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The Effect of Haptic Guidance on Learning a
Hybrid Rhythmic-Discrete Motor Task

Laura Marchal-Crespo, Mathias Bannwart, Robert Riener, Heike Vallery

Abstract —Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements
with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements
such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different
levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce
a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control:
The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times,
eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although
motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid
rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most
effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic
tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

Index Terms —Haptic guidance, fading guidance, motor learning, hybrid rhythmic-discrete task

✦

1 INTRODUCTION

T THE long-standing Guidance Hypothesis states that
physically guiding a movement will impair motor

learning1, because it changes the input-output relation-
ship of the task to be learned [2], [3]. A number of
studies have found that haptic guidance that reduced
performance errors during training did not aid motor
learning but in fact hampered it [4], [5]. Nevertheless,
sophisticated robotic mechanisms have been developed
to support motor training of complex movements, such
as walking or multi-joint arm movements [6]. These
devices can haptically guide subjects to move their limbs
in a correct kinematic pattern. The rationale is that haptic
guidance provides the Central Neural System (CNS)
with additional proprioceptive and somatosensory cues,
which may facilitate movement planning and enable the
CNS to attempt more advanced movement strategies.

Recent studies with therapy robots contradict the
guidance hypothesis, suggesting instead that guidance
should fade as learning progresses, providing just
enough guidance to allow participants to practice the
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1. Motor learning is defined as a set of processes associated with
practice or experience that lead to relatively permanent changes in the
ability to perform a skill [1].

task, while decreasing the guidance to encourage learn-
ing [4], [7], [8], [9]. For example, an experiment con-
ducted with unimpaired children who practiced learning
to drive a power wheelchair with fading guidance [7]
showed that children who practiced with fading haptic
guidance from a robotic joystick learned better than
children who practiced without physical guidance. Sim-
ilarly, subjects trained to perform a tennis stroke with a
robotic tennis trainer that faded the guidance as learning
progressed learned to time their movements better than
subjects who trained with visual feedback [10].

This apparent contradiction with the guidance hy-
pothesis can be explained by emerging evidence that
haptic guidance may be specifically useful for learning
timing [11], [12], [13]. Several studies showed a benefit of
haptic guidance in learning to reproduce the temporal,
but not spatial, characteristics of complex spatiotemporal
curves [14], [15]. The effect of haptic guidance on learn-
ing a visuo-manual tracking task has been evaluated in
further studies, which found a positive effect of guidance
on the time-related components of a dynamic task, such
as an increase in movement speed and smoothness [16],
and better learning of temporal force patterns [17].
Training with haptic guidance also benefited learning to
play a pinball-like game [18]. In these studies, haptic
demonstration of optimal timing, rather than movement
magnitude, may have facilitated skill transfer. These
results suggest that training with appropriately designed
haptic guidance can enhance learning of some motor
skills, such as time-critical tasks. However, few studies
tested for long-term retention [12], [11], [8], and there-
fore conclusions on the effect of haptic guidance on
motor learning should be taken cautiously [19]. In the
following, we refer to short-term training as any training
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protocol to achieve motor-learning that is limited to three
sessions or less.

Timing of an action plays a crucial role in the
proper accomplishment of many meaningful tasks, such
as hitting a moving object (discrete timing task), or
rhythmically moving an object (continuous timing task).
Research in motor control has focused on two main
task classes: (i) discrete movements (e.g. target-oriented
reaching movements) that include well-defined postures
at the beginning and the end of the movement, which are
maintained for a non-negligible duration (dwell time),
and (ii) rhythmic movements (e.g. walking) that are pe-
riodic or at least repetitive movements [20]. Several stud-
ies have demonstrated that discrete and rhythmic move-
ments are driven by different control primitives [21],
[22], [23]. Indeed, brain imaging studies have shown
that the production of rhythmic and discrete movements
involve different brain areas [24]. Specifically, rhythmic
movements require significantly less cortical and sub-
cortical activation, suggesting that discrete tasks may
require more complex control mechanisms located at
different levels of the CNS.

Regarding rhythmic tasks, different haptic and visual
guidance paradigms have been tested for their effect on
learning [25]. An extensively studied rhythmic task con-
sists in hitting fixed targets by exciting a virtual second-
order (mass-spring-damper) system at its resonant fre-
quency [26], [27]. The effect of different haptic training
paradigms on learning this rhythmic task was recently
compared to learning a path-following task [28]; results
showed that the benefits of the different paradigms
depended strongly on the task type.

However, not all motor tasks fall into one of the two
classes “discrete” or “rhythmic”, but may lie somewhere
between the two. Therefore, one may better designate
a movement by its “degree of rhythmicity”. Several
measures have been proposed to characterize rhyth-
micity, for example the “index of harmonicity” [29],
which is based on local extrema in the acceleration time
series, or the mean-squared jerk [20]. As a robust and
intuitive measure, here we characterize the “degree of
rhythmicity” of an “almost periodic” [20] movement by
the “activity period” as defined in [30], which is 100%
minus the percentage of dwell time [20] during one
cycle. This means that periodic tasks with negligible
dwell time between consecutive movements approach a
degree of rhythmicity of 100%, while repetitive discrete
tasks with negligible movement time compared to dwell
time approach 0% rhythmicity.

A classical example of an ambiguous task is bouncing
a ball to a target apex height. The classification of this
task depends on the apex height: bouncing a ball to a
high apex results in an almost discrete task with long
dwell times, while a lower apex can be classified as
a continuous task with a high degree of rhythmicity.
Modifying gravity in a virtual environment has the same
effect on the racket trajectory as changing the apex
height: the higher the value of gravity, the more rhythmic

the task becomes. This discrete versus rhythmic behavior
in the bouncing ball task was observed in previous
studies, which demonstrated that the increase in cycle
period did not lead to a simple scaling of the racket
trajectory, but to a change in the racket trajectory shape
from an approximately sinusoidal profile to a sequence
of discrete movements separated by dwell times [30],
[31].

Bouncing a ball requires sophisticated motor control.
Mathematical analysis of the bouncing-ball model re-
vealed that feedforward control yields satisfactory per-
formance once the racket-ball interaction has settled to
the correct steady-state movement [32]. Passive stability
related to the bouncing movement implies that small
deviations from the desired apex attenuate over succes-
sive bounces without involving active corrective motor
actions from subjects. This property depends on nega-
tive racket acceleration at ball impact. In line with this
observation, the racket acceleration at impact has been
suggested to be a good performance variable to quantify
feedforward control [33] – better performance in feedfor-
ward control seems to be related to a lower acceleration
at impact. Recent studies have demonstrated that, in
addition to feedforward control, subjects may also apply
feedback control when an error is observed after a
perturbation, and actively correct the racket movement
to accelerate the return to the steady state [33].

Motor learning in the ball-bouncing task with varying
gravity has been extensively studied [30]. However, the
effect of haptic guidance on learning such a hybrid
rhythmic-discrete motor task has not been addressed.
Here, we use a robotic device to apply different types
of haptic guidance while subjects bounce a ball in a
virtual-reality paradigm in different virtual gravity en-
vironments, in order to investigate the effect of haptic
guidance on learning, both in time-critical continuous
rhythmic movements (high gravity) and in discrete tasks
(low gravity). In particular, we investigate (i) a fixed
amount of haptic guidance, (ii) no guidance, and (iii) an
amount of guidance that fades as learning progresses.
The stated task objective was to reach a target apex
height. As reference for the guidance, a model-predictive
controller continuously calculates the racket’s optimal
movement based on the two-layered hybrid-discrete task
model introduced in [30]. The selection of performance
measures is crucial to validate training [25]. Here, learn-
ing is assessed by two measures: First, a significant
reduction of the overall error (difference between the
actual ball apex and the target apex). Second, the racket
acceleration at ball impact (a time-critical variable), to
quantify feedforward control performance [33].

Based on the previous work on time-critical motor
learning experiments, we hypothesized that fading guid-
ance may be especially suited to help people learn the
task under all gravity levels. Furthermore, we expected
better generalization (i.e. transfer of learning gains) to
untrained gravities in subjects trained without guidance
and, to a lower extent, with fading guidance [34].
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Fig. 1. Virtual display for the 3 gravities trained (g1, g3 and g4) and assistive robotic device with one degree of freedom.

2 METHODS

2.1 Bouncing-ball simulator

We designed a bouncing-ball game and an assistive robot
to perform the desired experiments. The task to be per-
formed was to bounce a virtual ball with a virtual racket.
The experiment was implemented using a one-degree-
of-freedom haptic device (Fig 1, right) developed in our
lab [35]. The robotic device consists of an actuated lever
with a handle and an elbow rest. The lever is actuated by
a Maxon RE 35 DC Motor (maxon motor, Switzerland),
with U = 48V nominal voltage, combined with a Har-
monic Drive gearbox (HFUC-2UH, size 14, Harmonic
Drive AG, Germany) with a transmission ratio of i = 100.
The combined moment of inertia of motor and gearbox is
9.86·10−2 kgm2 at the output shaft. The robot is equipped
with an incremental encoder on the motor shaft and a
potentiometer on the joint (GL60 Contelec, Switzerland)
that redundantly measure the elevation angle, and a
force sensor (KD 140 200N, ME-Meßsysteme GmbH,
Germany) that measures the torque τuser produced by
the subject on the robot. Precision and accuracy of the
angle measurement are 0.007◦ and 0.1◦, respectively, and
precision and accuracy of the torque measurement are
0.2 Nm and 0.1 Nm, respectively. Coulomb friction in the
drive train is approximately 0.1 Nm. The lever can be
adjusted to the length of the subject’s forearm. In closed-
loop zero-impedance control, the residual reflected iner-
tia of the device was identified to be 2.5 ·10−2 kgm2, and
the reflected damping to be 1.4 Nms/rad. Force control
bandwidth is 8.8 Hz.

The bouncing-ball simulator (Fig 1, left) was devel-
oped in MATLAB/Simulink, using the xpc target real-
time operating system and the Virtual Reality Toolbox.
The simulator consists of a 3-D graphical presentation
of a ball that falls under the influence of gravity onto a
racket. The rotation of the lever with respect to the elbow
joint in supination forearm position is mapped to the
vertical motion of the virtual racket. The angular position
of the lever θ was linked to the vertical position r of

the virtual racket by a linear mapping where θ = rm−1.
This is a compromise given that we emulated a multi-
joint, combined rotational and linear task (hitting a ball
with a racket) using a single-joint device. The kinematic
limitations of the haptic device only allow a rotational
movement of the forearm about the elbow joint, which
does not realistically represent racket movements in real
tennis playing, where vertical translations would play a
role. By mapping linearly, we are consistent with [30],
and we make sure that subjects do not reach a near-
singular configuration for larger angles, which would
reduce their ability to influence the impact location. This
mapping does not influence performance or evaluation
thereof, as long as subjects are capable of understanding
how the haptic lever movement relates to the virtual
racket’s movement.

The aim of the game was to rebound the virtual ball
to a certain apex height shown on the screen, which
remained constant through the experiment. Impact with
the racket was modeled identical to [30]: The ball veloc-
ity ḃ+ after impact is given as a function of ball velocity
ḃ− before impact, the coefficient of restitution α and the
racket velocity ṙ− before impact:

ḃ+ = −αḃ− + (1 + α)ṙ−. (1)

The dynamics of the ball during free flight are ballistic
and only a function of the initial conditions and the
chosen gravity. This implies that once the ball impacted
with the racket, the trajectory of the ball is fully deter-
mined and the subject has no more influence on it. It also
implies that the task is not a trajectory tracking task; task
performance is exclusively determined by the final state
of the racket at the instant of impact with the ball.

The game consisted of performing the task under the
influence of 5 different gravity values. All environments
had the same layout but different background color, to
help participants identify the relative gravity by the color
of the environment.
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2.2 The two-layered hybrid-discrete task model

Rhythmically bouncing a ball is a hybrid task that
combines continuous movement of the racket with the
control of discrete racket-ball impacts.

To obtain references for haptic guidance, the optimal
time till the next impact event, the final racket position
and velocity (immediately before impact), as well as
the racket’s continuous reference position, velocity and
acceleration trajectories until impact were calculated at
each sampling instant using predictive optimization.

Changing the value of gravity in the virtual environ-
ment affects the racket’s optimal movement: The higher
the value of gravity, the more rhythmic the task becomes,
while a lower gravity reduces the bouncing frequency,
changing the motor command to a discrete task (Fig 2).
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Fig. 2. Examples of racket and ball trajectories under a
low gravity level (on top, g1 = 0.61m/s2) and under “Earth”
gravity (bottom, g4 = 9.81m/s2), while the robotic device
stiffly guided the movement. The dashed line represents
the desired ball apex height (hdes = 0.8m).

The hybrid control architecture was based on a two-
layered framework [30], which minimizes a cost func-
tional J over the movement between discrete impact
events [30] (To simplify notation, variables are consid-
ered dimensionless):

J = (rf − rref,f)
2 + (ṙf − ṙref,f)

2

+

∫ tf

t0

[wr(r(t) − rref,0)
2 + weu(t)

2]dt.
(2)

with reference values denoted by the index ref , initial
values by 0, and final values (immediately before impact)

by f. The control input u is the input to a simplified
muscle model [30]. The cost functional accounts for the
need to reach a final racket position rref,f and velocity
ṙref,f at impact with little control effort (penalized by
the weight we). Furthermore, the weight wr enforces the
racket (i.e. the elbow) to remain at the resting position
rref,0 when possible, so that the trivial solution where
the racket is raised until it contacts the ball at the
target apex (and remains there) is avoided. As weighting
parameters, the same values as in [30] were employed:
wr = 0.012

√
g, we = 0.00002. The task is to find the

optimal duration T = tf − t0 of the movement (i.e. the
remaining time to impact), the final reference values, as
well as the corresponding continuous racket trajectory.

The optimization problem was split into two layers,
as in [30]: In an outer loop, the time duration T was
iteratively adjusted and final reference values were cal-
culated. In an inner loop, standard LQ control was used
to calculate the reference continuous movement between
impact events for a given T and final reference values.

In [30], the optimization for the racket movement was
run only once between the discrete events. One conclu-
sion of that paper was that it is unlikely that humans
re-optimize their internal controller at each impact or
time step. However, replicating this for a haptic guidance
paradigm is only meaningful when the racket is not
allowed to deviate from the a priori calculated trajectory,
so in stiff guidance. For guidance with low stiffness,
where subjects may deviate from this trajectory, the
optimal time to impact and the corresponding optimal
movement may change drastically. Compliant guidance
along an originally planned trajectory without taking
into account de-synchronization between subject and
robot can lead to undesired effects, such as the “beat phe-
nomenon” [36] observed for gait rehabilitation robots.
Only consistent re-optimization of the trajectory ensures
meaningful assistance also at low guidance forces. Thus,
a model-predictive controller that performs the mini-
mization at each sampling instant was needed.

The calculations needed in the outer loop are simple:
As the ball’s movement is ballistic, each T uniquely
determines the ball and racket height at impact and the
impact equations (1) determine the necessary velocity of
the racket to bounce the ball to the desired apex height
(so ṙref,f = ṙ−). For this outer loop, we used a golden
section algorithm, which guarantees convergence within
one sampling step.

For the inner loop, however, the need for on-line
optimization led to a challenge: The desired sampling
time of 1 ms required a very efficient implementation of
the predictive optimization (detailed in the appendix):
In contrast to standard algorithms to solve the optimal
follower problem, it is not necessary to perform time-
consuming online integration (to solve the Ricatti equa-
tion). The simplification is made possible by recogniz-
ing that the inner loop does not need to compute the
entire trajectories for each iteration of T , only the cost
associated with a given T is needed until the optimal T
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is found. With this idea, the cost functional can be re-
formulated such that it only depends on initial and final
conditions, which are found by transforming the contin-
uous differential equations into a discrete mapping from
initial to final conditions and vice versa.

2.3 Training conditions

Three control modes were needed for the different train-
ing paradigms: First, the robot should allow the subject
to try the task without guidance. Second, the robot had
to stiffly move the virtual racket to follow the optimal
reference trajectory. Finally, the robot should reduce
guidance as learning progressed. In the following sub-
sections, the three control strategies designed to achieve
these behaviors are described in detail.

2.3.1 No guidance

In the no-guidance condition, the robot followed the sub-
ject’s movements in closed-loop force control. Thus, the
robot was compliant and the subject was able to achieve
any elbow flexion with minimal interaction forces caused
by the dynamics of the robot. The virtual racket was
rendered as a 1 kg object (always experiencing Earth
gravity). This force control loop was realized by a pro-
portional force feedback on the measured moment τmeas,
combined with feed-forward compensation of the lever
weight. The reference moment τrac was calculated by
projecting the virtual racket weight onto the lever. The
ball-racket impact was rendered as a 2 Nm torque that
was applied at impact and lasted 50 ms. Although the
impact duration in real elastic ball-racket interaction
experiments was observed to be around 30±9ms [37], we
increased this time to ensure that all subjects perceived
the impact forces.

2.3.2 Fixed guidance

A stiff PD position controller with proportional gain
Ks = 600Nm/rad and derivative gain Kd = 60Nms/rad
was implemented to track the optimal reference racket
position θref and velocity θ̇ref . A PD controller is a
practical solution to prevent errors during a tracking task
despite subject interactions. The reference position and
velocity at each sampling instant were calculated using
the two-layered hybrid-discrete optimization of Sec. 2.2.
The ball-racket impact was again rendered as a 2 Nm
torque that was applied at impact and lasted 50 ms.

2.3.3 Fading guidance

Fading assistance is a common strategy to include ac-
curate trajectory demonstration of the fixed guidance
mode, while still allowing subjects to try the task by
themselves [38]. Here, fading guidance was realized by
an impedance controller on the measured angle θmeas

that guided the movement by a moment τguid using
closed-loop force control (Fig. 3), with

τguid = Ks(θref − θmeas) +Kd(θ̇ref − θ̇meas). (3)

The stiffness Ks and the damping Kd are equivalent to
the gains of the position controller. The only difference is
that in position control, no inner force feedback loop was
used, to allow maximal values for Ks and Kd (without
risk of instability). Guidance of the impedance controller
was systematically faded on a hit-by-hit basis, until an
imperceptible force had settled [11]:

Ki,k+1 = fRKi,k, i ∈ s, d, (4)

where Ki,k and Ki,k+1 represent the impedance gains
Ks and Kd in the k-th and k + 1-st hit, respectively,
and fR is the robot forgetting factor (fR = 0.997). The
initial values of the impedance stiffness and damping
gains were set to Ks,0 = 300Nm/rad, Kd,0 = 35Nms/rad.
As the gains were in the same order of magnitude, the
guidance during these first hits was similar to the stiff
position controller.

Fading-guidance controllers typically settle the final
assistance force to a value that allows subjects to move
freely, and the same was done here. Simultaneously, also
the virtual racket rendering τrac, calculated as in the no-
guidance condition, was faded hit by hit at the same rate.
By the end of the training phase, subjects felt the task
dynamics without any assistance. The ball-racket impact
was again rendered as a 2 Nm torque lasting 50 ms.

2.4 Experimental protocol

The experiments were approved by the Research Ethics
Committee of ETH Zurich, and all subjects provided
informed consent. Thirty right-handed subjects (11 fe-
males) with no known motor deficits took part in the
experiment. The subjects were between 18–31 years
old (mean age 25.7 ± 2.5). They were randomly as-
signed to one of three groups, of 10 members each: the
“no-guidance”, the “fixed-guidance” and the “fading-
guidance” groups.

The robot was rigidly attached onto a table, and the
seat height was adjusted so subjects could rest their
elbow in a comfortable position. Subjects sat in front
of a computer screen and were instructed to keep the
elbow on the elbow rest and grasp the robot handle
in supinated posture. Then, they were asked to bounce
the virtual ball shown on the screen to match the ball
midpoint with a depicted apex in the virtual environ-
ment, by moving the virtual racket through the rotation
of the robot handle (Fig 1). The virtual apex remained
constant throughout the experiment. No other indication
of movement accuracy (e.g. number of times that the ball
reached the desired apex) was provided, in order not
to divert the subjects’ attention from the bouncing task
itself.

Each subject participated in two experimental sessions
on different days (Fig. 4). During the second experi-
mental session (3-4 days after training), only long-term
retention was evaluated, to allow for time-dependent
memory consolidation [39], [40]. Practicing during a
single-day session can already have quasi-permanent
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effects on the ability to perform a skill [3]. We decided
to run a single-day training session because the ball-
bouncing task was a relatively easy task that we believed
could be mastered in a short time. Therefore, performing
multiple-day training sessions could increase the unde-
sirable boredom effect, i.e. performance degradation due
to lack of attention.

The first session started with a warm-up period in
no-guidance mode, to allow subjects to familiarize with
the robot and the virtual reality. During baseline, sub-
jects performed under 5 different gravity levels (g1 =
0.61m/s2, g2 = 1.09m/s2, g3 = 2.45m/s2, g4 = 9.81m/s2,
g5 = 15m/s2) with no guidance, hitting the ball 26
times under each gravity condition. The gravity values
were selected from the gravity levels presented in [30]
so that the difference between gravities could be easily
recognized. The different gravities have associated dif-
ferent “degrees of rhythmicity”: When performing the
task with the lower gravity level g1, the dwell time (de-
fined as time between impacts where the racket velocity
remains below 5% of its peak value) is 50% of the
total time between impacts, whereas the percentage of
dwell time is reduced to 10% when performing with the
“Earth” gravity level g4, and to 25% when performing
with the “medium” gravity g3 [30]. The cycle periods
associated with the different gravities are: T1 ≈ 2800ms,
T2 ≈ 2100ms, T3 ≈ 1400ms, T4 ≈ 700ms, T5 ≈ 550ms.
The gravity levels were presented in random order, with
a pause of 3 s between them. The time to complete
the baseline condition was 7 minutes. Subjects were
informed about the current gravity level through differ-
ent colors in the virtual environment and through the
gravity name (g1 to g5) on the screen (Fig 1). Between
the baseline and the following training conditions, we
allowed for 1–5 minutes rest.

During the training phase, subjects performed the
task with 3 different gravities (g1, g3, g4). Training was
divided into 9 blocks, each consisting of 50 hits under
the same gravity level (3 gravities × 3 blocks). The 9

Warm up

Baseline
26 hits per gravity

Short-Term Retention
26 hits per gravity

Training sub-phase 1 

(no, fixed, or fading guidance)

Training sub-phase 2 

(no, fixed, or fading guidance)

Training sub-phase 3 

(no, fixed, or fading guidance)

Long-Term Retention
26 hits per gravity

Wash-out
20  hits per gravity

x 5 gravities

x 5 gravities

x 5 gravities 

x 3 gravities 

x 3 gravities 

(g1, g2, g3, g4, g5)

(g1, g2, g3, g4, g5)

(g1, g2, g3, g4, g5)

(g1, g3, g4)

(g1, g3, g4)

Fig. 4. Experimental protocol

blocks were presented in randomized order, to promote
learning of the different gravity levels [41]. To avoid
fatigue, subjects were allowed to rest for 1-2 minutes
after completing training blocks 3 and 6. We denote
as training sub-phases 1, 2 and 3 the resulting training
blocks separated by the resting times. During training,
subjects in the no-guidance group did not receive as-
sistance from the robot. Subjects in the fixed-guidance
group, who were trained with stiff position control,
were instructed to actively follow the robot’s movement.
The fading-guidance group, which trained while the
stiffness of the impedance controller faded throughout
the training blocks, were also instructed to cooperate
with the robot. Following the training phase, subjects
were asked to perform the task again with no guidance
under the 3 gravity levels, in order to wash out possible
aftereffects (20 hits per trained gravity).
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After a short break of 5–10 minutes, subjects pro-
ceeded with a short-term retention test. All subjects also
returned after 3–4 days for a long-term retention test.
Generalization is a crucial aspect of motor learning.
It is a type of transfer of learning that occurs from
one task to another very similar task [1]. In order to
evaluate motor learning generalization, subjects played
again under the influence of the 5 gravity levels during
the retention tests. We selected two different gravity
levels to test for generalization: a gravity level that was
between two trained gravities (g2 = 1.09m/s2), and
a second gravity that was higher than the maximum
trained gravity (g5 = 15m/s2). The aim was to test
for differences in generalization between a gravity level
close to two consecutive trained gravity levels and a
gravity level outside the range of the trained gravity
levels. Both retention tests followed the same structure
as baseline, with 26 hits per gravity.

During baseline, training and retention tests, pertur-
bations were introduced in a pseudo-random manner. A
perturbation was defined as a change in the coefficient
of restitution–with default value α = 0.6–similar to [42].
A change in α resulted in a ball that rebounded more
(α > 0.6) or less (α < 0.6) than expected. The goal of the
perturbations was to compel subjects to practice their
feedback control. During baseline and retention tests,
two perturbations (α = {0.75, 0.45}) were randomly
introduced after the 5th and 13th trials. During each
training block, the perturbing hits were presented as
follows: No perturbations occurred during the first 5
hits, neither during the last 12 hits, then each of these
5 perturbations (α = {0.45, 0.5, 0.7, 0.75, 0.8}) was ran-
domly introduced every 7 hits, in intervals long enough
to stabilize the movement before a new perturbation was
presented.

The time required to finish the first experimental
session was about 30 minutes.

2.5 Data processing and statistical analysis

The overall error during each protocol (sub-)phase was
calculated as the mean absolute difference between the
actual ball apex height h and the target apex (hdes =
0.8m), without considering any first hit after a pertur-
bation. We also calculated the mean absolute interaction
torque (τmeas) during each protocol block and the mean
racket acceleration at impact of the last 5 hits in each
protocol block. Note that there were 12 disturbance-free
hits after the last perturbation, so subjects had enough
time to settle to the steady-state movement. Data from
one subject in the fading-guidance group and one subject
in the fixed-guidance group were discarded because they
did not follow the instructions despite coaching, and
instead systematically rebounded the ball to a different
apex.

A two-sided t-test was used to evaluate whether sub-
jects in different groups performed differently during
baseline. An analysis of variance (ANOVA) with the

overall error during baseline was employed to evaluate if
performing with any one gravity level was more difficult
than with the others. A two-sided paired t-test was
used to evaluate if learning occurred after training: The
overall error and racket acceleration at impact over the
last 5 baseline trials were compared with the values at
retention tests.

The percentage of overall error reduction from base-
line to retention test was employed to normalize the
data. A repeated-measures ANOVA with the four main
protocol phases (baseline, training, short-term and long-
term retention) as within-subjects variables, and training
conditions as between-subjects condition was performed
to evaluate the racket acceleration at impact in the
trained gravity levels. We used a linear-mixed model
to test the effect that the training conditions and non-
trained gravity levels (and their interaction) had on
the performance variables during baseline and retention
tests. We used a repeated measure ANOVA with baseline
and the short- and long-retention test as within-subjects
variables and gravity level as between-subject factor to
determine whether the gravity level had an effect on
the measured torque, and if subjects reduced the torque
after training. We performed a univariate analysis with
the measured torque during training with the training
strategy and the gravity level as fixed factors to evaluate
the influence of the training strategy on the measured
torque for different gravity levels. Correlations between
mean overall error and racket acceleration at impact
were tested using Pearson correlation tests. Pairwise
follow-up comparisons were performed using Tukey
correction. The significance value was set to p = 0.05. All
statistical analyses were performed using the software
package SPSS.

3 RESULTS

3.1 Overall performance

During baseline, we did not find significant differences
between training groups in the mean overall error
(Fig. 5A) and racket acceleration (Fig. 5B). We found
a significant difference between gravity levels in the
overall error during baseline (p < 0.001); in particular,
subjects performed better with g2 and g3, as suggested
by a significantly smaller overall error compared to the
other gravity levels (p < 0.05).

All training groups significantly reduced the overall
error from baseline to short-term retention (Fig. 5D, no-
guidance: p < 0.001, fading-guidance: p = 0.002, fixed-
guidance: p < 0.007) and long-term retention (Fig. 5D, all
conditions: p < 0.001). We found a significant main effect
of training condition on error reduction at long term
(p = 0.023). Contrast revealed that subjects who trained
without guidance reduced the error to a greater percent-
age than subjects who practiced with fading guidance
(p = 0.006). We also found a significant interaction
between the training condition and gravity (p = 0.028).
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Subjects did not significantly reduce their racket ac-
celeration at impact. Only subjects who trained without
guidance showed a tendency to reduce the acceleration
(Fig. 5E, p = 0.110).

We found that subjects significantly reduced the
measured torque from baseline to short-term retention
(Fig. 5C, p < 0.001), and long-term retention (p < 0.001).
We also found a significant main effect of gravity level
on the measured torque (p < 0.001). In particular, we
found that subjects needed more torque to perform with
gravity g4 than at any of the lower gravity levels (p <
0.001), and even more torque to perform g5 (p < 0.001).
We found a significant interaction between gravity and
protocol phase. In particular, subjects seem to reduce the
torque between baseline and retention tests to a higher
extent for the higher gravities g4 and g5. We also found
that the torque measured during training depended on
the training condition (Fig. 5C, p < 0.001). In particular,
training with fixed guidance increased the torque com-
pared to no guidance (p = 0.020) and fading guidance
(p < 0.001). There was a tendency of more torque when
training with no guidance compared to fading guidance
(p = 0.147). The torque measured during training also

depended on the gravity level (p < 0.001), as observed
during baseline and retention tests. In particular, training
with Earth gravity g4 resulted in a higher torque than
training with g1 (p < 0.001) or g3 (p = 0.005). We found
a significant interaction between the training condition
and the gravity level: training with fixed guidance re-
sulted in consistently more torque the higher the gravity
level was, while the torque measured during training
with no guidance and fading guidance did not increase
as acutely.

3.2 Learning performance at trained gravity levels
3.2.1 Mean overall error
At the lowest trained gravity (g1 = 0.61m/s2), subjects
in the no-guidance and fixed-guidance groups signif-
icantly reduced the error from baseline to short-term
(no-guidance p = 0.007, fixed-guidance: p = 0.001) and
long-term retention (Fig. 6A, no-guidance: p = 0.005,
fixed-guidance: p = 0.006). The percentage of error
reduction at long term was different between training
groups (p = 0.049). Subjects trained without guidance
reduced the error significantly more than subjects in the
fading-guidance group (p = 0.038).
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At the medium gravity (g3 = 2.45m/s2), subjects
trained without guidance (p = 0.013) and with fixed
guidance (p = 0.005) significantly reduced the error at
short term. Subjects of all groups reduced the overall
error at long term (Fig. 6B, no-guidance: p = 0.014,
fading-guidance: p = 0.046, fixed-guidance: p = 0.007),
but with a significant difference in error reduction be-
tween training groups (p = 0.043). Subjects in the fixed-
guidance group reduced the error significantly more
than subjects in the fading-guidance group (p = 0.034).

At the high gravity (g4 = 9.81m/s2), all subjects
significantly reduced the error at short term (Fig. 6C,
no-guidance: p = 0.006, fading-guidance: p = 0.006 ,
fixed-guidance: p = 0.006). Subjects in the no-guidance
(p = 0.001) and fading-guidance (p = 0.001) groups
also significantly reduced the errors at long term. The
percentage of error reduction at long term was differ-
ent between groups (p = 0.032). In particular, the no-
guidance group reduced the error significantly more
than the fixed-guidance group (p = 0.035).

3.2.2 Racket acceleration at impact

Figure 7 shows the ball and racket trajectories, as well
as racket acceleration at impact over the last five hits
for a representative subject while training with fixed
guidance and during short-term retention. A repeated-
measures ANOVA with the four main protocol phases
(baseline, training, short-term and long-term retention)
was performed to further investigate the limited learning
for racket acceleration (Fig. 5E).

At the lowest trained gravity, we found a significant
difference in the racket acceleration between protocol
phases (Fig. 6D, p < 0.001): Subjects reduced the accel-
eration between baseline and training (p < 0.001), where
training with fixed guidance reduced the acceleration
significantly more than no guidance or fading guidance
(p < 0.001). We neither found a significant acceleration
reduction between baseline and retention, nor between
groups.

When practicing with the medium gravity, we also
found significant differences between protocol phases
(Fig. 6E, p < 0.001): Subjects reduced the acceleration
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Fig. 7. Ball and racket trajectories and racket acceleration
over the last five hits for a representative person under
the Earth gravity g4 = 9.81m/s2 while training with fixed
guidance (A), and at short-term retention (B).

significantly from baseline to training (p < 0.001), and
almost significantly from baseline to long-term retention
(p = 0.057). The acceleration reduction during training
was different between groups: Subjects trained with
fixed guidance reduced the acceleration significantly
more than subjects in the no-guidance (p = 0.008) and
fading-guidance groups (p = 0.002). However, we did
not find significant differences between groups in the
acceleration reduction at retention.

When practicing with the high gravity, we also found
a significant difference between protocol phases (Fig. 6F,
p < 0.001). We found a significant acceleration reduction
from baseline to training (p < 0.001), which was different
between groups (p = 0.012): Training with fixed guid-
ance reduced the acceleration significantly more than
fading guidance (p = 0.014). The acceleration reduction
from baseline to long-term retention was significantly
different between groups (p = 0.035). The no-guidance
group tended to reduce acceleration more than both
the fading-guidance group (p = 0.061) and the fixed-
guidance group (p = 0.066).

3.3 Learning performance at non-trained gravities

3.3.1 Mean overall error

Subjects in the no-guidance (p = 0.002), and fixed-
guidance groups (p = 0.001) significantly reduced the
overall error at short term in the non-trained grav-
ity levels. Subjects in all training groups improved
their hitting performance at long term (Fig. 8A, no-
guidance:p < 0.001, fading-guidance: p = 0.004, fixed-
guidance: p = 0.001). We found neither a main effect of
the training condition, nor of the gravity in the linear
mixed model analysis. The interaction between training
conditions and gravities was also non-significant.

3.3.2 Racket acceleration at impact

None of the training groups significantly reduced their
acceleration at impact in the non-trained gravity levels
(Fig. 8B). We found neither a main effect of the training
condition, nor of the gravity in the mixed linear model.
The interaction between conditions and gravities was
also non-significant.

3.4 Correlation between performance measures

The overall error reduction from baseline to short- and
long-term retention tests was not accompanied by a re-
duction of the racket acceleration at impact, as suggested
by a lack of correlation between the reduction of the two
performance measures; we neither found correlations for
any gravity level, nor for all gravities together.

4 DISCUSSION

This study investigated which form of robotic guidance
— no, fixed, and fading haptic guidance— would be
more beneficial in learning a hybrid rhythmic-discrete
motor task. We found that the most effective training
condition in terms of error reduction depended on the
degree of rhythmicity of the movement. Further, training
with haptic guidance seems not to have any effect on
racket acceleration at impact. These findings contradict
results from previous studies, which found that fading
guidance was more beneficial to learn time-related con-
tinuous tasks [15], [16]. In the following subsections, we
discuss the results in detail.

4.1 The most effective training condition depends
on the degree of rhythmicity

The Challenge Point theory states that optimal learning
is achieved when the difficulty of a task is adjusted to the
individual participant’s level of expertise (i.e. when the
challenge point is reached). Thus, low-skilled subjects
would learn less when training a too difficult task than
when training at an appropriate level of difficulty. Like-
wise, proficient subjects would not learn optimally when
practicing a task that is easy for them. Thus, reducing
task difficulty via haptic guidance could have a positive
impact on learning when subjects are training an overly
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difficult task. In fact, haptic guidance has been found to
be more beneficial for less skilled participants in some
recent studies [10], [18], [11], supporting the Challenge
Point theory. Likewise, haptic guidance could have a
negative impact when applied during training of tasks
that are already easy for subjects.

In our study, the higher gravities seemed more “chal-
lenging”, because subjects performed significantly worse
during baseline with g4 and g5 than with the lower
gravities g2 and g3 (A possible rationale may be that
faster movements allow less opportunity for online error
correction, and thus the performance under higher gravi-
ties degraded, especially given that subjects encountered
the task for the first time during baseline). According to
the Challenge Point theory, a positive impact of haptic
guidance on learning could be expected when practicing
g4, and a negative impact for g3.

Our results contradict the Challenge Point theory:
Training with fixed guidance improved learning in terms
of error reduction in the gravity level that subjects mas-
tered better during baseline (g3), while training without
guidance resulted in better learning in gravity g4 than
training with fixed guidance.

Thus, the differences in the most effective training con-
dition do not seem to depend on the “level of difficulty”,
but rather on the “degree of rhythmicity”: For the peri-
odic discrete task (low gravity), no guidance and fixed
guidance resulted in better performance after training.
Fixed guidance also improved learning in more mixed
tasks that fall in between discrete and rhythmic classes
(medium gravity). However, for the continuous rhythmic
movement (higher gravity), no guidance seemed to be
especially suitable to learn the task. The positive effect of
fixed guidance is in line with recent studies that showed
that guidance is especially beneficial to learn discrete
timing tasks, such as the best moment to turn in sharp
curves [11] or the moment to start a tennis stroke [10].

Fixed guidance seems inappropriate for tasks with a
high degree of rhythmicity, i.e. continuous, repetitive
movements with negligible dwell times.

4.2 Haptic guidance did not benefit learning of the
racket acceleration at impact

Subjects systematically hit the ball with a racket accel-
eration higher than the negative acceleration observed
in experienced subjects [33]. Subjects hit the ball using a
negative racket acceleration only during training with
fixed guidance (Fig. 6). However, when the guidance
was removed, subjects systematically hit the ball at a
very low position, shortly before the racket reached
maximum velocity, so with small positive acceleration.
This strategy contradicts previous work [30], [33]; in-
stead it is more consistent with what the hypothesis of
energy minimization would predict: The energetically
optimal contact should be at maximum racket velocity
(i.e. acceleration zero) [31]. A possible rationale for this
discrepancy could be that parameters of the cost function
might have to be further adjusted to match human
behavior well enough to be suitable for haptic guidance.
These parameters were taken from [30], where the aim
was to show a similarity between model predictions
and human behavior concerning the varying degree of
rhythmicity with varying gravity. However, [30] did not
give a quantitative comparison between predicted and
observed activity periods. Furthermore, discrepancies
may arise from the differences between the devices
employed: We used a transparent actuated lever with
rotational movement about the elbow as a pivot, while
subjects in [30], [33] moved a sensorized racket without
constraints on the arm, and apparent dynamics of the
apparatus were not reported. Difference in setups might
have led to a biased trade-off between energy optimality
and passive stability [31].
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The finding that subjects did not reduce the racket ac-
celeration at impact contradicts recent evidence that hap-
tic guidance may be specifically useful to reproduce the
temporal characteristics of spatiotemporal patterns [14],
[15], [16]. One might argue that we tested for long-term
effects of haptic guidance, while previous work mainly
tested performance gains at short term. However, we did
not find any benefit at short-term retention either, so this
cannot explain the differences.

The lack of any significant correlation between racket
acceleration at impact and mean overall error, during
baseline and during the retention tests, suggests that
racket acceleration at impact may not be a time-critical
feature of the ball-bouncing task. In fact, we did not
find a correlation between the reduction from baseline to
retention of the mean overall error and the acceleration
at impact, thereby suggesting that subjects explored
strategies to improve their hitting success different from
reducing the racket acceleration at impact as observed
in previous research [30], [33]. This is in line with recent
work on the ball-bouncing paradigm, which suggests
that subjects actively regulate their movements on every
cycle based on perceived variables, i.e. they employ
feedback control more actively, in detriment of feedfor-
ward control [43], [44]. Thereby, the lack of benefit from
haptic guidance may be explained by the inappropriate
selection of racket acceleration at impact as performance
measure.

4.3 Subjects generalized to non-trained gravities

We hypothesized that training without guidance would
generalize better to untrained gravities. Indeed, sub-
jects in the no-guidance group significantly reduced the
overall error at both untrained gravities. However, also
subjects trained with fixed and fading guidance signifi-
cantly reduced the overall error at untrained gravities.
This result contradicts our recent study, which found
that haptic guidance limited generalization in a timing-
based task [34], while training without guidance did
benefit generalization. In this previous experiment, we
speculated that the limited generalization arose because
subjects who received guidance experienced a narrower
range of training examples. A possible rationale for the
discrepancy is that bouncing a ball at the non-trained
gravity levels was indeed similar to the experience
gained when practicing with the trained gravities, and
thus training with guidance also allowed to create a “rich
and varied experience” [34] that improved learning of
the untrained gravity levels. In fact, a cycle with the low
untrained gravity g2 was only 25% shorter than a cycle
with the low gravity g1, and a cycle with the untrained
high gravity g5 was only 21% shorter than with the high
trained gravity g4.

4.4 Why did fading guidance not improve learning?

We hypothesized that fading guidance would improve
learning at all gravities. However, we did not find any

positive effects of this special form of guidance on
learning the bouncing task.

Fading guidance might be seen as compliant guidance
that leaves subjects freedom to choose a strategy, but still
to benefit from the error-correcting functionality of the
device. While guidance faded, instead of adopting the
initially demonstrated robust, self-stabilizing strategy
with negative acceleration at impact, subjects consis-
tently converged towards a more energy-efficient, but
less robust strategy with racket acceleration close to
zero, like subjects trained without guidance (as seen in
Fig. 5B). The fading guidance, however, allowed them
to employ this strategy during training and still reach
high performance, as can be seen in the low overall
error during training in Fig. 5A. This could be explained
by the constant re-calculation of the optimal trajec-
tory, which kept performance high even without self-
stabilizing properties of the strategy. This gave subjects
an erroneously good impression of their performance,
reducing error as driving factor for learning to occur.
Further, the dynamics of the task were not displayed
in full, due to the compliant assistance, which is also
reflected in the lower interaction moments as compared
to no guidance conditions (Fig. 5C). Only the last hits
of the training phase, when assistive forces approached
zero, gave subjects a realistic impression of the task
dynamics, so they had only limited training possibilities.
When the correction from the device was not available
anymore during retention trials, subjects accordingly
displayed bad performance.

The selection of a fixed fading gain in (4), independent
of the subjects’ individual performance, was done to
assure that all subjects were exposed to the same level
of guidance during the experiment. The reduction of the
robotic guidance may have been too fast or too slow for
a subject’s specific learning rate. A guidance-as-needed
algorithm that aims to systematically reduce guidance
but can also increase guidance based on a subject’s
current performance level may have resulted in better
learning [11].

4.5 Technical limitations

The present study is influenced by several technical lim-
itations, in particular concerning the haptic performance
of the robotic device, the realism of the virtual reality, as
well as the cost function used to calculate the optimal
racket trajectory. The haptic device does not perfectly
reflect a freely moving racket. Friction and sensor noise
play a role and reduce achievable precision and accuracy
in all conditions. For the cost function, we used the
same cost function and weighting parameters as [30], as
this approximated the fraction of dwell times observed
in human movement in preliminary experiments. More
evidence would be needed in how far this particular cost
function and its parameters indeed reflect or reproduce
the human’s internal strategies. However, this is outside
the scope of the present study. Finally, the displayed vir-
tual reality is inspired by the task of playing tennis, but it
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does not reflect this task in a realistic manner. However,
we believe that specific features of the task, in particular
the rhythmic-discrete nature, are still maintained and
worth investigating even in this more artificial task.

5 CONCLUSION

In this study, we investigated the influence of haptic
guidance on learning of hybrid rhythmic-discrete mo-
tor tasks: Subjects played a ball-bouncing game with
varying amounts of haptic guidance at different gravity
levels, provoking different degrees of rhythmicity.

We found that the most effective training condition
in fact depended on the degree of rhythmicity of the
movement: Fixed haptic guidance seems inappropriate
for tasks with a high degree of rhythmicity, thus tasks
that are close to continuous, repetitive movements with
negligible dwell times. However, training with haptic
guidance seems to be beneficial in improving perfor-
mance for tasks that resemble discrete movements, sim-
ilarly to training without guidance.

Additional studies are needed to further validate these
observations. It is still an open question whether the
benefit of haptic guidance in fact only depends on
the movement class analyzed, independent of the task
difficulty level.

Furthermore, we could not find benefits of fading
guidance compared to fixed or no guidance, and we
could not reproduce previous findings on the dominance
of negative accelerations at impact, which indicate sub-
jects’ strategies for passive self-stabilization. Instead, our
subjects seemed to systematically prefer more energy-
efficient movement patterns. We could not find a rela-
tionship between task performance and accelerations at
impact either.

APPENDIX A
A highly efficient algorithm for model-predictive control
of the racket position in the ball-bouncing task was
derived, in order to allow fast on-line computation in
each sampling step. First, the cost functional (2) was
rewritten in the form of a standard linear-quadratic
regulator (LQR) problem:

J = ||xf − xref,f ||2S

+

∫ tf

t0

(||x(t)− xref (t)||2Q + ||u(t)||2R)dt (5)

with the weighting matrices R = we, Q = diag(wr , 0, 0),
and S = diag(1, 1, 0), and the state vector

x =
(

r ṙ am
)T

, (6)

where am is muscle activation, r is racket position, and
ṙ is racket velocity. The system is governed by the
dynamics [30]:

ẋ = Ax+Bu, with (7)

A =







0 1 0

0 −γ/I 1

0 0 −1/τm






,B =

(

0 0 1/τm
)

The parameters are: Damping coefficient
γ = 0.25N/(m/s), moment of inertia of arm and
racket I = 0.05N/(m/s2), and muscle time constant
τm = 50ms. By suitable coordinate definitions, rref,0 = 0
and thus xref (t) = 0 ∀t ∈ {t ∈ R : t0 ≤ t < tf}, and

xref,f =
(

rref,f ṙref,f 0
)T

.
The solution to this optimal follower-controller prob-

lem is given by the control law [45]:

u(t) = −R−1BTPx(t) +R−1BT
p(t), (8)

where the matrix function P(t) is the solution of the
Ricatti equation, and the vector function p(t) reflects the
influence of the reference trajectory:

Ṗ = −(PA+ATP−PBR−1BTP+Q), (9)

P(tf ) = Pf = S, (10)

ṗ = −((A−BR−1BTP)Tp+Qxref ), (11)

p(tf ) = pf = Sxref,f . (12)

Because of the two-step optimization, it is not desir-
able to compute the complete solution in each iteration
of T . Instead, only the optimal cost for a specific duration
T is needed, until the optimal T is found.

This can be achieved in a very efficient manner by re-
writing the cost functional (5) in the form (The derivation
follows [46]):

J = x
T
ref,fSxref,f − x

T
f Sxref,f + x

T
0 P0x0 − x

T
0 p0. (13)

The fundamental advantage of this expression is that it
does not involve the entire trajectories of x nor u, but
instead only needs some initial and final values: The
matrix P0 only depends on the duration T and can be
found by backward integration of (10). The value of pf is
a function of the reference final value xref,f , as given in
(11). The value of p0 depends both on the duration T and
on the final value pf . However, as this is a linear system,
transition matrices Φp can be found that immediately
map pf to p0 for a particular T :

p0 = Φp(T )pf (14)

These transition matrices are found off-line: First, (11)
is integrated backward for a maximally expected dura-
tion Tmax, with three arbitrary, but linearly independent
values for pf , in order to find the corresponding values
for p0. Then, for each T , the transition matrix is found
by solving (14) for the entries of Φp. Similarly, the final
racket states xf , immediately before the next impact, are
found via convolution:

xf = Φx(T )x0 + Γ(T )pf (15)

with the transition matrices

Φx(T ) = ΦT
p (T ), Γ(T ) = −

∫ T

0

Φx(τ)BR−1BTΦp(τ)dτ

(16)
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The transition matrices only depend on the duration
T , they are independent of initial and final condi-
tions. Therefore, the values for P0,p0,Γ,Φp can be pre-
computed and stored as matrix or vector functions of T ,
respectively, with a sufficiently large domain of T values
for the specific gravity condition. As a resolution for T ,
we choose the sampling frequency of the haptic system,
1 ms.

Also when the optimal T is found, the predictive
controller only needs the first values of u and x, which
are also found immediately from (8) and (7), respectively.

This procedure reduces computational requirements to
a minimum; no on-line integration is necessary.
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