: rP/O = (1, 2, 4)Tm,
• Case II: F = (−2, 6, −3)TN.

Substitute the values in the expression from part c and solve for the
unknown vector to find the numerical valuesb.

aHint : MatrixAshouldcontain(amongothers)atildematrix.

bHint :

UseMATLAB
TM

’s\-operator.

Example 1.15 A camera of mass m is suspended on three cables, as
shown in Figure 1.19.

Figure 1.19: Camera suspension system

The position of the camera with respect to the origin O of the XY Z coor-
dinate system is given as rC/O = rC = (2l3 ,

w
3 ,

h
2 )

T, in the indicated XY Z
coordinate system, with constant parameters l, w, and h describing the di-
mensions of the suspending frame. The positions of the endpoints of cables
p, q and r with respect tot O are given as rP = (0, 0, h)T, rQ = (0, w, h)T

and rR = (l, w2 , h)
T, respectively. Gravity, with constant g, acts in the

negative Z direction. Simplify the camera as a particle, and at rest.
We want to determine the force in cable r. To increase reliability of the
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result, we use two different methods. The first is straightforward but requires
more computational effort, the second is more elegant and costs less effort,
but requires more insight.

a. Draw the free-body diagram of the camera.
Method 1

b. Use vector addition to calculate the vectors rP/C , rR/C , and rQ/C ,
with components expressed as functions of l, w, and h.

c. Calculate the length of cable p as a function of l, w, and h.
d. Calculate the components of the direction vector ûr in direction of

cable r, as functions of the given constants, and such that the vector
has a positive Z component. Do the same for the two other cables.

e. Express the force vector F r that cable r exerts on point C as a function
of ûr and the (yet unknown) magnitude Fr = |F r| of the force in cable
r. Do the same for the two other cables.

f. Express the resultant force vector ΣF c acting on the camera as a
function of the cable force magnitudes Fp = |F p|, Fq = |F q|, Fr =
|F r|, and the constants w, h, l, m and g.

g. Rewrite the vector equation ΣF c = 0 for static equilibrium such that
it takes the form Ax = b, with x = (Fp, Fq, Fr)

T.
h. Solve ΣF c to determine Fp, Fq, and Fr as functions of l, w, h, m, g.

The MATLABTM symbolic toolbox can simplify calculations.
Method 2

i. Calculate a unit vector ê that is orthogonal to cables p and q, as a
function of the given constants l, w, h.

j. Determine the projection ΣFce of ΣFC in direction of ê as a function
of Fp, Fq, Fr and of the given constants. Explain why two of the
unknowns do not appear in the function.

k. Use ΣFce = 0 to determine Fr as a function of l, w, h, m, g.
l. Given the two methods above, how would you generally choose coor-

dinate directions to minimize calculation effort if some force vectors
are irrelevant?

1.6.2 Practice Problems

Problem 1.17 This Problem is about the top of corks and skewers
of Problem 1.8 on page 12. Calculate the vector rA/P as a function of the
vector rC/P and the two scalars l and d. ⊲

Problem 1.18 Three particles form a T-shaped rigid body floating
in space. The particles have mass m1,m2, and m3, respectively, and are
connected by two massless rods (Figure 1.20). There is no gravity. A body-
fixed xyz coordinate system is drawn where the x-direction is aligned with
the long rod of length L, and the y-direction is aligned with the short rod of
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length L/2. The origin of xyz is in the center of mass of the body. The axis
directions define a body-fixed triad B.

Figure 1.20: T-shaped rigid body consisting of three particles.

Calculate the distances a and b that define the location of the body’s center
of mass C, as functions of the given geometry and the particles’ masses. ⊲

Problem 1.19Which statement(s) make(s) correct use of units for mass
m, speed v, time t, and length h? Check all that apply.

A. m =kg
B. m =[kg]
C. v = 20hm/s
D. cos t = 1
E. None of the above

⊲

Problem 1.20 The thin-walled cylindrical rotor in Figure 1.21, of mass
m and radius R, is in static unbalance. This means that the rotor’s center of
mass D is not on the x-axis. Static unbalance can cause undesired vibrations
when the rotor is in motion.

Figure 1.21: Unbalanced rotor.
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A weight of mass ma is to be added to the rotor at a strategic place on
the shell of the rotor A, described by the angle ϕ and the distance d. The
weight should compensate for static unbalance, such that the center of mass
of the combined body (rotor plus mass ma), with position vector rC , is on
the x-axis. This is done so that the bearings P1 and P2 do not have to
support any net force due to rotation of the rotor.

Point D has the position vector rD = R · ( 1
40 ,

1
50 ,

1
50 )

T in the rotor-fixed
xyz. The weight is considered a particle that is rigidly attached to the rotor.

Determine ma and one possible location A to compensate for static un-
balance of the rotor. Provide ma, ϕ, and d as functions of R and m. ◮

Problem 1.21 For all bodies shown below, free-body diagrams are
to be drawn. Choose one or multiple projections that allow you to draw
components of vectors either contained in or orthogonal to the paper plane,
such that there is no ambiguity in direction. Also, use only scalar labels, so
split vectors into multiple components when needed.

a. Draw the FBD of a spacecraft (Figure 1.22) of massm floating in outer
space.

Figure 1.22: Spacecraft.

b. Three gimbal rings are mounted with friction-free rotational joints
(Figure 1.23). An external moment about the vertical axis is applied
on the outer gimbal ring. Draw the FBD of the middle gimbal ring.

Figure 1.23: Gimbal rings.
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c. A grasper is opened and empty at the moment as drawn in Figure 1.24.
Each of the grasper’s beaks is controlled by an electromotor on its
rotational hinge. Draw the FBD of the upper beak.

Figure 1.24: Grasper.

d. Draw the FBD of a piston as shown in Figure 1.25.

Figure 1.25: Piston.

e. A trombone is a brass musical instrument. The player can regu-
late the pitch by sliding a telescoping mechanism to a position (see
Figure 1.26). Draw the FBD for the sliding element when the player
is playing the instrument.

Figure 1.26: Trombone.

Problem 1.22 A person is riding a skateboard (Figure 1.27). The rider
can steer the skateboard by leaning sideways over a tilt angle γ.
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(top view) (rear view)

Figure 1.27: A person riding a skateboard.

The rider is modeled as rigidly attached to the board and positioned at
the center of the board A.

The arrangement of the trucks (hinged axles), which connect the wheels
to the board, are such that there is a fixed kinematic relation between the
tilt angle γ of the board and the steer angle of the front and rear truck
δ (Figure 1.27). For small angles, this kinematic relation can be approxi-
mated by δ = kγ, were the constant k only depends on the fixed geometric
arrangement of pivot axes of the trucks with respect to the skateboard.

The wheels roll and do not slip in either lateral or longitudinal directiona.
The distance between the centers of the wheel axles is l. The distance be-
tween A and P is h. We neglect friction in the bearings.

A person-fixed triad B is defined such that b̂3 points upwards from the
feet to the head, b̂1 points in direction of the nose (in anatomical terms, the

anterior direction), and b̂2 points sideways towards person’s left.
The inertial XY Z-coordinate system has directions of N and origin O.
An intermediate triad F describes the motion of the skateboard on the

plane. The unit vector f̂1 points in the direction of the forward speed of the

board, and f̂3 is aligned with the inertial triad vertical n̂3.
Gravity with acceleration constant g acts in negative Z-direction. The

ground is flat.
Draw a FBD of the skateboard including the rigid rider in a top view, like

the left picture in Figure 1.27.
Use only scalar labels for your vectors. Also include all dimensions that

would be needed to calculate relevant moments for Euler’s second law. Do
not actually calculate the moments. ◮

aThis is not fully realistic; to enable turning with wheels of finite width, there has
to be local slip

Problem 1.23 This Problem is about the skateboarder of Problem 1.22
on page 39. Which statement(s) is/are always true about the (relative) po-
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sition vectors rP/A, rP/O, rA/O? Check all that apply.

A. rP/A = rP/O − rA/O
B. rP/A × rA/O = 0
C. rP/A · rA/O = 0
D. None of the above

⊲

Problem 1.24 A simple 3-axis accelerometer (Figure 1.28) consists of
a mass that is elastically suspended within a cage. This cage is attached
to a rotating and translating object. Acceleration of the mass is related
to deformations of the tension springs, which can be used to measure the
object’s movements. However, the springs also deform due to gravity acting
on the mass.

Figure 1.28: An accelerometer, consisting of a spherical mass suspended in a (trans-
parent) cube by six springs.

We model the cage as a massless hollow cube with center C and edge
length 2a. The cage-fixed triad C has the direction vectors ĉ1, ĉ2, ĉ3.

We model the mass as a rigid homogeneous sphere of mass m, radius R,
and center S. The sphere-fixed triad K has the direction vectors k̂1, k̂2, k̂3.
When all springs have equal length, triad C and triad K are the same.

Point O is the origin of the inertial axes X,Y, Z, which define triad N .
Gravity with acceleration constant g acts in negative Z-direction.
Draw FBDs of the cage and of the sphere, assuming that the cage is

rigidly attached to another body at its face that contains point A. Here, we
consider the case where there is no gravity. For the FBD, you may make the
simplification that the springs are very stiff, such that their directions do not
change with respect to the cage. Remark: Do not make this simplification in
later uses of this problem. Use only scalar labels for your vectors. Show only
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orthographic projections , where all forces and moments are either contained
in the paper plane or orthogonal to it. ◮

Problem 1.25 This Problem is about the accelerometer of Problem 1.24
on page 41. The spring between points A and D has linear characteristics,
with spring constant k. When no force acts on it, the spring has length
ln, and in static equilibrium (neglecting gravity), the spring has a different
length lp, because all springs are in pre-tension.

Calculate the force vector that this spring exerts on the sphere, as a func-
tion of the vector rD/A and the constants k, lp, ln. ⊲

Problem 1.26 This Problem is about the accelerometer of Problem 1.24
on page 41. The accelerometer is mounted on a robot arm, which is subjected
to the gravitational field of Earth, with acceleration constant g acting in neg-
ative Z-direction. The sensors measure that the six springs apply a resultant
spring force of F on the cage.

The sphere’s center has an acceleration aS of (check all that apply):

A. aS = −F /m− gn̂3

B. aS = −F /m+ gn̂3

C. aS = −F /m
D. aS = F /m− gn̂3

E. aS = F /m+ gn̂3

F. aS = F /m
G. None of the above

⊲

Problem 1.27 This Problem is about the accelerometer of Problem 1.24
on page 41. The accelerometer is simplified and used in a one-dimensional
movement. It is oriented as shown in the kinematic diagram in Figure 1.29,
and it does not change this special-case orientation. The coordinates ZC ,
xS , and d are defined in the figure.

Figure 1.29: Kinematic diagram of simplified accelerometer in 1-D.
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Someone already drew a FBD and determined that the sum of external
forces acting on the mass in upward direction Z is ΣFu. The following
equation(s) is/are correct (Check all that apply):

A. ΣFu = mẍS
B. ΣFu = mZ̈C
C. ΣFu = 0

D. ΣFu = md̈

E. ΣFu = −md̈
F. None of the above

⊲

Problem 1.28 Re-Do Example 1.12 with a North-East-Down (NED)
coordinate system, where the X-axis points North and the Y -axis points
East. Focus again on the signs and conduct plausibility checks.

Problem 1.29 A person is performing tricks on a scooter with spring-
board. Figure 1.30 shows the system in 3-D(left), and a detailed sideview of
the scooter (right).

Figure 1.30: Springboard scooter.

The scooter consists of one massless leafspring and four rigid bodies that
all have mass and inertia: Two wheels of equal radius and mass mw, a
footboard of mass mf , and a steering handle. A local xyz coordinate system
is connected to the footboard and has its origin in the footboard’s center of
mass B.

The four bodies are all connected to each other by friction-free hinges: The
wheels are connected to the footboard such that they can only rotate about
their respective axles C and D, which are parallel to the y-axis and pass
through the centers of mass of the wheels. The steering handle is connected
to the footboard by a hinge G that allows only rotation about an axis that
is inclined by an angle α with respect to the z-axis.

The scooter’s wheels roll on the ground without slip and have only point
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contact, the rear wheel in point E. The person is touching the leafspring
only with one toe, idealized as one point A. The person also holds the handle
of the scooter.

Gravity acts in the downward direction with field strength g.
Draw the FBDs of two systems, namely of the rear wheel and of a system

consisting of the footboard and the leafspring connected to each other. Do
this by completing Figure 1.31, which already contains the outlined shapes
of these two systems in a projection into the xz-plane.

Figure 1.31: Scooter’s footboard and rear wheel as free bodies.

Represent distributed loads by their resultant and split vectors into their
components such that you use only scalar labels for all drawn arrows. Re-
member to use clear, unique labels. ◮
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2 Particle Dynamics in Fixed
Coordinate Systems

This chapter will deal with dynamics of particles and systems of parti-
cles using fixed coordinate systems1, which forms the basis for the later
analysis of more complex systems with rotating reference systems.

The Newton-Euler approach is explained for particles and systems of
particles in Section 2.1 (The principle will be extended to rigid bodies in
Chapter 6). The principle of work and energy is explained for particles
and systems of particles in Section 2.2 (It will be extended to rigid
bodies in Chapter 5).

2.1 The “Newton-Euler” Approach

This section reviews a fundamental approach to derive the equations of
motion of particles and systems of particles.

2.1.1 Linear Momentum

The right side of Newton’s second law of motion (1.32) can also be re-
written using linear momentum. Linear momentum is defined as the
product of mass m and velocity v. Note that momentum is not the
same as moment. For a particle i, located at ri, having mass m and
velocity vi, the linear momentum pi is defined as

pi := mivi = miṙi. (2.1)

For a system of N particles, the individual linear momenta pi ac-
cording to (2.1) can be summed to an overall vector p of the system:

p :=

N∑

i=1

pi. (2.2)

1In this book, only right-handed coordinate systems are used, and we recommend
the reader to do the same to ensure that all formulae are valid.
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2.1.2 Principle of Linear Impulse and Momentum

Newton’s second law (1.32) states that the force F i on a particle equals
the rate of change of the particle’s linear momentum:

F i = ṗi =
d

dt
(mivi) . (2.3)

If the particle is part of a system of particles, we can apply summation
to both sides of the equation. Because the sum of internal forces is zero
(see (1.16)), Newton’s second law of motion shows that the system’s
overall rate of change of the linear momentum p with respect to time
equals the sum of the external forces acting on it:

N∑

i=1

F i =
N∑

i=1

ṗi = ṗ. (2.4)

As a special case, this implies that if there are no external forces acting
on a mechanical system in a particular direction, the system’s linear
momentum in this direction remains constant. Using the definition
(1.11) of the center of mass of a system of particles and the definition

m :=
N∑

i=1

mi, we see that for constant masses mi,

N∑

i=1

mir̈i = mr̈C = maC . (2.5)

Combined with (2.4) and (2.3) for mass m, this yields

N∑

i=1

F i =
N∑

i=1

miai = maC . (2.6)

So, Newton’s second law tells us that the center of mass of a system of
particles will accelerate as if the entire mass of the system was concen-
trated in it and all external forces were acting on it.

When integrated over time between times t0 and tf , Newton’s Second
Law is called the principle of linear impulse and momentum:

∫ tf

t0

N∑

i=1

F idt = p(tf)− p(t0) = ∆p. (2.7)

46 Advanced Dynamics © 2020 Vallery/Schwab



2.1 THE “NEWTON-EULER” APPROACH 47

Hereby, impulse is defined as the integral of force over time. So, the
principle states that the increment in linear momentum is equal to the
impulse of the resultant force that was applied during the same time
interval. This form of the relationship is particularly relevant for colli-
sions.

We saw in this section that internal forces cannot effect a change in
linear momentum of the system as a whole. Note that this does not
mean that internal forces cannot have any effect. On the contrary, if
you look inside the system, at relative movement of particles, internal
forces can change motion.

Example 2.1 Two persons on skates are standing on a frictionless
surface, each holding the end of a connecting rope in their hands. They can
pull themselves towards each other by means of this rope, so the internal
forces in the rope do have an effect. However, the skaters do not change the
position of their combined center of mass.

Problem 2.1 A cannon of mass M stands at rest on a frictionless
surface. Then, it shoots a ball of mass m. Assuming the relative velocity
of the ball with respect to the cannon has a magnitude of vr, what is the
resulting rebound speed of the cannon?a

aHint :

Afterdefiningacoordinatesystem,determinethevelocityofthe
centerofmassofthecombinedsystemconsistingofballandcan-
non,usingNewton’sSecondLaw.Then,re-useyourresultfrom
Problem1.11torelatethisvelocitytotheindividualvelocitiesof
ballandcannon.

2.1.3 Angular Momentum of Particles

The previous subsection showed the relation between the sum of forces
on the center of mass of a system of particles and linear momentum of
this system. The following subsections will show the relation between
the sum of moments acting on a system and a quantity that, intuitively
speaking, describes the amount of rotational movement of a mechanical
system: Angular momentum.

Angular momentum of a particle i about a reference point Q can be
seen

First, we consider only the important special case in which the ref-
erence point Q is fixed, denoted by O. The angular momentum HO,i

of a particle about O, is defined as the cross product of the particle’s
position vector ri with respect to point O, and the particle’s linear
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momentum vector pi:

HO,i := ri × pi = ri × (miṙi), (2.8)

For a general point Q, the angular momentum HQ,i of a particle
about Q, is defined here as:

HQ,i := ri/Q × (miṙi/Q). (2.9)

Note that we are using here a relative and not an absolute velocity in
the definition. If Q is a fixed point, the definitions are equivalent.

For a system of particles, the particles’ individual angular momenta
are summed to:

HQ :=

N∑

i=1

HQ,i. (2.10)

Example 2.2 In some machines the power is controlled by a so-called
“centrifugal governor”. The original type, introduced by James Watt , is
shown in Figure 2.1.

Figure 2.1: Centrifugal governor.

The central spindle, to which the arms carrying the two balls are hinged,
rotates at a rate proportional to the speed of the engine. When this rotation
rate is constant, the balls, under the action of gravity, a spring force, and
centrifugal “forces”, will converge to a definite “equilibrium” position that
depends on the rotational speed. If the speed increases, the balls diverge
outwards, raising the collar C to which some system of levers can be con-
nected, which can turn a valve so as to reduce the power supply. Conversely,
when the speed diminishes, the collar descends, and the supply is reinforced.

The inclination of the two identical upper arms to the spindle is denoted
by the angle θ, the rotation of the spindle by the angle ψ. The rotating
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coordinate system xyz with associated triad F is defined in such a way that
the balls are always contained in the yz-plane and z is pointing upward.

The balls are modeled as particles of mass m and all other parts of the
mechanism as massless bodies. The length of the arms carrying the balls
is 2L and the length of the rods connecting the arms with the collar is L.
Between the collar C and the fixed base, a linear spring with spring stiffness k
and unstressed length L0 is attached. Gravity acts in the downward direction
with field strength g.

The left ball has the position vector Fr1 = (0, −2L sin θ, 2L(1− cos θ))T

and the velocity vector F ṙ1 = (2Lψ̇ sin θ, −2Lθ̇ cos θ, 2Lθ̇ sin θ)T.
The angular momentum component Hz of the system about the z-axis

can be written as Hz = P θ̇ + Qψ̇. Determine P and Q as functions of the
parameters m, L, g, k, L0 and the angle θ.

Exemplary solution
The angular momentum component about the z-axis is exactly the same

for both particles, because of symmetry. So, angular momentum Hz can be
calculated from the third component of the left particle’s angular momentum
vector HO1 about the origin O of the xyz coordinate system:

Hz = 2HO1 ·





0
0
1



 . (2.11E)

The angular momentum of the particle with respect to O is the cross product
of its position vector r1 = r1/O and its linear momentum, so:

FHO1 = Fr1 × (mF ṙ1) (2.12E)

=





0
−2L sin θ

2L (1− cos θ)



×m





2Lψ̇ sin θ

−2Lθ̇ cos θ

2Lθ̇ sin θ



 (2.13E)

⇒ Hz = 2 · 4mL2ψ̇ sin2 θ (2.14E)

= 0
︸︷︷︸

P

·θ̇ + 8mL2 sin2 θ
︸ ︷︷ ︸

Q

ψ̇. (2.15E)

Comparing coefficients gives:

P = 0,

Q = 8mL2 sin2 θ.

(2.16E)

(2.17E)

Problem 2.2 A wheel consists of 20 particles of equal mass that are
uniformly distributed around the circumference of the otherwise massless
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wheel. The wheel rotates about its rotational symmetry axis, which is fixed
in space. In which direction does the vector of angular momentum of the
wheel, with respect to its fixed center, point? Use the cross product in your
reasoning. Does your answer change if one of the particles is heavier than
the others or if the arrangement is not uniform anymore?

A second important special reference point Q is the system’s center of
mass C. A convenient property of this point is that angular momentum
can be calculated either using absolute velocities ṙi or relative velocities
ṙi/C , the result is the same (see Problem 2.3):

HC =
N∑

i=1

(ri/C × (miṙi/C)) =
N∑

i=1

(ri/C × (miṙi)). (2.18)

Problem 2.3 Prove the equivalence of the definitions in (2.18). Make
use of vector addition and of the definition of the center of mass of a system
of particles. ◮

Knowing a system’s angular momentum with respect to its center
of mass, it is often still desirable to calculate angular momentum with
respect to a different reference point. Helpful reference points are often
fixed points. Another frequent case is that the system is part of a
larger system, and one wants to calculate the overall system’s angular
momentum with respect to its overall center of mass.

In such cases, we can make use of the relationship (see Problem 2.5
for a proof) for a (sub)system of mass m and center of mass C:

HQ = HC + rC/Q ×
(
mṙC/Q

)
. (2.19)

Problem 2.4 Check basic plausibility of (2.19) by looking at these two
trivial special cases: a) The system’s center of mass C coincides with point
Q, b) The subsystem consists of one single particlea.

aHint : WhatisHCforasingleparticle?

Problem 2.5 Prove (2.19). Make use of vector addition and of the
definition of the center of mass of a system of particles, and of (2.9), (2.10)
and (2.18). ◮
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2.1.4 Euler’s Second Law of Motion

We recall that Newton’s Second Law for one particle states of mass mi

and position vector ri states that

mir̈i = F i +

N∑

i=1

f ij , (2.20)

with external resultant force F i and internal forces f ij. The main step
to derive Euler’s Second Law is to apply the cross product on both
sides:

ri/Q × (mir̈i) = ri/Q ×
(

F i +
N∑

i=1

f ij

)

, (2.21)

If we sum over all particles, we can simplify the right side, because we
saw in (1.21) in Section 1.2.7 that internal forces cause no net moments:

N∑

i=1

(
ri/Q × (mir̈i)

)
=

N∑

i=1

(
ri/Q × F i

)
= MQ, (2.22)

We now look for a relationship between the rate of change of angular
momentum and the left side of this equation.

To that end, we apply the product rule to obtain the time derivative
of ḢQ in (2.10), using the definition (2.9). We assume constant masses
mi, so we obtain

ḢQ =

N∑

i=1

ḢQ,i =

N∑

i=1

(
ṙi/Q × (miṙi/Q) + ri/Q × (mir̈i/Q)

)
. (2.23)

The cross product of a vector with itself is zero, so (2.23) simplifies to

ḢQ =

N∑

i=1

(
ri/Q ×

(
mir̈i/Q

))
. (2.24)

This is not yet the term on the right side of (2.22). However, we can
apply vector addition,

r̈i = r̈i/Q + r̈Q, (2.25)

and the definition of the center of mass

N∑

i=1

miri/Q = mrC/Q (2.26)
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to obtain Euler’s Second Law for a generic point Q:

ḢQ + rC/Q × (mr̈Q) = MQ. (2.27)

So, for a generic point of reference, the rate of change of a system’s
angular momentum is not always equal to the external moments applied.
However, there are two important special cases where it is: First, point
Q can be chosen as a non-accelerating point O, which means r̈Q = 0.
In that case:

ḢO = MO. (2.28)

The second special case is point Q being the system’s center of mass C,
because then rC/Q = 0:

ḢC = MC . (2.29)

Note that a practically less relevant third special case is given if the
vectors rC/Q and r̈Q are aligned.

This set of three equations, in either of the forms (2.27), (2.28), or
(2.29), also called Euler’s second law of motion, describes rotational
movement of a system of particles. Combined with Newton’s law for
a system of particles (2.6), the resulting six equations form a set of
equations of motion for the combined movement of the particles of the
system in 3-D: One equation per dimension for linear motion, and one
equation per dimension for rotational motion.

Remember that the simple equality between rate of change of angu-
lar momentum and external moments, (2.28) or (2.29), which is also
called Euler’s second law of motion, only holds in two special cases: (1)
the reference point Q is a fixed (non-accelerating) point O, or (2) the
reference point Q is the center of mass C.

Also remember that internal forces cannot cause net moments, and
therefore they cannot effect a change in angular momentum of the sys-
tem as a whole. Therefore, when calculating MO or MC in (2.28)
or (2.29), it suffices to sum only all external moments acting on the
system.

In analogy to the principle of linear impulse and momentum (see
Section 2.1.1), Euler’s Second Law when integrated over time is called
the principle of angular impulse and momentum. Hereby, angular im-
pulse is defined as the integral of the moment over time, and it deter-
mines angular momentum change during the same time interval:

∫ tf

t0

MCdt = HC(tf)−HC(t0) = ∆HC . (2.30)
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Problem 2.6 For a system of particles where the only external forces
are gravitational forces, what can you say about the system’s rate of change
of angular momentum with respect to its center of mass?

Problem 2.7 A cat is falling off a building, back first. The cat manages
to rotate its body and safely lands on its feet. Ignore air drag. Is it correct
to state that the cat used its muscle forces to change its angular momentum
with respect to its center of mass during the fall? Why/why not? ⊲

Problem 2.8 Two particles 1 and 2 are connected by a rigid rod and
form one system. In scenario a), an external force of magnitude F is applied
to particle 1. In an alternative scenario b), a force of the same direction and
magnitude is applied to particle 2 instead.

• Will the acceleration of the system’s center of mass differ between the
two scenarios?

• Will the system’s rate of change of angular momentum with respect
to its center of mass differ?

• Will the system’s rate of change of angular momentum with respect
to a fixed point differ?

Show why for each answer. Can you imagine special cases where the answer
to the above three questions is always “No”? Can you imagine special cases
where the answer to the above three questions is always “Yes”?

2.2 Work and Energy

Another way to describe the kinetics of (a system of) particles is using
work and energy . This will be introduced in this section and discussed
more in Chapter 5.

2.2.1 Power and Work of a Force

The instantaneous power P of a force F is defined as the scalar product
of F and the velocity v of its point of application:

P := F · ṙ = F · v. (2.31)

Power has no direction; it is a scalar, not a vector.

To calculate the work done on a particle by the application of a force
between times t0 and t1, power is integrated over time:

W :=

∫ t1

t0

P dt =

∫ t1

t0

F · v dt. (2.32)
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Like power, work is a scalar quantity. As dr = v dt, work W of a force
F is the integral of F with respect to the path:

W =

∫ B

A
F · dr, (2.33)

where the point of application travels from point A to point B, with
infinitesimal position vector increments dr.

That means a force F can only do work W on a mechanical system
if there is a displacement of the force vector’s point of application and
when the dot product of F and dr is not always zero between times t0
and t1.

Example 2.3 If an apple is held above the ground and then dropped,
the work done on the apple as it falls is equal to the weight (a force) of the
apple integrated over the path to the ground.

Note that only in the special case where the force is constant and
pointing in direction of the movement (such as in Example 2.3), (2.33)
simplifies and one can calculate the work as being equal to the magni-
tude of the force times distance traveled.

Example 2.4 A person carries a suitcase along a horizontal path. The
upward force the person applies on the suitcase is always perpendicular to
application point displacement increment dr, such that the scalar product
(2.33) is zero. That means the upward force does no work along this path.

Problem 2.9 A ball rolls down an incline that has an angle of 45◦ with
the vertical. Calculate the distance the ball traveled as a function of height
difference covered. Calculate the work done on the ball by its own weight,
as a function of this height difference. Show that this work is not equal to
the magnitude of the weight force times distance traveled. Take care about
the signs throughout your calculation.

Problem 2.10 A force of magnitude F acts on a particle. The force
always acts in the direction of the particle’s velocity vector, and its magnitude
is a function of time t, with F = F0(1 + sin(2πft)), with constant frequency
f and amplitude F0. The particle moves with constant speed v0. Calculate
the work done by the force F as a function of time t and the given constants.
Show that this work is generally not equal to the amplitude of the force times
distance traveled.

2.2.2 Principle of Work and Energy for a Single Particle

Newton’s second law for a particle with constant mass m, with a resul-
tant force vector F acting on it, states

F = ṗ = mr̈. (2.34)
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If we integrate this over the path between points A and B, we obtain
workW on the left side of (2.34). If we integrate the right side of (2.34)
as well, we obtain (see also Problem B.4)

∫ B

A
FT dr = m

∫ B

A
r̈T dr

= m

∫ t1

t0

r̈Tṙ dt = m

[
1

2
ṙTṙ

]t1

t0

=
1

2
m(v21 − v20),

(2.35)

where v0 and v1 are the respective speeds of the particle at time instants
t0 and t1, corresponding with the particle being at locations A and B.

We define the kinetic energy T of the particle with mass m and ve-
locity vector v = ṙ with magnitude v = |v| to be the work needed to
bring the particle from rest to this velocity. From (2.35), we see (with
v1 = v and v0 = 0) that this quantity is equal to

T =
1

2
m|v|2 = 1

2
mv2. (2.36)

Note that in contrast to linear or angular momentum, kinetic energy is
a scalar, which means that it has no direction.

Example 2.5 This Example is about the governor of Example 2.2 on
page 48. The kinetic energy T of the system can be written in the form
T = 1

2Aθ̇
2 + 1

2Bψ̇
2. Determine A and B as functions of the parameters m,

L, g, k, L0 and the generalized coordinate θ and explain why the kinetic
energy is no function of the generalized coordinate ψ.

Exemplary solution
Because of symmetry, kinetic energy T1 of particle 1 equals kinetic energy

T2 of particle 2, so

T = T1 + T2 = 2T1. (2.37E)

The balls are modeled as particles, so kinetic energy is

T =
2∑

i=1

1
2m |vi|2 = 2 · 1

2m
∣
∣F ṙ1

∣
∣
2

(2.38E)

= 2 · 1
2m
(

4L2ψ̇2 sin2 θ + 4L2θ̇2 cos2 θ + 4L2θ̇2 sin2 θ
)

(2.39E)

= 1
2 · 8mL2
︸ ︷︷ ︸

A

θ̇2 + 1
2 · 8mL2 sin2 θ
︸ ︷︷ ︸

B

ψ̇2. (2.40E)

Comparing coefficients gives A = 8mL2 and B = 8mL2 sin2 θ.
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The kinetic energy is no function of ψ, because the magnitude of the
velocity vector of either particle does not depend on ψ.

When the initial velocity is not zero, we find from the integral of (2.35)
that the work W done on any particle by the resultant force F acting
on it during an arbitrary time interval equals the increment ∆T of
the particle’s kinetic energy, which is the difference between the kinetic
energy TB at position B and the kinetic energy TA at position A:

W =

∫ B

A
F · dr = TB − TA = ∆T, (2.41)

or in short
W = ∆T. (2.42)

This is the principle of work and kinetic energy for a single particle.
Note that we derived it only using Newton’s second law.

2.2.3 Work of Internal and External Forces

In order to investigate whether internal forces can do work on mechan-
ical systems, we consider a particle i with mass mi and speed vi, which
is part of a system of N particles, as depicted in Figure 1.6 on page 15.
The resultant force acting on the i-th particle over a position increment
dri includes both the resultant external force F i that acts on this par-
ticle and the sum of forces f ij exerted on the i-th particle by any other
j-th particle in the system. Therefore, the workWi done on the particle
is

Wi =

∫ Bi

Ai



F i +

N∑

j=1

f ij



 · dri. (2.43)

It is not possible to further reduce this equation, because the work done
by internal forces does not cancel. This is in contrast to what we found
in Section 1.2.7 for resultant moments of internal forces. So, internal
forces can do work.

Problem 2.11 The two skaters on a frictionless flat surface from Ex-
ample 2.1 use the rope they are holding to start pulling towards each other.

Draw individual FBDs of each skater. Identify all external forces for each
skater and explain whether these forces do positive, negative, or zero work
when the skaters move towards each other, and when they move apart.

Next, draw a FBD of the combined system, consisting of the two skaters,
and identify again all external forces. Describe the displacement of the points
of application and explain why the work of the external forces is zero. Also
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explain why the work of the internal forces is not zero.

Problem 2.12 A wheel is rolling without slip. Explain with a short
reasoning whether the friction forces between wheel and ground do work. ⊲

2.2.4 Principle of Work and Energy for Systems of Particles

In a system of N particles (see Figure 1.6 on page 15), where particle i
has the individual kinetic energy

Ti =
1

2
miv

2
i , (2.44)

the principle of work and energy (2.42) applies to the particle as

Wi = ∆Ti. (2.45)

We may apply summation over the left and right side of (2.45). By
defining the kinetic energy of the system of particles as the sum of all
individual kinetic energies,

T :=

N∑

i=1

1

2
miv

2
i , (2.46)

we obtain the principle of work and energy for a system of particles:

W =

N∑

i=1

∫ Bi

Ai



F i +

N∑

j=1

f ij



 · dri =
N∑

i=1

∆Ti = ∆T. (2.47)

This means the change in kinetic energy of a system of particles is given
by the work of all external and internal forces acting on this system.

Example 2.6 Consider again the two skaters on a frictionless flat sur-
face from Example 2.1 and Problem 2.11. If the skaters start from rest, their
speeds (and thus kinetic energy) will increase. Interpreting the skaters as
particles number 1 and 2 within one system, the work done by all external
forces acting on this combined system is zero. Still, kinetic energy changes,
due to the work of internal forces f12 and f21 transmitted by the rope.

2.2.5 Conservative Systems

As an introduction, we approach the topic intuitively. A force is called
conservative if it is a function of position only and it conserves mechan-
ical energy.
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Example 2.7 If a particle of mass m is thrown vertically into the
air and rises up to a height of 5m against the force of gravity, it will lose
speed and thereby kinetic energy. However, energy is still conserved since
one can fully recuperate this mechanical energy by letting the particle fall
from the 5m height back to the ground. In contrast, if a friction force acts
on a particle that is sliding over the ground, thereby causing the particle
to brake, then mechanical energy is transformed into thermal energy. This
energy cannot be recuperated when the particle moves back into the other
direction; instead, even more mechanical energy would be transformed into
heat.

The work done by conservative forces, such as gravity in Example 2.7,
can be expressed as a function of the start and end positions of a sys-
tem. This saves the integration work since the path the particle takes
from start to the end does not affect the work done on the system. In
our example, the work done on the system (lifting the particle against
gravity) will be the same if we go up and down with the particle two or
more times in a row.

Consequently, a conservative force would not do any work along an
arbitrary closed path, because then the start and end position are iden-
tical. Thus, according to the principle of work and energy, the kinetic
energy of a system with only conservative forces acting on it will return
to its initial value if the initial and final configuration of the system are
identical.

Problem 2.13 A particle is moved from position A to position B along
three possible trajectories. A conservative force acts on it. Can you say
anything about the work that this force does on the particle along each of
these three trajectories?

To check whether or not a force is conservative, the key is the concept
of potential energy .

Without loss of generality, we first assume there is only a single con-
servative force acting on a mechanical system. To express the potential
of this conservative force to do work on the system (in the future), a
scalar potential function V is introduced, equivalent to energy. Given
that the work of a conservative force purely depends on net displace-
ment of its point of application r between two points, also the associated
potential energy V must be a function of r, so

V = V (r) = V (x, y, z). (2.48)

For the force to be conservative, it is not sufficient for it to be only
position-dependent. The total energy of the system, consisting of kinetic
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energy T and potential energy V , must equal a constant c at all times:

T + V = c. (2.49)

In other words, the difference in kinetic energy ∆T plus the difference
in potential energy ∆V is zero for any two instants in time:

∆T +∆V = 0. (2.50)

Note that this implies that along any closed path (where ∆V will be
zero), ∆T must be zero, such that the system is conservative.

If we substitute the principle of work and energy in (2.42) in (2.50),
we obtain

W +∆V = 0. (2.51)

Problem 2.14 What is the change in potential energy ∆V if a particle
starts in one position and ends in the same position? What does your answer
mean for the workW that a conservative force does along any path that starts
and ends in the same position?a

aHint :

RecallthatVisafunctionofpositionr.Also,usetheconnection
betweenWand∆V.

We now consider infinitesimally small increments. This also elimi-
nates the initial value of the potential V :

dW + dV = 0. (2.52)

Substituting the definition of work, (2.33), this is equal to

F · dr + dV = 0. (2.53)

The infinitesimal change of potential energy dV can be calculated using
the partial derivatives of V in respectively x, y and z direction:

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz =







∂V
∂x

∂V
∂y

∂V
∂z







·





dx
dy
dz



 = ∇V · dr. (2.54)

Here, the nabla operator ∇ produces the gradient of V (x, y, z). See
Section B.5 for more explanation on the gradient.
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Example 2.8 For a conservative mechanical system, the elevation in
Figure B.1 on page 499 could be interpreted as proportional to a scalar po-
tential V , and the arrows could be interpreted as 2-D force vectors F asso-
ciated with this potential.

If we combine (2.53) with (2.54) we find

F = −∇V. (2.55)

This means that the system is conservative if and only if the force equals
the negative gradient of a scalar function V (r), the potential energy.
So, only if one can find such a scalar function V for a particular force,
then this force is a conservative force.

Examples for conservative forces are gravitational force or the force
of a spring. An example of a non-conservative force is friction during
sliding. Moreover, if all forces acting on a system are conservative, the
system itself is conservative.

Problem 2.15 Draw some more vectors of the gradient field into the
hiking map in Figure B.1 on Figure B.1. At which angle do the vectors
intersect with the isos lines (representing potential)? How is the length of
the arrows related to distance between iso lines? How precisely are the
vectors related to gravity?

Problem 2.16 Try to draw an example of a force field that is position-
dependent, but not conservative.a ◮

aHint :

Inaconservativeforcefield,theforcevectoristhenegativegradi-
entofthepotentialfield.Thismeansthatwhenonemovesinthe
directionoftheforce,potentialislost.

Problem 2.17 Show that friction during sliding motion is not a con-
servative force, by looking at work done along different paths taken (Note
that a single counterexample suffices). ◮

Problem 2.18 Investigate whether the force vector F = c(x2, x2, 0)T,
with constant c, is a conservative force.a

aHint :

1.Drawsomeforcevectorsofthisfieldinthexyplane.Then
lookwhetheryoucanfindanyexamplewheretheforcedoeswork
alongaclosedpath.2.SeewhetheryoucanfindaVviapartial
integration.Whatdidyouconcludefromsteps1and2,dothese
findingsmatch?

Problem 2.19 Use (2.55) to investigate whether gravitational forces,
sliding friction, and spring forces are conservative, by trying to find functions
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V . ⊲◮

Example 2.9 This Example is about the governor of Example 2.2 on
page 48. The potential energy V of the system can be written in the form
V = Cz2 + Dz, with the height z = 2L(1 − cos θ) of the collar C and the
balls. Determine C and D as functions of the parameters m, L, g, k, and
L0.

Exemplary solution
Each of the two particles has gravitational potential energy Vg, which is

exactly the same for either, because of symmetry. Moreover, the spring adds
potential energy Vs to the system:

V = Vs + 2Vg. (2.56E)

Substituting the appropriate expressions and given variables into (2.56E)
leads to

V = 1
2k (z − L0)

2
+ 2mgz, (2.57E)

= 1
2k
︸︷︷︸

C

z2 + (2mg − kL0
︸ ︷︷ ︸

D

)z + 1
2kL

2
0

︸ ︷︷ ︸

E(constant)

. (2.58E)

Comparing coefficients gives C = 1
2k and D = 2mg − kL0.

2.3 Checking Plausibility and Frequent Mistakes

Some specific ideas for checking plausibility and checking inconsisten-
cies, in addition to Section 1.4, are to:

• do the same problem using work and energy as well as using
Newton-Euler.

• solve the equations of motion using MATLABTM or a numerical
program of your choice, and animate the simulation.

• numerically calculate the net energy at each time instant for a
simulation. This is particularly useful for conservative systems.

Frequent mistakes specific to this chapter that may be the source of
erroneous results are:

• specific, or even numerical values were filled in for positions or
velocities at certain time instants before taking derivatives, such
that the values appear constant and their derivatives zero.

• although point O was not fixed, (2.28) was applied.
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• when applying Euler’s second law in the forms of (2.28) or (2.29),
moments and angular momenta were not calculated about the
same point.

• kinetic energy was misinterpreted as a vector quantity.
• the work of a force was calculated incorrectly, in a scalar fashion

by just multiplying force with a distance traveled, not taking into
account signs nor force or velocity vectors directions, and not tak-
ing into account that the force vector might not be constant. To
remedy, it is important to always take the scalar product of force
and velocity or distance increment vectors, and use integration.

2.4 Summary

This chapter covered two main approaches to derive equations of motion
for particles and systems of particles: Newton-Euler (or the principles
of linear and angular momentum) and work and energy.

Linear and angular momentum of a system of N particles were re-
spectively defined as

p :=

N∑

i=1

miṙi, HQ :=

N∑

i=1

ρi × pi. (2.59)

Angular momentum only has a meaning when a reference point Q is
defined. Newton’s and Euler’s second laws state that

N∑

i=1

F i = ṗ, and

N∑

i=1

MO,i = ḢO or

N∑

i=1

MC,i = ḢC , (2.60)

respectively, where only the external forces and moments acting on the
system need to be considered: the effects of the internal ones cancel out.
Euler’s second law in this form can only be applied for a fixed point O
or for the system’s center of mass C.

Kinetic energy of a system of N particles was defined as

T =
1

2

N∑

i=1

mi|ṙi|2, (2.61)

and work of a force F k as

Wk =

∫ B

A
F k · dr =

∫ t1

t0

F k · ṙ dt =
∫ t1

t0

P dt. (2.62)
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The principle of work and kinetic energy states that the work of all
n internal and external forces determines a system’s change in kinetic
energy:

n∑

k=1

Wk = ∆T. (2.63)

In case that a potential field V can be found for each internal or
external force F k that does work on a system such that

F k = −∇Vk, with Vk = Vk(r), (2.64)

then the system is conservative, which implies that the sum of the sys-
tem’s kinetic and potential energy is constant:

T +
n∑

k=1

Vk = const. (2.65)

2.5 Problems

2.5.1 Guided Problems

Problem 2.20 In a right-handed, orthogonal, inertial coordinate sys-
tem, the directions of the axes are given by unit vectors n̂1, n̂2, n̂3. With
respect to the origin O of the coordinate system, the position vector of a
particle of mass m is given as a function of time t: r(t) = a sin(ωt)n̂1 +
b cos(ωt)n̂2 + ctn̂3, where a, b, c and ω are positive constants.

a. State suitable SI-units for r, t and parameters a, b, c, and ω. Give
your answer in the form: [a] = ..., [b] = ..., etc.

b. Draw the coordinate system and the particle’s motion for time ranging
from t = 0 s to t = 4πω . Clearly label the point where the particle is at
time t = 0 s, and also the point where it is at t = π

2ω . Use axis ticks
involving the constants a, b, c, ω to clarify the locations. Produce either
a clear (e.g. isometric) 3-D projection, or use multiple 2-D projections.

c. Calculate the angular momentum vector HO(t) of the particle with
respect to the origin O as a function of t and the parameters a, b, c,
ω, and m.

d. Calculate the rate of change of angular momentum ḢO(t) of the par-
ticle with respect to the origin as a function of t and the parameters
a, b, c, ω, and m.

e. Calculate the acceleration vector a(t) of the particle as a function of
t and the parameters a, b, c, and ω.

f. Use inverse dynamics to calculate the resultant force vector acting on
the particle. Then calculate the moment this force generates around
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the origin, as a function of t and the parameters a, b, c, ω, and m.
Discuss your result in relationship to part d.

g. Calculate the power transmitted by the resultant force vector acting
on the particle, as a function of time t (and of the constants). Also
calculate the work done by this force over a finite time interval ∆t.

h. Calculate the kinetic energy T of the particle, as well as the rate of
change of kinetic energy Ṫ , as functions of t (and of the constant
parameters).

i. Check plausibility and consistency of your answers to the previous
question parts. Do this for example by comparing them to each other,
and by investigating special cases, such as a = b. Conduct at least five
independent checks.

j. Under what condition on a, b and c are the velocity and the acceler-
ation of the particle perpendicular to each other for all t? To verify
your answer, make a drawing of the movement in that special case,
including velocity and acceleration vectors at one location.

k. Can the resultant force vector acting on the particle be explained by a
conservative force field? Clearly answer ”yes” or ”no”, and also provide
a mathematical proof and a graphical illustration for your response.

l. To check your drawing, plot the path of the particle. In MATLABTM,
you can do this by first creating a linearly spaced time vector and
choosing numerical values for all parameters. Then, plot the resulting
components of r into 3-D axes using the command plot3.

Problem 2.21 A three-dimensional force vector field is given by

F (x, y, z) = − c
√

x2 + y2 + z2





x
y
z



 , (2.66P)

with a constant c with {c} = 1, and position coordinates x, y, z in an inertial
Cartesian coordinate system.

a. Determine [c], so the unit of c (see Section 1.1.4).
b. Draw some force vectors of this field in a projection on the xy-plane.

Then, do the same in projections onto the two other coordinate planes.
c. In your drawing, look whether you can find an example where the force

does nonzero net work along a closed path.
d. Try to find a potential function V that can be associated with F ,

meaning that F is the negative gradient of V . Compare your findings
from this part and parts b and c. Do they match, considering what
you know about conservative forces?

e. Give a real-life example of such a force field if possible.
f. Employ MATLABTM or another software to help with the first part
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of the question. To this end, first create matrices X, Y and Z that
contain a grid for x, y and z (e.g. using the function ndgrid), all
ranging from −r to r, where r is a radius you can choose freely. Then
create a matrix U that contains the x-components of the vector F ,
a matrix V that contains the y-components and a matrix W that
contains the z-components. Then, (e.g. using the function quiver3),
plot the vector field in 3-D. Compare to your manual drawing.

g. Repeat parts a-d for the two-dimensional force vector field F (x, y) =
c(x2, x2)T, with {c} = 1.

Problem 2.22 Kepler’s second law describes the fact that if a planet
orbits around a sun under the influence of the sun’s gravity, the area covered
by lines connecting planet and sun during identical time intervals is always
the same. That means that if the path is elliptical, the planet’s speed must
change.

We will try to derive Kepler’s second law on an example system: A planet
P orbits a star with an elliptic orbit (see Figure 2.2). The star is located in
one of the focal points O of the orbit. The planet and star are modeled as
particles with planet mass m and star mass M . We assume M ≫ m, so the
center of mass of the star is a fixed point.

Figure 2.2: Planet in elliptic orbit around a star.

a. Draw a free-body diagram (FBD) of the planet projected onto the
plane of the elliptic orbit.

b. Calculate the angular momentum HO of the planet with respect to O
as a function of r, ṙ and m.

c. Calculate the sum of moments ΣMO acting on the planet with respect
to O using the FBD from part a.

d. Calculate the rate of change of angular momentum ḢO using Euler’s
second law.

e. Calculate the infinitesimally area dA as a function of r and dr.
f. Rewrite dA from part e as a function of r, ṙ and infinitesimal time dt.
g. Rewrite dA from part f as a function of HO and m.
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h. Calculate the finite area A for a time interval ∆t = t2− t1 by integrat-
ing dA from t1 to t2.

i. Check your result from part h against Kepler’s second law.

Problem 2.23 A particle of mass m slides down a frictionless slide, in
a constant gravity field −gn̂3. The surface of the slide is shaped such that
its normal vector is always perpendicular to the direction n̂1, see Figure 2.3.
The slide has height H between the starting and finish positions. The slide is
level (it has zero slope) both at the start and the end positions of the block.
At the start, the particle has a velocity vector v0 = (vX0, vY 0, 0)

T.

Figure 2.3: A particle sliding down a slide.

a. Draw a FBD of the particle for a general location on the slide.
b. By using conservation of energy, calculate the magnitude of the parti-

cle’s velocity at the end position, as indicated in the figure.
c. Calculate the angle between the final velocity vector v1 and n̂2. Note

that you can re-use your answers to the previous questions.
d. Calculate the work done on the particle by the gravitational force

during the movement.

Problem 2.24 For the suspended camera of mass m, as depicted in
Example 1.15 on page 35, we investigate the case where the camera moves.

a. The camera accelerates from a standstill, with initial acceleration vec-
tor ac0 = (aX0, aY 0, 0)

T. Calculate the tension in cable r as a function
of l, w, h, m, g, aX , aY . Start your answer with a free-body diagram.

b. In order to move the camera, we need to change the respective lengths
lp, lq, lr of the three cables. For a generic velocity of the camera of

vc = (vX , vY , vZ)
T, calculate the speeds l̇p, l̇q, l̇r with which the three

cables need to elongate/shorten as functions of the camera’s position
and velocity components. Re-write your answer such that the “vector”
containing all cable speeds can be calculated by taking the product of
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a matrix with the velocity vector vc.
a

c. Motorized winches manipulate the lengths of the three cables. The ac-
celeration vector needs to be ac = (aX , aY , aZ)

T. Calculate the three
accelerations l̈p, l̈q, l̈r with which the cables change length, as functions
of the camera location, velocity, and acceleration components.

d. In order to check your above results, implement three functions in
MATLABTM or another software: The first calculates the vector of
cable lengths as functions of camera location, the second and third
respectively provide cable velocities and accelerations as functions of
camera velocity and acceleration.
Then, write a script that generates an arbitrary camera trajectory
(for example linear or circular motion) and that uses your functions
to calculate cable lengths, velocities and accelerations. To check, also
calculate the numerical derivatives of cable lengths (for example us-
ing the function gradient) and check the analytical versus numerical
results by plotting them on top of each other.

aHint :

First,expresseachcablelengthasafunctionofcameraposition.
Then,calculatethederivativeofeachlengthwithrespecttotime.

2.5.2 Practice Problems

Problem 2.25 Figure 2.4 shows a ballerina performing a jumping
pirouette. A very simple model consists of a massless body and two point-
masses, each of mass mh, representing the hands. The symmetry axis is also
the rotation axis, and it remains vertical throughout. The ballerina holds
her hands in a symmetric position, each at the same shoulder height and
horizontal distance away from the body.

Figure 2.4: Jumping pirouette ballerina.
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The ballerina pulls her arms in, by exerting a force on each point mass.
The only external force is gravity that acts along the vertical axis of rotation.
Explain whether this system conserves all linear momenta, angular momenta
about the center of mass, and energy, in one sentence per quantity. ◮

Problem 2.26 This Problem is about the accelerometer of Problem 1.24
on page 41. We want to calculate the sphere’s potential energy due to gravity.
We consider a simplified case with only one-dimensional movement, as shown
in Figure 2.5. The accelerometer maintains the same orientation throughout.

Now, the positive inertial Z-direction is down (not up), and the location
of the mass is described by different coordinates.

Figure 2.5: Simplified 1-D case of the accelerometer.

With an arbitrary constant energy V0, the potential energy V of the sphere
due to gravity can be correctly calculated as (Check all that apply):

A. V = mgzS
B. V = mg(ZC − zS)
C. V = mgh
D. V = mgZC + V0
E. V = −mgzS + V0
F. None of the above

⊲

Problem 2.27 The catapult in Figure 2.6 consists of three springs, a
cup, and a ring. Each spring is connected to the cup on one end and to the
ring on the other end. The ring is connected to the ground in the XY plane
of the inertial XY Z coordinate system.

An object of mass m is to be launched. It is placed in the cup in point D
and released with zero initial speed. The initial position vector of D in the
inertial coordinate system XY Z is provided as pD = (0, 0, −4l0)

T. Neglect
the mass of the springs and the cup, and assume the object is a particle.

The connection points of the three springs at the ring are given by position
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vectors pA = r(− 1
2

√
3, 1

2 , 0)
T, pB = r(12

√
3, 1

2 , 0)
T and pC = r(0, −1, 0)T,

with constant parameter r = 3l0. All springs are linear, have stiffness k,
unstretched/relaxed length l0, and are massless.

Gravity with field strength g acts in (0, 0, −1)T direction.

Figure 2.6: Catapult made with a ring, a cup to hold an object, and springs.

a. The object loses contact with the cup when the springs are horizontal.
Use energy principles to calculate the height h above the XY -plane to
which the object flies, when released from the above configuration at
rest. Express h as a function of the parameters m, k, l0 and g.

b. Calculate the work done by the springs during the launch.
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A Vector and Matrix Algebra

A.1 Vector Addition

Vectors are added (Figure A.1) by adding their individual components.
For the addition of vectors, equal rules apply as for scalars summation.

Figure A.1: Vector addition: The vector c is found by adding a and b.

Example A.1 The meaning of vector addition is particularly intuitive
for position vectors: Assume for example that the vector rA/O specifies the
location of a point A with respect to another point O, and that the vector
rC/A specifies the location of a point C with respect to A. Then, the position
vector rC/O, which points from O to C, is given by rC/O = rA/O + rC/A.

Problem A.1 In Figure A.1, assume the components of c and a are
known. How do you calculate b?

Problem A.2 If you know rC/O, how do you calculate rO/C?

A.2 Multiplication of a Vector with a Scalar

Multiplication of a vector with a scalar means multiplication of each
single vector component by this scalar. This operation changes a vec-
tor’s magnitude, but not its direction. So, scalar multiplication only
“scales” a vector.

Accordingly, one can represent any vector by a multiplication of a
scalar value (its magnitude) and a unit direction vector. This is par-
ticularly helpful when solving problems where the direction of a vector
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is known, but its magnitude is not. This situation occurs frequently in
mechanical systems.

Problem A.3 Consider again Figure A.1, and assume we are in a
2-dimensional space (so in R

2). Also assume that we know the vector a

including its magnitude and direction, but for the vectors b and c we only
know their directions, given by the unit vectors êb and êc, respectively. We
are interested in setting up the equations that allow calculating the respective
magnitudes b and c of the vectors b and c. ⊲◮

Problem A.4 Consider Problem A.3, now assume the vectors are de-
fined in R

3. Will there always be a solution for b and c? If not, what is/are
the condition(s) on the given variables such that a solution exists?

A.3 Cross Product and Tilde Matrix

The cross product a×b is a vector perpendicular to both vectors a and b.
The cross product of two vectors is the zero vector if both vectors have
the same or the exact opposite direction (i.e. the vectors are linearly
dependent). The direction of the cross product is determined by the
right-hand rule (Figure A.2).

Figure A.2: Right-hand rule.

The magnitude of the cross product equals the area of the parallelo-
gram with the vectors as sides, see Figure A.3. So, the magnitude of a
cross product c of the vectors a and b,

c = a× b, (A.1)

can be calculated using:

|c| = |a||b| sin(θ), (A.2)

where θ ∈ [0, π] is the angle enclosed by the two vectors.
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Figure A.3: The magnitude of the cross product of vectors a and b describes the area
of the parallelogram, spanned by a and b, which are separated by angle
θ.

Problem A.5 What is the cross product of a vector with itself?

The cross product is used very often in dynamic calculations, for
example for moments, angular momenta etc.

When writing the components of the two vectors a and b as

a =





ax
ay
az



 , b =





bx
by
bz



 , (A.3)

the cross product is defined as:

c = a× b =





aybz − azby
azbx − axbz
axby − aybx



 . (A.4)

From its definition, it becomes evident that the cross product of two
vectors exists only in three-dimensional spaces. The cross product is
anti-commutative, meaning that a× b = −(b× a).

Problem A.6 Use the definition of the cross product to show that
a× b = − (b× a).

Using the tilde matrix ã, the definition of the cross product, (A.4),
can be re-written as a matrix product, namely

a× b =





0 −az ay
az 0 −ax
−ay ax 0









bx
by
bz



 = ãb, (A.5)

In case we are interested in writing the cross product in terms of a
tilde matrix function of vector b, we make use of the anti-commutative
property a × b = −b × a, so a × b = −b̃a. Also, we can recognize

that the tilde matrix is skew-symmetric, so b̃
T
= −b̃. This means that

alternatively we can write a× b = b̃
T
a.
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Problem A.7 What is the relationship between the transpose ãT of
the tilde matrix and its negative −ã?

A.4 Dot Product

The dot product of vectors a and b, as illustrated in Figure A.4, is
defined as

c = a · b := |a||b| cos(θ), (A.6)

where θ is the angle between a and b. Note that the dot product results
in a scalar value c, so it is also called the scalar product .

Figure A.4: Dot product.

From this formulation and Figure A.4, a very important property can
be seen: The scalar projection of b onto a, i.e. the component of vector
b in direction of a, is the signed magnitude ba:

ba =
a · b
|a| . (A.7)

So, to calculate the component of a vector b in a particular direction,
one takes the scalar product of b with a unit vector (so a vector having
a length equal to 1) in that particular direction. It also implies that if
two vectors are orthogonal (perpendicular), their dot product is zero.

In contrast, the vector projection of vector b onto a is a vector ba:

ba =
a · b
|a| · a

|a| =
a · b
|a|2 · a. (A.8)

Problem A.8 Consider a vector that points in the direction of the x-
axis. Use the scalar product to calculate the scalar projection of this vector
onto the y-axis.
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When using the same components as in (A.3), the dot product resolves
to

a · b = axbx + ayby + azbz. (A.9)

So, another way to write the dot product is via matrix notation:

a · b = aTb. (A.10)

Note that the dot product does not only exist in R
3, but also in any

other dimension. More broadly in R
n, it is defined as

a · b =

n∑

i=1

aibi. (A.11)

In contrast to the cross product, the dot product is commutative (which
can be seen directly from (A.9)):

a · b = b · a. (A.12)

Problem A.9 This Problem is about the top of corks and skewers
of Problem 1.8 on page 12. Calculate the distance h from point Q to the
ground as a function of the vector rQ/P , using a scalar product. ◮

Problem A.10 Try calculating dot products and cross products by
using MATLABTM.

A.5 Basic Matrix Definitions

Among other interpretations, matrices can be seen as linear transforma-
tions from one space to another: When a vector x ∈ R

n is pre-multiplied
by an m × n-matrix A, the result is another vector y ∈ R

m, mapped
to the n-dimensional image space of A. This space is spanned by the
column vectors of A.

The rank of A is the same as the dimension of the column space
or image. It is important to note that the rank can be lower than n,
because it could be that some columns are linearly dependent , meaning
that they can be constructed by linear combinations of other columns.
In that case, the columns cannot span an n-dimensional space.

Problem A.11 What is the rank of an n× n identity matrix?
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Problem A.12 What is the maximum rank that a 3 × 4-matrix can
have? Provide a reasoning for your answer.

Problem A.13 What is the rank of the tilde matrix of an arbitrary
nonzero vector? Interpret this result by answering the question: How many
possibilities are there for vector b in (A.1) if c and a are given?

There are some matrices with a special structure, for example square
matrices, where m = n. Within this subgroup, there are for example
diagonal matrices, where all values except for those on the diagonal are
zero, or upper triangular matrices (also called right triangular matrices),
where all values below the diagonal are zero.

The transpose AT of an arbitrary matrix A is another matrix that
contains the columns of A as rows. For symmetric matrices, AT = A,
which means that all entries are mirror-symmetric with respect to the
diagonal.

Problem A.14 Can non-square matrices be symmetric?

The trace of a square matrix is defined as the sum of all diagonal
elements of this matrix.

A critical characteristic of a square matrix A is its determinant |A|.
The determinant is a scalar value and can be calculated and interpreted
as described in Chapter 3 of [40].

Problem A.15 Calculate the determinant of a diagonal matrix.

Problem A.16 Calculate the determinant of an upper triangular ma-
trix.

Problem A.17 If you know the determinant of a matrix A, how can
you find the determinant of AT?

Using its determinant, one can also calculate the inverse of a square
matrix, as described in Sections 2 and 3 of [40]. When pre- or post-
multiplying a matrix A with its inverse A−1, one obtains the identity
matrix. However, not all square matrices can be inverted. Matrices
that have an inverse are called invertible or nonsingular matrices, while
those without an inverse are called singular matrices.

Consider a square matrix that has deficient rank, so where the rank
is lower than the number of columns. In that case, mapping a vector x
to its counterpart y in the image space, via Ax = y means compressing
the original dimension of x to a lower dimensionality.
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Example A.2 Consider a vector x = (1, 2, 3)T in 3-D that is mapped
onto a paper plane via pre-multiplication with a matrix

A =





1 0 0
0 1 0
0 0 0



 .

We notice that this matrix only has rank 2. So, even though it also has three
components, the vector y = Ax = (1, 2, 0)T is merely a two-dimensional
projection of the original vector x. If we try to reconstruct the original
vector from its shadow, we will not succeed, because there is an infinite
number of possible original vectors, for example (1, 2, 0)T or (1, 2, 325)T.
That means there cannot be a unique inverse A−1 such that one can be sure
that A−1y = x.

Problem A.18 What can you say about the inverse of a matrix that
has a determinant of 0?

For a matrix that has a rank lower than its number of columns, there
is always a set of vectors that must all map to the same image, namely
to the zero vector. The set of these vectors is called the nullspace or
kernel of a matrix.

Problem A.19 What is the relationship for a matrix between its num-
ber of columns, the dimension of its kernel, and its rank?

Problem A.20 Use the MATLABTM command null to calculate the
nullspace of the matrix A from Example A.2. Does the result match your
expectations?

Definiteness of a symmetric matrix is an important property that
can be employed for example for stability analysis. If a matrix A is
positive definite, it means that for any nonzero vector x, the scalar
xTAx is positive. If A is negative definite, the same scalar will be
always negative. Semi-definiteness extends to the case where xTAx

may also be zero for some vectors x.

Problem A.21 Consider the two-dimensional identity matrix. Can you
make a statement about its definiteness?

Problem A.22 Consider a general two-dimensional diagonal matrix D
with only negative entries on the diagonal. Can you make a general statement
about the definiteness of such a matrix?
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A.6 Eigenvectors and Eigenvalues

A vector a that does not change its direction when it is pre-multiplied
by a square matrix C (which need not be the identity matrix) is called
an eigenvector of this matrix. The multiplication factor needed to rep-
resent the change in length is called the associated eigenvalue λ:

Ca = λa. (A.13)

If we are interested in finding an eigenvalue for a particular matrix, we
can re-write (A.13) as

(C− λE)a = 0, (A.14)

where E is the identity matrix of the same dimension as C.
For example in R

3, this equation system, together with for example
the condition that a = â has unit length, provides four equations for
four unknowns: The components of â and the scalar λ.

If the matrix C has full rank, we will find as many independent
eigenvectors with nonzero eigenvalues as there are dimensions. Remark:
It is possible that some or all vectors are complex, in which case also
their associated eigenvalues are complex. These solutions always occur
in complex conjugate pairs. Algebra of complex numbers is not required
in the following; for more information, please consult Appendix H of [70]
or Appendix C of [57].

A commonly employed method to solve the equation system is to
first establish the determinant of the matrix C−λE, which delivers the
so-called characteristic polynomial in λ:

det (C−Eλ) = 0. (A.15)

So, finding the n eigenvalues means finding the n roots of this n-degree
polynomial. Afterwards, for each of these roots, one finds the associated
eigenvector from (A.14).

Problem A.23 Computing eigenvalues by hand can be much work.
However, checking if a vector is an eigenvector is usually quicker. Show that



1
1
1



 is an eigenvector of





1 2 3
3 1 2
2 3 1



.

Problem A.24 Calculate the eigenvalues of a general diagonal matrix.

It is possible that some eigenvalues have a multiplicity larger than 1.
If the characteristic polynomial contains factors (p − λi)

ki , then ki is
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called the algebraic multiplicity of the eigenvalue λi. Note that it could
be that there are less than ki eigenvectors associated with a particular
eigenvalue λi. In that case, the geometric multiplicity of that eigenvalue
is lower, in fact it equals the number of independent eigenvectors for
the particular eigenvalue. It will always be at least one.

Problem A.25 Use the MATLABTM command eig to calculate the
eigenvectors and eigenvalues of the matrices given in Example A.2 and in
Problem A.23. Do the results match your expectations?

Further useful properties of eigenvalues are that the determinant of a
matrix equals the product of all eigenvalues, and the trace of the matrix
equals the sum of all eigenvalues.

Problem A.26 Check plausibility of your answer to Problem A.24
using the determinant and the trace.

Problem A.27 Calculate the eigenvalues of a general upper triangular
matrix. Check plausibility of your answer using the determinant and the
trace.

If all its eigenvalues are positive, a symmetric matrix is positive defi-
nite. If eigenvalues are only non-negative (meaning some could be zero),
the matrix is positive semidefinite. In analogy, if all eigenvalues are neg-
ative (nonpositive), a symmetric matrix is negative (semi-)definite.

Problem A.28 Check your answer to Problem A.21 using eigenvalues.

A.7 Eigendecomposition of a matrix

Any diagonalizable square matrix A can be decomposed into the form

A = QΛQ−1, (A.16)

where the matrix Q contains the eigenvectors of matrix A, and the
matrix Λ is a diagonal matrix with the eigenvalues ofA on the diagonal.

This will be shown in the following.

First, we express the n-by-n matrix Q in terms of its column vectors

Q =
(
q1 ... qn

)
, (A.17)

If these are all eigenvectors of A, we know from Appendix A.6 that

Aqi = λiqi , i = 1 . . . n, (A.18)
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with scalar λi.
We can write this in matrix format:

A ·
(
q1 ... qn

)
=
(
λ1q1 ... λnqn.

)
(A.19)

By defining the diagonal matrix Λ as

Λ :=







λ1 0

...

0 λn






, (A.20)

we can re-write (A.19) to

A ·
(
q1 ... qn

)
=
(
q1 ... qn

)
·Λ, (A.21)

or in short
AQ = ΛQ. (A.22)

If the matrix Q is invertible, we obtain the intended relationship (A.16).
A matrixA that is square but not diagonalizable is a defective matrix.
All symmetric matrices are diagonalizable: They possess three real

eigenvectors that are mutually orthogonal, such that Q is invertible.
Diagonalization will be useful for the inertia tensor (see Section 5.2.3).

Problem A.29 Diagonalize the matrix

A =

(
7 −12
4 −7

)

. (A.23P)

⊲

Problem A.30 Show that this matrix is defective:

A =

(
1 1
0 1

)

. (A.24P)

Problem A.31 Diagonalize the matrix

A =





10 2 −2
2 17 0
−2 0 17



 (A.25P)

For ease of calculation, you may use the MATLABTM command eig. Check
your result by re-calculating matrix A from Q and Λ.
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B Differentiation and Integration

B.1 Derivatives with Respect to Time

Many variables that describe mechanical systems (such as distances or
angles) change over time and so are time-dependent.

To denote an infinitesimally small change in a variable, we use the
operator d. For example, an infinitesimal increment in the vector r

would be denoted as dr.
To represent the rate of change of a quantity with respect to time, one

calculates the quotient of this infinitesimal increment and an increment
in time dt, which is the derivative with respect to time. To denote the
derivative of a vector r or a scalar r with respect to time t, we use the
abbreviated notations,

ṙ =
dr

dt
= lim

∆t→0

r(t+∆t)− r(t)

∆t
, and ṙ =

dr

dt
= lim

∆t→0

r(t+∆t)− r(t)

∆t
,

(B.1)
respectively. Note that the time derivative of constants, so quantities
that do not vary over time, is zero.

The above are all absolute derivatives with respect to time, observed
with respect to a system of reference that is not rotating. Section 4.2.2
of Chapter 4, extends this topic to relative derivatives, such as as (ṙ)F .

B.2 Product Rule

The product rule of differentiation is applied when an expression con-
tains a multiplication of several functions. The derivative of the scalar
function h(t) = f(t) · g(t) with respect to time is:

ḣ =
dh

dt
=

d

dt
(f(t)g(t)) =

df(t)

dt
g(t) + f(t)

dg(t)

dt
. (B.2)

Problem B.1 Take the time derivative of h(t) = t2 by rewriting h as
h(t) = f(t)g(t), where f(t) = g(t) = t and applying the product rule.
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Problem B.2 Take the time derivative of h(t) = t3 by rewriting h as
h(t) = f(t)g(t), where f(t) = t2, g(t) = t and applying the product rule.

Problem B.3 Show (B.2) from the definition of the time derivative in
(B.1).

For the scalar product of two vector functions, so h1(t) = f(t)Tg(t),
the rule can equally be applied:

ḣ1 =
dh1
dt

=
d

dt

(
f(t)Tg(t)

)
= ḟ(t)Tg(t) + f(t)Tġ(t) (B.3)

as well as for the cross product h2(t) = f(t)× g(t):

ḣ2 =
dh2

dt
=

d

dt
(f(t)× g(t)) = ḟ(t)× g(t) + f(t)× ġ(t) (B.4)

Problem B.4 Use the product rule of differentiation to show that
∫
r̈Tṙ dt = 1

2 ṙ
Tṙ + constant.

Problem B.5 Use the scalar formulation (B.2) of the product rule
of differentiation, in combination with the definitions of scalar and cross
product, to prove (B.3) and (B.4).

B.3 Chain Rule

The chain rule is used when the expression is the nested composition
of two or more functions. To calculate the time derivative of a single
nested function h(g(t)), the chain rule yields

ḣ =
dh

dt
=

d

dt
(h(g(t))) =

dh

dg

dg

dt
. (B.5)

Problem B.6 Calculate the time derivative ḣ of h = sin (θ) for which
you know that θ is time-dependent, using the chain rule.

Problem B.7 Calculate the time derivative of h = 3θ sin (θ) for which
you know that θ is time-dependent, using both the product rule and the
chain rule.

For a more deeply nested function, the chain rule expands to:

ḣ =
dh

dt
=

d

dt
(h(g1(g2(g3(t))))) =

dh

dg1

dg1
dg2

dg2
dg3

dg3
dt
. (B.6)
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Example B.1 To calculate ḣ = d
dt

(

e
cos

(√
x(t)

)
)

, we decompose h as

a function of g1 first. That is:

1. h(g1) = eg1 . In its turn, g1 is a function of g2. That is
2. g1(g2) = cos (g2). Then, g2 is a function of g3, namely
3. g2(g3) =

√
g3. Finally, g3 is the time-dependent variable:

4. g3(t) = x(t).

The separate derivatives are:

1. dh(g1)
dg1

= eg1

2. dg1(g2)
dg2

= − sin (g2)

3. dg2(g3)
dg3

= 1
2
√
g3

4. dg3(t)
dt = ẋ

This way we find

ḣ = −
ẋe

cos
(√

x(t)
)

sin
(√

x(t)
)

2
√

x(t)
. (B.7E)

Problem B.8 Calculate ḣ = d
dt

(
cos
(
x(t)2

))
.

Problem B.9 Show (B.5) from the definition of the time derivative in
(B.1).

Problem B.10 Use the Symbolic Toolbox in MATLABTM to calculate
dh
dx from Example B.1 and from Problem B.8 and compare the results with
your manual calculations.

B.4 Partial Derivatives

We consider a function f that depends on multiple variables. A partial
derivative of f is the derivative of this function with respect to a single
variable. Taking a partial derivative, one is only interested in the in-
fluence of the variation of one of the variables on f , while all the other
variables are held constant.

Example B.2 The elevation at a particular location in a mountain
landscape can be given as a function of two variables: latitude and longitude.
We could be interested in the influence of the variation of latitude, while the
longitude is kept constant. To obtain this information, we calculate the
partial derivative of elevation with respect to latitude. This provides the
slope of the landscape in the requested direction.
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So, a partial derivative represents the dependency of an expression on
an isolated variable. The partial derivative of a function f with respect
to a variable x is denoted by ∂f

∂x .

Example B.3

∂

∂x

(
ax2 + 3yx+ cẋ2

)
= 2ax+ 3y (B.8E)

Example B.4
∂

∂ẋ

(
ax2 + 3yx+ cẋ2

)
= 2cẋ (B.9E)

Example B.5
∂

∂y

(
ax2 + 3yx+ cẋ2

)
= 3x (B.10E)

We can use partial derivatives to calculate increments of a function
f that depends on multiple variables xi, with i = 1 . . . N :

df =

N∑

i=1

∂f

∂xi
dxi. (B.11)

Example B.6 Consider a particle moving in three-dimensional space,
within a temperature field. The particle’s coordinates x, y, and z determine
the temperature f(x, y, z). We find the infinitesimal temperature increment
df that is due to changes in x, in y, and in z as:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz. (B.12E)

Example B.7 In Example B.2 about the mountain landscape, the ele-
vation f is only a function of two variables, namely latitude x1 and longitude
x2. The relationship (B.11) indicates how much elevation df is gained as a
function of infinitesimal changes in latitude dx1 and longitude dx2.

In case the xi are all functions of time t, we find the total derivative
of a function f(x1(t), x2(t) . . . xN (t)) with respect to time as:

df

dt
=

N∑

i=1

∂f

∂xi

dxi
dt
. (B.13)

496 Advanced Dynamics © 2020 Vallery/Schwab



B.5 GRADIENT 497

Problem B.11 Consider a function f(x(t), y(t)) with

f = 3x2 + 5y, x = 5t, y = t2. (B.14P)

Find ḟ in two ways: a) by substituting the functions for x and y into f , such
that it becomes a function of time only, and then taking its derivative, and
b) by using (B.13). You should obtain the same result.

B.5 Gradient

For a function f that depends on multiple variables, for example x, y,
and z, the partial derivatives of f in all directions, so in the example
respectively in x, y and z direction, can be subsumed in a vector, the
gradient of f :

∇f :=







∂f
∂x

∂f
∂y

∂f
∂z






. (B.15)

The symbol ∇ is called the nabla operator; it produces the gradient of
a scalar function, like here of f(x, y, z). At any specific location, this
vector points in the direction of the steepest ascent.

A gradient of a function is always orthogonal to the level curves (often
also denoted iso lines) or level surfaces of this function, which denotes
the manifolds along which the function does not change its value.

Example B.8 Figure B.1 shows the gradient of a function f(x, y) that
specifies elevation for a given location on a hiking map. This gradient gives
inclination. Each vector points in direction of the greatest change in height
at its specific location. The gradient vectors are always perpendicular to the
iso lines, which connect all points that have the same elevation.

Figure B.1: Visualization of a gradient field. The arrows represent the gradient in
elevation on a hiking map with iso lines of elevation.
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Problem B.12 We model Earth as a perfect sphere with center E and
radius r (see Figure B.2).

Figure B.2: Earth

a. Describe the location set of points that have equal distance d from the
surface of the earth in the form h(X, Y, Z) = d, where X,Y, Z are the
points’ coordinates. The unit of the function should be [h] = m.

b. Calculate the gradient of this function using the nabla operator.
c. Draw a few gradient vectors projected on theXY -plane, the Y Z-plane,

and the XZ-plane. Include at least the gradient at point (X, Y, Z) =
(1.1r, 1.1r, 1.1r) and one point on the surface of the Earth.

d. Multiply the gradient by (-1). What might be an interpretation of this
(negative) gradient field for the Earth?

e. Check your answer further by plotting the vector field, for example
using MATLABTM. You can use the functions ndgrid and quiver3.
You will also need the ./ notation to divide the elements of a matrix
by the elements of another.

Problem B.13 Show that the gradient of a function f(x, y) of two
variables x and y at any particular point is orthogonal to the function’s level
curve through that point. a

aHint :

Inordertoshowthis,dothefollowing:Consideraninfinitesimal
vectorthatpointsinadirectionthatistangentialtothelevel
curveandhasthecomponents(dx,dy)

T
.Expresstheinfinitesimal

incrementdfoffalongthelevelcurve,using(B.11),asafunction
oftheindividualincrementsdxanddy.Thisincrementshouldbe
zerointhedirectionofthecurve.Then,re-writedfasascalar
productoftwovectors.Whatcanyousayaboutthesetwovectors?

B.6 Integration

For single and multiple integrals, please consult for example Chapter
5 of [70], which explains line, surface, and volume integrals in Sections
16.2, 16.7, and 6.2-6.3, respectively. Pay particular attention to the
limits of the integrals, they might be functions of other variables.
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C Shorthand Notations

Writing vectors out in components requires additional subscripts. Main-
tain all subscripts of an original vector can become cumbersome and
makes equations less compact. Furthermore, projections require choos-
ing how to typeset several subscripts. Stacked indices are not aesthetic.
A comma can be ambiguous, as it sometimes indicates differentiation.

To avoid this choice, one can define new, subscript-free vectors.

Example C.1 A vector BrA/C that describes the relative location of
point A with respect to C already has a lengthy subscript. None of these
options for the first component are ideal: rA/Cb1

, rA/Cb1, or rA/C,b1.

In this specific problem, one could choose to define a new vector a := rA/C
and then write components compactly as Ba = (ab1, ab2, ab3)

T.

This advice does not apply to coding software. On the contrary, vari-
ables in code need clear names that maintain all identifying subscripts.

Example C.2 The first component of vector BrA/C could for example
be coded as r AwrtC b1. There are many equally good options. It is only
advised to explicitly choose a type of definition that maintains the original
vector name or meaning, the triad, and the number of the component, and to
code consistently. Depending on the choices made, also these could be viable
variable names: rCtoA b1, or B relativeposition AwrtC x, etc. Since all
information encoded via typesetting is lost in plain text, this needs to be
replaced by a clear definition of sequence of information.

If elements of a point’s position vector are also Cartesian coordinates,
one can for example choose the axis name as main symbol and the
point name as index, or vice versa. However, not all position vector
components are also Cartesian coordinates. Components of a position
vector in triad F are only coordinates if the point of reference is the
origin of a coordinate system that is aligned with triad F . Therefore, it
is important to distinguish between vector components that happen to
be also Cartesian coordinates, and components that are only projections
onto given axis directions, without further meaning.

Advanced Dynamics © 2020 Vallery/Schwab 499



500 C SHORTHAND NOTATIONS

Example C.3 In this book (for example in Figure 4.9 on page 123),
we frequently use

• an inertial reference point O,
• a moving reference pointQ (for example the center of mass of a system,

a geometric center, or the location of a spherical joint),
• a specific point P (for example a mass element within a rigid body),
• an inertial coordinate system XY Z with origin O and triad N ,
• a body-fixed coordinate system xyz with origin Q and triad B.

For the mentioned points, we will often (but not strictly) use these short-
hand notations for relative and absolute position vectors:

P := rP/O, Q := rQ/O, p := rP/Q. (C.1E)

For the above vectors, components are also Cartesian coordinates in the
cases of NP ,NQ, and Bp. The first and the last are both coordinates of point
P , just in two different coordinate systems: XY Z and xyz, respectively.
Here, there are multiple alternatives to abbreviate components to variables
that carry more meaning:

NP = NrP/O =





Pn1
Pn2
Pn3



 =:





XP

YP
ZP



 , or NP =:





PX
PY
PZ



 , (C.2E)

NQ = NrQ/O =





Qn1
Qn2
Qn3



 =:





XQ

YQ
ZQ



 , or NQ =:





QX
QY
QZ



 , (C.3E)

Bp = BrP/Q =





pb1
pb2
pb3



 =:





xp
yp
zp



 , or Bp =:





px
py
pz



 . (C.4E)

It depends on personal preference which alternative to choose in a given
problem. The only requirement is to always make all abbreviated definitions
explicit. This book mostly uses the first alternative, so XP rather than PX .

It is not possible to apply this abbreviated notation in a meaningful way to
the three other possible projections, BP , BQ, and Np, because components
are not Cartesian coordinates. In these cases, we can only use the explicit
subscripts that indicate projections:

BP = BrP/O =





Pb1
Pb2
Pb3



 , BQ = BrQ/O =





Qb1
Qb2
Qb3



 ,Np = NrP/Q =





pn1
pn2
pn3



 .

(C.5E)
Attempting to write something like “pX” as shorthand for pn1 would be
highly misleading, because it gives the impression of an X-coordinate, while
the reference point of the position vector is not the origin of XY Z.
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F Answers

1.8 BrD/P =
(
−10xC∗, 0, l2 −∆

)T
, BrE/P =

(
0, −10yC∗, l2 −∆

)T

1.12 r̈ =
(
−9 sin 3t

s −12 cos 2t
s 8 cos 4t

s

)T
m/s2

1.14 {XR, YL, YR, ẊL} > 0, {XA, ẊA} = 0, {XL, YA, ẊR, ẎL, ẎR, ẎA} < 0

1.17 rA/P = (l/ (2d)) rC/P

1.18 a = m1L
m1+m2+m3

, b = (m2−m3)L
4(m1+m2+m3)

1.19 E.

1.23 A.

1.25 FA/D = − rD/A

|rD/A| k (|rD/A| − ln)

1.26 A.

1.27 F.

2.7 No. The muscle forces are internal forces and therefore cannot change
angular momentum of the body as a whole.

2.12 The friction forces do no work in this case.

2.19 Gravity and ideal spring forces are conservative forces, sliding friction is
not.

2.26 F.

3.1 The same: |Nr| = | Br|

3.3
N
b̂1 = (12

√
3, 1

2 , 0)
T,

N
b̂2 = (− 1

2 ,
1
2

√
3, 0)T,

N
b̂3 = (0, 0, 1)T

3.4 1

3.5 0
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G Solutions

1.8 In general, the position vector of the center of mass of a composite body
is calculated by (1.11). In this case, with P taking the role of the reference
point A, two added pieces of cork give the expression

BrC/P =
1
10M

∗ BrD/P + 1
10M

∗ BrE/P +M∗ BrC∗/P

6
5M

∗ . (G.1)

To make the top spin better, the center of mass needs to be on the z-axis.
Therefore, we desire

BrC/P =
(
0 0 zC

)T
, (G.2)

with arbitrary zC (although it can be shown that a smaller zC also makes the
top spin better).

Furthermore, we must place one piece of cork on skewer 2 and one piece of
cork on skewer 3 to correct for both unbalance in the x-direction and unbalance
in the y-direction. In that case one of the coordinates of the pieces is always
zero and its z-coordinate is always on the set height of the cork at Q. We
choose to put cork D on skewer 2 and E on skewer 3:

BrD/P =





xD
0

l
2 −∆



 , BrE/P =





0
yE

l
2 −∆



 (G.3)

By substituting (G.2) and (G.3) in (G.1) a set of equations is obtained:




1
10M

∗xD + 0 +M∗xC∗

0 + 1
10M

∗yE +M∗yC∗

2 1
10M

∗ ( l
2 −∆

)
+M∗rC∗z



 =





0
0

6
5M

∗zC



 (G.4)

This set can be solved to find the missing cork coordinates:

xD = −10xC∗ , yE = −10yC∗. (G.5)

The position vectors of the two pieces of cork are:

BrD/P =





−10xC∗

0
l
2 −∆



 , BrE/P =





0
−10yC∗

l
2 −∆



 . (G.6)

1.9 Figure G.1 shows a possible FBD. As there is only point contact, no ro-
tations can be prevented by the ground, so no moments are drawn.
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Figure G.1: Disk free-body diagram.

1.13 The kinematics of all animals are described in Figure G.2.

Figure G.2: Describing kinematics of all animals. Left: Location in terms of distance
and angle. Center: Cartesian coordinates. Right: Velocity

The correct signs for the rhino’s position vector are:

rR =





+XR

+YR
+ZR



 =





+dR cosα
+dR sinα

0



 (G.7)

The correct signs for its velocity vector are:

vR =





−vR cosα
−vR sinα

0



 = +ṙR =





+ẊR

+ẎR
+ŻR



 =







ḋR cosα− dR✓✓✼
0

α̇ sinα

ḋR sinα+ dR✓✓✼
0

α̇ cosα
0







(G.8)

The correct signs for the antelope’s position vector are:

rA =





+XA

+YA
+ZA



 =





0
−dA
0



 (G.9)

The correct signs for its velocity vector are:

vA =





0
−vA
0



 = +ṙA =





+ẊA

+ẎA
+ŻA



 =





0

−ḋA
0



 (G.10)
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1.20 Using the origin of xyz as reference point in (1.11), the center of mass
rC of the combined body is calculated from:

rC =
mrD +marA

m+ma
, (G.11)

with rA = (rx, ry , rz)
T the position vector of the mass at A, with components

rx = d, ry = R cosϕ, rz = R sinϕ. (G.12)

Substituting these values in (G.11) gives

rC =
1

m+ma




mR






1
40

1
50

1
50




 +ma






d

R cosϕ

R sinϕ









 . (G.13)

For static balance, the center of mass must be on the x-axis:

rC
!
=
(
rCx 0 0

)T
, (G.14)

with arbitrary rCx. Combination of (G.13) and (G.14) gives the conditions:

mR

40
+mad

!
= rCx , (G.15)

mR

50
+maR cosϕ

!
= 0 , (G.16)

mR

50
+maR sinϕ

!
= 0 , (G.17)

which means that d is arbitrary, and sinϕ = cosϕ. A possible choice is
(avoiding negative mass):

ϕ =
5

4
π, d = 0, ma =

√
2

50
m. (G.18)

1.22 The FBD of the skateboarder is shown in Figure G.3. Remark:Note that
this FBD would not yet be sufficient to determine the equations of motion and
the unknown forces and moments. For example, some forces cannot uniquely
be determined, and one needs to allow local slip at the wheels for realistic
movement.
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Figure G.3: Free-body diagram of the skateboarder.

1.24 The FBD for the sphere and the cage are shown in Figure G.4.

Figure G.4: Free-body diagrams for the accelerometer.

1.29 Possible FBD’s of the scooter’s footboard and rear wheel are drawn in
Figure G.5.
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Figure G.5: FBDs of the scooter’s footboard and rear wheel.

2.3 From vector addition, we know the relationship

ri/C = ri − rC , (G.19)

which allows us to re-write the left version of (2.18),

HC =

N∑

i=1

(ri/C × (miṙi/C)), (G.20)

to

HC =

N∑

i=1

(ri/C × (mi(ṙi − ṙC))) (G.21)

=

N∑

i=1

(ri/C × (miṙi))−
(

N∑

i=1

miri/C

)

× ṙC (G.22)

From the definition of the center of mass, we know that

N∑

i=1

miri =

N∑

i=1

mirC , (G.23)

which implies that

N∑

i=1

miri/C =

N∑

i=1

mi(ri − rC) = 0, (G.24)

so (G.22) simplifies to

HC =

N∑

i=1

ri/C × (miṙi). (G.25)
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2.5 For a (sub)system that has its center of mass in point C, we find angular
momentum with respect to another pointQ using summation over each particle
i in the (sub)system, following (2.9) and (2.10):

HQ =

N∑

i=1

(
ri/Q ×

(
miṙi/Q

))
. (G.26)

Making use of the vector addition

ri/Q = ri/C + rC/Q , ṙi/Q = ṙi/C + ṙC/Q (G.27)

we can expand (G.26) to

HQ =

N∑

i=1

(
ri/C ×

(
miṙi/C

))
+

N∑

i=1

(
rC/P ×

(
miṙi/C

))

+
N∑

i=1

(
ri/C ×

(
miṙC/Q

))
+

N∑

i=1

(
rC/P ×

(
miṙC/Q

))
(G.28)

We recognize that the first term is nothing else but the (sub)-system’s angu-
lar momentum with respect to its center of mass. The second and third term
can be simplified by recognizing that rC/P and ṙC/P do not depend on i, so
they can be factored out of the summation. Furthermore, by virtue of the defi-
nition of the center of mass,

∑
i = 1Nmiri/C = 0 and also

∑
i = 1Nmiṙi/C =

0. See a similar and more explicit reasoning for this in the solution of Prob-
lem 2.3.

Finally, we retain only the first and fourth summand of (G.28), which can
be written as the expected relationship:

HQ = HC + rC/Q ×
(
mṙC/Q

)
. (G.29)

2.16 One example is drawn in Figure G.6. We can “follow” the force field
along a closed, circular path, so net work is being done by the force on that
path.

Figure G.6: A non-conservative force field.

2.17 A sliding friction force is directed against the movement direction, so it
is tangent to the path. A specific counterexample showing that such a force is
not conservative: A particle moves from point A to point B via two different
paths: Path 1 is straight from A to B. Path 2 is longer: straight from A to
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B, then straight back to A, finally straight back to B. The velocity in this
example always has constant magnitude, and friction properties are the same
in both directions. The work done by the sliding friction force in the second
case is three times as large as in the first case, although the two paths’ start
and end points were the same. Therefore, the work depends on the path taken,
and the force is not conservative.

2.19 (Note that this is also treated as an example in Example 12.7, where
illustrations of the conservative cases are shown.)

Gravitational force: For the gravitational force, suppose an object is at a
positive height y above an arbitrarily defined level of zero potential (which can
for example be the ground), and gravity with acceleration g acts in negative
y-direction (see also Figure 12.11). The object’s weight mg is the force acting
on the object in negative y-direction such that (2.56) becomes

Fy = −mg = −∂V
∂y

, (G.30)

which can be integrated to give

V (y) = mgy + V0. (G.31)

Only in the special case where V is defined to be zero at y = 0, the integration
constant is found as V0 = 0.

Spring force: For the spring force, we consider an object that is attached to
a fixed point by means of a linear spring with stiffness k (see also Figure 12.12).
When there is no force acting, the spring has length x0. The object can only
move in the x-direction, such that (2.56) becomes

Fx = −k(x− x0) = −∂V
∂x

, (G.32)

which can be integrated to give

V (x) =
1

2
k(x− x0)

2 + V0. (G.33)

In the special case where V is defined to be zero at x = x0, the integration
constant is found as V0 = 0.

Friction force during sliding: For the friction force, we consider an example
where an object is supported by a flat surface and can only slide straight along
the x-axis with friction. Both Coulomb and viscous friction act on it. The
Coulomb friction term is proportional to the normal force of magnitude N that
is acting on the object from the surface. With Coulomb friction coefficient µ
and viscous friction coefficient d, the force Fx acting on the object in positive
x-direction is:

Fx = −µNsgn(ẋ)− dẋ. (G.34)

Advanced Dynamics © 2020 Vallery/Schwab 533



534 G SOLUTIONS

We cannot obtain a potential function V (x) for either of the two damping
terms, because the force does not depend on position, but on velocity. So,
(2.56) cannot be solved for V . This counterexample shows that sliding friction
is not a conservative force. Also note that regardless of the direction of motion,
the force will always dissipate energy.

2.25 The system does not conserve all linear momenta, because gravity, as
an external force, changes the linear momentum component in the vertical
direction (so the velocity of the system’s center of mass is not constant). The
system does not conserve energy either, since the internal forces between body
and hands do work. However, the system does conserve angular momenta
about the center of mass, because the only external force (gravity) generates
no moment about the system’s center of mass.

3.6 We know from (3.17) that the columns form a triad of orthogonal unit
vectors. Therefore, one can calculate the third column by taking the cross
product of the first with the second column. Be aware that this order is
important, such that the triad is right-handed:

Bn̂3 = Bn̂1 × Bn̂2. (G.35)

3.7 A rotation of triads about the Z-axis is depicted in Figure G.7.

Figure G.7: Rotation of a coordinate triad about the Z-axis.

From the drawing, we can write down the components of units vectors of the
rotated x and of the y-axes (Z = z is unchanged), and we find that these are
the rows of the rotation matrix.

3.8 A rotation of triads about the Y -axis is depicted in Figure G.8.

Figure G.8: Rotation of a coordinate triad about the Y -axis.

534 Advanced Dynamics © 2020 Vallery/Schwab





BIBLIOGRAPHY 611

Bibliography

[1] S. L. Altmann, Rotations, quaternions and double groups. Clarendon
Press, New York, Oxford University Press, 1986.

[2] ——, “Hamilton, rodrigues, and the quaternion scandal,” Mathematics
Magazine, vol. 62, no. 5, pp. 291–308, 1989.

[3] H. Baruh, Analytical dynamics. McGraw-Hill, 1999.

[4] F. P. Beer, E. R. Johnston, Jr., D. Mazurek, P. Cornwell, and B. Self, Vec-
tor Mechanics for Engineers: Statics and Dynamics, 11th ed. McGraw
Hill, 2015.

[5] Bureau International des Poids et Mesures, “Le Système international
d’unités / The International System of Units,” SI Brochure, 8th edition,
2006, updated in 2014. [Online]. Available: https://www.bipm.org/en/
publications/si-brochure/

[6] P. Bussotti, “On the genesis of the lagrange multipliers,” Journal of Op-
timization Theory and Applications, vol. 117, no. 3, pp. 453–459, 2003.

[7] J. C. Butcher, “A history of runge-kutta methods,” Applied numerical
mathematics, vol. 20, no. 3, pp. 247–260, 1996.

[8] ——, Numerical methods for ordinary differential equations. John Wiley
& Sons, 2016.

[9] M. Ceccarelli, “Screw axis defined by giulio mozzi in 1763 and early stud-
ies on helicoidal motion,” Mechanism and Machine Theory, vol. 35, no. 6,
pp. 761–770, 2000.

[10] R. Chandler, C. E. Clauser, J. T. McConville, H. Reynolds, and J. W.
Young, “Investigation of inertial properties of the human body,” Air Force
Aerospace Medical Research Lab Wright-Patterson AFB OH, Tech. Rep.,
1975.

[11] M. Chasles, Note sur les propriétés générales du système de deux corps
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Index

absolute derivative, 116
absolute velocity, 123

acceleration, 22

algebraic multiplicity, 491
amplification factor, 368

angular impulse, 52
angular momentum, 47

angular velocities, 440

anterior, 40, 96, 97
anti-commutative, 485

backward Euler, 376

balance, 205

bicycle model, 467–468
Butcher array, 379

Butcher arrays, 378

cans-in-series, 79, 435
Cartesian coordinates, 499

center of gravity, 11

center of mass, 11, 287
center of pressure, 22

centrifugal governor, 243
centripetal acceleration, 127

centroid, 11

Chaplygin sleigh, 412
characteristic polynomial, 163,

490

Chasles’ Theorem, 85
classical Euler angles, 81

closed path, 58

closed-loop kinematic chains,
389

CMG, 209
components, 430
configuration space, 221
conservative, 57

constrained equations of
motion, 301

constraint, 217
constraint equation, 221
control moment gyroscope, 209
control moment gyroscopes,

193, 201

convective acceleration terms,
349, 351

coordinate projection method,
389, 478

coordinate system, 71
coordinates, 22, 430
Coriolis acceleration, 127
couple moment, 9

cross product, 484
Cylindrical coordinates, 118

d’Alembert forces, 238, 249,
298, 299

d’Alembert’s principle, 237, 249
defective, 492

deficient, 488
definiteness, 489
degrees of freedom, 142, 217,

289, 304, 325, 399
determinant, 488, 491
diagonal, 488
diagonalizable, 491

Advanced Dynamics © 2020 Vallery/Schwab 617



618 INDEX

differential equation, 290

differential equations, 301, 361

direction cosine matrix, 76

direction of a vector, 5

dot product, 486

dumb-bells, 164

dynamic equilibrium, 237, 298

EAST-NORTH-UP, 80

eigenvalue, 490

eigenvector, 490

equations of motion, 2, 18, 22,
45, 52, 62, 183, 249,
269, 274, 289, 325, 335,
410

equipollence, 9, 20

equivalent ellipsoid, 164, 167

error estimates, 373–376

Euler acceleration, 127

Euler angles, 79–84, 435–446

Euler parameters, 449, 450, 452

Euler step, 362

Euler’s method, 362

Euler’s rotation theorem, 84

Euler’s second law of motion,
52

explicit, 269

explicit numerical integration,
376

external, 13

fidget spinner, 208

force couple, 9

forward Euler, 376

four-bar linkage, 136

free vector, 9

free-body diagram, 16,
287–289, 301, 303, 315,
329

generalized coordinates, 24,
325, 331, 399

geometric, 491
gimbal lock, 444
governor, 48
gradient, 497

head angle, 455
Hertz, 405
Heun, 364
holonomic, 224

ICR, 136
ideal constraints, 236
image, 487
implicit, 269
implicit numerical integration,

376
impulse, 47
index notation, 4
inertia tensor, 145, 148
inertial force, 237
Inertial Measurement Unit, 454
instantaneous axis of rotation,

104
instantaneous center of

rotation, 136
internal, 13
inverse, 488
invertible, 488
iso lines, 497

James Watt, 48, 243

Kepler’s second law, 65
kernel, 489
kinematic degrees of freedom,

412
kinematically admissible

velocities, 298, 300
kinematics, 22
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kinetic energy, 55
kinetics, 22
Kronecker delta, 431
Kutta, 369

Lagrange multiplier, 261
Lagrange multipliers, 300, 395,

411
Lagrange’s equations, 255
Lagrange’s equations with

multipliers, 262
Lagrange’s form of

d’Alembert’s principle,
239

Lagrangian, 254
latitude, 325
level curves, 497
level surfaces, 497
line of action, 5
linear momentum, 45
linear transformations, 487
linearly dependent, 487
local truncation error, 271
longitude, 325

magnitude of a vector, 5
mass element, 145
mass matrix, 274
mass moment of inertia, 419
mechanism, 221
mobility, 407, 412
moment, 6, 8
moments of inertia, 149
Moore–Penrose pseudo-inverse,

396, 478
Mozzi’s axis, 85
multibody systems, 284
multiplicity, 490

nabla, 59, 497
natural coordinates, 121

negative (semi-)definite, 491

Newton’s second law of motion,
27

non-holonomic, 224, 225

non-holonomic constraints, 405,
406

non-linear constrained
least-square problem,
394

nonsingular, 488

NORTH-EAST-DOWN, 79

North-East-Down (NED)
coordinate system, 43

nullspace, 489

numerical integration, 362
nutation, 33, 81, 435

optimization of body shapes,
164

ordinary differential equations,
269, 362

orthogonal matrix, 78, 433

orthographic projections, 33,
42, 82, 83

osculating circle, 121

parallel-axis theorem, 157

partial derivative, 495

pitch, 79, 438

planar movement, 112

polycentric joint, 136
position, 22

positive definite, 491

potential energy, 58

power, 53

precession, 33, 81, 435

precession-nutation-spin, 79,
435, 438

principal angle, 84
principal axes of inertia, 163
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principal axis, 84
principal moments of inertia,

163
principle of angular impulse

and momentum, 52
principle of linear impulse and

momentum, 46
principle of minimal action, 405
principle of virtual work, 229
principle of work and kinetic

energy, 56
products of inertia, 149
projections, 430

quaternions, 451

rank, 487
relative velocity, 123
rheonomic, 224, 228
right triangular, 488
right-hand rule for rotations, 6
roll, 79, 438
rotation matrix, 75, 432
Runge, 369
Runge–Kutta 4, 369

scalar product, 486
scalar projection, 486
scleronomic, 224, 228
screw axis, 85
semidefinite, 491
simplest walker, 4
singular, 444, 488
singularities, 82
solvers, 269
speed, 22
spherical coordinate system,

119
spin, 33, 81, 435

square, 488
stability, 366
state, 224

state equations, 224
state spaces, 272
state vector, 271
static unbalance, 37

statics, 8
Steiner’s theorem, 157
stiff differential equation, 377
structure, 221

symmetric, 488

tilde matrix, 441, 485
TMT-method, 349
top, 90

torque, 8
total derivative, 496
trace, 488, 491
transformation equations, 223

transport theorem, 115, 118
transpose, 488
triad of unit direction vectors,

71
triangle inequality, 164
trucks, 40

truncation error, 365

upper triangular, 488

vector projection, 486
velocity, 22
velocity degrees of freedom, 412

work, 53
work and energy, 53

yaw, 79, 438

yaw-pitch-roll, 79, 438

620 Advanced Dynamics © 2020 Vallery/Schwab




	AdvancedDynamics2020_3ed_Preview
	front_cover
	Advanced2020
	Rigid-Body Dynamics
	Notations and Background
	Notations
	Typesetting of Scalars, Vectors, and Matrices
	Sub- and Superscripts
	Drawing Vectors
	Units

	Basic Definitions and Tools in Mechanics
	Definition of a Moment
	Force System Resultants: Equipollence
	Newton's 1st Law and Static Equilibrium
	Center of Mass
	Newton's 3rd Law of Motion
	Definition of Internal and External Forces
	Moments of Internal and External Forces
	Free-Body Diagrams

	Introduction to Dynamics
	Kinematics and Kinetics
	Kinematics in Fixed Coordinate Systems
	Signs
	Newton's Second Law of Motion

	Solving Problems in Mechanics
	Question Answering Strategy
	Checking Plausibility
	Frequent Mistakes

	Summary
	Problems
	Guided Problems
	Practice Problems


	Particle Dynamics
	The ``Newton-Euler'' Approach
	Linear Momentum
	Principle of Linear Impulse and Momentum
	Angular Momentum of Particles
	Euler's Second Law of Motion

	Work and Energy
	Power and Work of a Force
	Principle of Work and Energy for a Single Particle
	Work of Internal and External Forces
	Principle of Work and Energy for Systems of Particles
	Conservative Systems

	Checking Plausibility and Frequent Mistakes
	Summary
	Problems
	Guided Problems
	Practice Problems


	Representing Orientations in 3-D
	Rotated Coordinate Systems and Triads
	Definition of Coordinate Systems and Triads
	Vector Projections
	Rotation Matrices
	Inverse Rotation Matrices

	Successive Rotations
	Multiplication of Rotation Matrices
	Euler Angles
	Euler's Rotation Theorem: Principal Axis
	Screw Axis

	Checking Plausibility and Frequent Mistakes
	Summary
	Problems
	Guided Problems
	Practice Problems


	Derivatives in Moving Coordinate Systems
	Angular Velocity
	Infinitesimal Rotations
	The Instantaneous Axis of Rotation
	Definition of Angular Velocity
	Point Rotating about a Fixed Axis
	Instantaneous Movement of a Rigid Body
	Instantaneous Center of Rotation

	Vector Derivatives in Rotating Triads
	Time Derivative of a Unit Vector
	Transport Theorem

	Special Coordinate Systems
	Cylindrical Coordinates
	Spherical Coordinates
	Natural Coordinates

	Relative and Absolute Motion
	Relative and Absolute Velocity
	Relative and Absolute Acceleration

	Checking Plausibility and Frequent Mistakes
	Summary
	Problems
	Guided Problems
	Practice Problems


	Work and Energy
	Kinetic Energy of a Rigid Body
	Kinetic Energy in Terms of the Inertia Tensor
	Moments and Products of Inertia
	Inertia Tensors for Symmetric Bodies
	Kinetic Energy in the Case of a Fixed Point

	Changing the Inertia Tensor's Reference Axes
	Inertia with Shifted Reference Point
	Inertia in Rotated Triads
	Principal Moments of Inertia
	Equivalent Simpler Bodies
	Writing Kinetic Energy as a Product of Scalars

	The Principle of Work and Energy
	Work of Forces for Rigid Bodies
	Work and Power of Moments

	Checking Plausibility and Frequent Mistakes
	Summary
	Problems
	Guided Problems
	Practice Problems


	Newton-Euler
	Newton's Second Law for Rigid Bodies
	Newton's Second Law Using Inertial Triads
	Newton's Second Law for General Rotating Triads

	Euler's Second Law for Rigid Bodies
	From Systems of Particles to Rigid Bodies
	Angular Momentum of a Rigid Body
	Euler's Second Law for General Rotating Triads
	Euler's Second Law for Body-Fixed Triads
	Euler Equations

	Choosing Triads and Reference Points
	Summary
	Problems
	Guided Problems
	Practice Problems


	Generalized Coordinates, Virtual Work
	Configuration Space
	Degrees of Freedom
	Generalized Coordinates
	Classification of Constraints

	Virtual Work
	Virtual Work in Cartesian Space
	Virtual Work in Configuration Space
	Virtual Work of Ideal Constraint Forces
	Virtual Work and d'Alembert's Principle
	Generalized d'Alembert Forces

	Summary
	Problems
	Guided Problems
	Practice Problems


	Lagrange's Equations
	Lagrange for Independent Coordinates
	D'Alembert Forces and Kinetic Energy
	Lagrange's Equations with Conservative Forces

	Lagrange for Dependent Coordinates
	Re-Interpreting Constraints as Generalized Forces
	Constraint Equations as Scalar Products
	Lagrange Multipliers

	Summary
	Problems
	Guided Problems
	Practice Problems


	Introduction to Numerical Integration
	Explicit and Implicit Differential Equations
	Integration Algorithms
	Euler's Method in 1-D
	Euler's method in n-D
	Limitations of Euler's Method

	Obtaining Explicit, First-Order ODEs
	Obtaining Explicit ODEs
	Obtaining First-Order ODEs

	Summary
	Problems
	Guided Problems
	Practice Problems



	Multibody Dynamics
	Newton-Euler Equations and Constraints, FBD
	Free-Body Diagrams for Multibody Systems
	Equations of Motion with Newton-Euler
	Constraints
	Differential – Algebraic Equations (DAEs)
	Problems

	Virtual Power and Lagrange Multipliers
	Systematic Approach to Derive DAEs
	Passive and Active Elements
	Prescribed Motion
	Impact Equations
	Problems

	Lagrange's Equations
	Motivation for Generalized Coordinates
	Lagrange's Equations of Motion
	Passive and Active Elements
	Adding Constraints
	Impact
	Problems

	TMT Method
	Equations of Motion
	Elimination of Constraint Forces
	Passive and Active Elements
	Adding Further Constraints
	Impact
	Problems

	Numerical Integration of ODE
	Explicit First-Order ODE Methods
	Basic Method: Euler
	Standard First-Order Form
	Refining the Method: Heun
	Accuracy and Error Propagation
	Stability of Numerical Integration Methods
	Runge–Kutta 4

	Method for Second-Order ODEs
	Error Estimates
	Global Error Estimates
	Error Estimates in Practice

	Implicit ODE Methods
	Butcher Arrays
	MATLAB Implementation of RK Methods
	Problems

	Closed-Loop Kinematic Chains
	Coordinate Projection Method
	Cutting the Kinematic Loops
	Projecting the Coordinates
	Gauss-Newton Method
	Coordinate Projection and Large Systems of DAEs

	Coordinate Partitioning Method
	Problems

	Rolling Contact, Non-Holonomic Constraints
	Rolling Without Slip in ``Planar'' Systems
	Velocity Constraints for the Upright Wheel
	A Skate with No Sideslip
	Pure Rolling in Forward Direction
	Upright Wheel Mass Matrix

	Dynamics of Non-Holonomic Systems
	Systems with Non-Holonomic Constraints Only
	Systems with Mixed Constraints

	Degrees of Freedom of Non-Holonomic Systems
	Integration of Non-Holonomic Systems
	Problems

	From Two- to Three-Dimensional Space
	Newton–Euler in Two-Dimensional Space
	Newton–Euler in Three Dimensions
	Problems

	Rotation Matrix, Euler Angles, Quaternions
	Rotation Matrix
	Euler Angles
	Angular Velocities and Euler Angles
	Rotation Parameters
	Axis–Angle Parameters
	Euler Parameters or Quaternions

	Problems

	Complex 3-D Multibody Systems
	The Bicycle Model
	Equations of Motion
	State Variables
	Rotation Matrix and Angular Velocities
	Kinematic Differential Equations
	Constrained Equations of Motion

	Constraints
	Revolute Joint
	Wheel Contact

	Numerical Integration
	Problems


	Appendices
	Vector and Matrix Algebra
	Vector Addition
	Multiplication of a Vector with a Scalar
	Cross Product and Tilde Matrix
	Dot Product
	Basic Matrix Definitions
	Eigenvectors and Eigenvalues
	Eigendecomposition of a matrix

	Differentiation and Integration
	Derivatives with Respect to Time
	Product Rule
	Chain Rule
	Partial Derivatives
	Gradient
	Integration

	Shorthand Notations
	Index Notation with Einstein
	Quaternions and Finite Rotations
	Answers
	Solutions
	Bibliography
	Index


	back_cover
	notpartofpreviewpage

	Empty Pages from AdvancedDynamics2020_3ed_Preview
	AdvancedDynamics2020_3ed_Preview_Ch2
	Pages Ch2  from AD_book_v04_2020_MDinc_fullbook_PrintProof-2
	Empty Pages from AdvancedDynamics2020_3ed_Preview
	Pages Solutions from AD_book_v04_2020_MDinc_fullbook_PrintProof




