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Abstract—Most conventional robotic arms depend on sensory
feedback to perform their tasks. When feedback is inaccurate,
slow or otherwise unreliable, robots should behave more like
humans: rely on feedforward instead. This paper presents an
approach to perform repetitive tasks with robotic arms, without
the need for feedback (i.e. the control is open loop). The cyclic
motions of the repetitive tasks are analyzed using an approach
similar to limit cycle theory. We optimize open loop control
signals that result in open loop stable motions. This approach
to manipulator control was implemented on a two DOF arm in
the horizontal plane with a spring on the first DOF, of which we
show simulation and hardware results. The results show that
both in simulation and in hardware experiments, it is possible to
create open loop stable cycles. However, the two resulting cycles
are different due to model inaccuracies. We also show simulation
and hardware results for an inverted pendulum, of which we
have a more accurate model. These results show stable cycles
that are the same in simulation and hardware experiments.

I. INTRODUCTION

The vast majority of robotic manipulators require sensory
feedback in order to perform their tasks. Humans, on the
other hand, use both feedback and feedforward (or open loop)
control when controlling their body [1]. Using feedforward
allows humans to control their body despite having large
time delays (typically 150 ms [2, 3]). Although robots have
faster feedback loops, feedforward still has advantages. First,
feedforward can anticipate on future states of the system,
second, is can offer cheaper control when the cost is critical,
and third, it is suitable for systems with slow and imprecise
feedback, such as camera based feedback.

In a previous study, we showed the remarkable result that
sensitivity to some modeling inaccuracies can be eliminated
by choosing the right feedforward controller [4]. This result
was similar to observations in humans, who minimize the
influence of uncertainty on the final position of feedforward
controlled movements [5]. Where the previous study only
considered short motions (one second), this paper takes those
ideas a step further by considering long term stability of open
loop controlled robotic arms (see Fig. 1), inspired by (human)
stable walking motions.

One of the commonly cited disadvantages of open loop
controllers is that they cannot directly compensate for per-
turbations, since those perturbations are not fed back into the
controller. Since most tasks of robotic arms are repetitive,
we propose to view them as cycles and consider the inherent
stability of those cycles. If the trajectories we perform are
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Fig. 1. This figure shows the top view of the concept of open loop stable
manipulation for our two DOF robot setup. Since there is no feedback
available, the torque signal is a function of time only. Using numerical
optimizations, we find torque signals that result in open loop stable cycles
and allow the robot to perform repetitive tasks. Both the path displayed and
the current signals are obtained from hardware experiments.

stable, perturbations will simply decay over time, without
the need for sensory feedback.

Other researchers have already used the inherent stability
of specific motions in order to create functional robots. Those
robots can be split into two groups: robots with only limited
state feedback and robots without any state feedback.

A well known example of robots with limited state feed-
back is given by Schaal and Atkeson [6], who studied open
loop stable juggling with a robotic arm. In their case, open
loop means that the state of the ball is not used as an input
for the controller, but the arm itself is position controlled.
Other examples include a timed position controlled swing leg
retraction to stabilize running [7] and rope turning without
measuring the state of the rope [8].

The group that is more related to this study is the group of
robots without any state feedback. The most striking result
in this group was obtained by McGeer, who introduced the
concept of passive dynamic walking [9].Those walkers do not
have motors and thus they do not use any feedback control,
while their walking motion is stable. The stable walking
motions do not rely on the motion being stable at each point
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Fig. 2. The four configurations we studied: (a) a simulation model of a
two DOF robotic arm, (b) a two DOF robotic arm, (c) a simulation model
of an inverted pendulum and (d) an inverted pendulum.

in time, rather they work due to the existence of stable cyclic

motions, called limit cycles. Such cycles were later on used

in so called limit cycle walkers in combination with feedback

control [10, 11, 12]. The work most strongly related to this

paper is that by Mombaur et al. [13, 14]. They found stable

open loop controllers for walking and running robots by

optimizing the open loop controllers for both stability of the

motion and energy consumption. These results on a variety

of systems indicate that open loop stable control can be an

effective approach for robotic arms as well.

The goal of this paper is to introduce a new approach in

robot manipulator control: open loop stable manipulation and

to show the first results using this approach. We show results

both in simulation studies and in hardware experiments.

The remainder of this paper is structured as follows.

Section II explains the configurations we studied and the

optimization method we used. Section III shows the results

for the two DOF robotic arm, including a description of the

simulation model, the simulation results and the hardware

results. Section IV shows the results for the inverted pen-

dulum, including a description of the simulation model, the

simulation results and the hardware results. Finally, the paper

ends with a discussion in Section V and a conclusion in

Section VI, where we will conclude that it is possible to

perform manipulation tasks with an open loop controller by

performing open loop stable cycles.

II. METHODS

We studied open loop stable task execution of robotic arms

by optimizing the open loop controller such that the task

is performed by a stable cyclic motion. In this section, we

discuss the configurations we studied and the optimization

method.

A. Configurations

We studied four configurations, which are also shown in

Fig. 2:

(a) A simulation model of a two DOF robotic arm.

On this model we optimized the open loop controller

such that the arm makes stable cyclic motions while

performing the specified task.

(b) A prototype of a two DOF robotic arm. We imple-

mented the controller obtained in (a) on a two DOF

robotic arm to test how the controller performs on

a real system. The results will show that the open

loop controller generates stable cycles on the robot, but

does not converge to the same trajectory as in (a). In

Section V-B, we will argue that this is caused by a

bending of the second DOF due to gravity.

(c) A simulation model of an inverted pendulum. We

used the same techniques as used in (a) to obtain

open loop stable motions of an inverted pendulum. We

show that on this system, the results have an intuitive

explanation.

(d) A prototype of an inverted pendulum. We imple-

mented the controller obtained in (c) on an inverted

pendulum to test how the controller performs on a real

system for which an accurate model is known.

B. Optimization method

The stability of limit cycles can be assessed with a number

of different measures, such as Lyapunov stability [15] or

contraction analysis [16, 17]. We used the classic notion of

Poincaré maps [15] to find the stability of the open loop

controlled motions, which we will now explain.

Consider a non-linear system described by the following

differential equation:

ẋ = f(x, u(t)) (1)

Since we use open loop control, we can consider the time as

an extra state. Using transverse coordinates [18, 19, 20] with

the time as phase variable in this appended state space is

the same as using error dynamics in the original state space.

This means that we can set a Poincaré section at t = tf .

We calculated the error dynamics along the trajectory x∗(t)
that results from the input u∗(t). Since the controller is open

loop, the error dynamics are simply given as the difference

between the current state and the trajectory state, both at the

same time:

ẋ∗ = f(x∗, u∗(t)) (2)

δx = x− x∗ (3)

˙δx = f(x, u∗(t))− f(x∗, u∗(t)) (4)

Linearizing the dynamics along the trajectory results in:

˙δx =
∂f(x∗, u∗(t))

∂x
δx (5)

= A∗(t)δx (6)

Where A∗ is the linearized system matrix, and δx the error-

state. We constrained the motions to be cyclic with period tf
(see below), which results in a cyclic A∗(t) with the same

period. Since system (6) is linear, we can take the state

transition matrix Ψ from t = t0 = 0 to t = tf . Because



we know A∗(t) analytically, we can find Ψ by numerically

computing the solution to the following initial value problem:

Ψ̇ = A∗(t)Ψ, Ψ(0) = I (7)

Similar to the monodromy matrix in Poincaré map analysis

of limit cycles, the motion is stable if the eigenvalues of Ψ
have an absolute value smaller than one:

|λ (Ψ(tf )) |max < 1 (8)

To find a trajectory, we now use an optimal control approach

similar to [13]. We used the above condition as a constraint

rather than to minimize the left hand side of it, because

of two reasons. First, the above condition specifies the

convergence rate of the limit cycle, and does not specify

other stability related factors, such as basin of attraction

[21] and robustness against model uncertainties. Second, in

practice other performance issues are also of concern, such as

energy consumption and speed. We chose to use the integral

of the squared input as objective, resulting in the following

optimization:

minimize
u(t)

∫ tf

t0

u(t)2dt (9)

subject to|λ (Ψ(tf )) |max < 0.9

|u(t)| < umax

x(0) = xpick

x(t1) = xplace

x(tf ) = xpick = x(0)

(10)

Where u(t) is the input, umax is the maximum input and

xpick and xplace are the pick and place states (see Sec-

tion III-B). The constraint that the final state is equal to the

initial state causes the resultant motion to be cyclic.

In case of a setup with multiple motors, we used the

integral of the sum of squared inputs as cost function. We

used this cost function because it is often used in other con-

trol applications. Furthermore, the resulting controllers are

relatively smooth, whereas a time-optimal controller would

be bang-bang. Such a bang-bang controller is undesirable in

robot experiments, because it is more likely to be affected

by unmodeled effects such as backlash. The optimization is

performed using the optimal control package GPOPS [22] in

Matlab.

III. TWO DOF MANIPULATOR

We implemented open loop stable manipulation on a

SCARA type arm with two DOFs: two revolute joints moving

two links in the horizontal plane (see Fig. 2b and 3). Since

there is no spring present on the second joint of the arm, an

open loop controlled motion must depend on dynamic effects

for stabilization. Specifically, the zero input does not lead to a

stable result. Since the dynamic effects are highly non-linear,

it is not obvious whether stable motions exist. This section

starts with a system description, including a description of the

robotic arm and the simulation model. Next, we explain the

task the arm has to perform, followed by simulation results

and hardware results.
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Fig. 3. Top view of the two DOF system with a linear spring on the first
joint. The second joint is actuated through a parallel mechanism (not shown
in this figure), such that the angle of the second arm is an absolute angle.
The friction acts on the absolute angles of the joints.

TABLE I
THE MODEL PARAMETERS OF THE TWO DOF ARM.

Parameter Symbol Value Unit

Coulomb friction µc1, µc2 0.0481, 0.0218 Nm
Viscous friction µv1, µv2 0.03, 0.03 Nms/rad
Torque dependent friction µtf1, µtf2 21.87, 31.91 %

Inertia J1, J2 0.0233, 0.0871 kgm2

Mass m1, m2 0.809, 1.599 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.325 m
Motor constant kt1, kt2 26.7, 28.1 mNm/A
Gearbox ratio n1, n2 1:54, 1:110 rad/rad
Spring stiffness k1 1.6 Nm/rad

A. System description

Fig. 1 shows a picture of the two DOF robotic arm [23].

The DOFs are created by two 18x1.5mm stainless steel tubes,

connected with two revolute joints, with a spring on the

first joint. A mass of 1 kg is connected to the end of the

second tube, which represents the weight of a gripper with

product. The motors are placed on a housing and AT3-gen III

16mm timing belts transfer the torques within the housing.

The joints are actuated by Maxon 60W RE30 motors with

gearbox ratios of respectively 18:1 and 1:66. The timing belts

provide an additional transfer ratio of 3:1 on the first joint

and 5:3 on the second joint.

We used the TMT method [24] to obtain the equations

of motion of the simulation model of this arm, which are

too long to include in this paper. The model includes 19

parameters, which are listed in Table I. We included three

types of frictional losses: Coulomb friction, viscous friction

and torque dependent gearbox friction. Torque dependent

gearbox friction is less commonly used than the other two,

however, from the parameter values obtained through a

system identification of the motor it is clear that this type

of friction is not negligible (see Table I). The way we

implemented it is similar to the force dependent friction term

in [25]. The friction in a joint is equal to:

Tf = −µv · ω − sign(ω) · (µc + µt · |T |) (11)

for ω 6= 0

Tf = −min(µc + µt · |T |; |T |) · sign(T ) (12)

for ω = 0.



ω is the velocity of the joint, T is the torque exerted by the

motor on the joint, and µv , µc and µt are the coefficients of

viscous, Coulomb and torque dependent friction respectively.

The simulation model includes a DC motor. The torque

applied by the DC motor on the joint is equal to:

T = n · kt · I (13)

Where kt is the motor constant, n is the gearbox ratio and

I is the current through the motor. The current through the

motor is constrained to 1 A (see eq. 10).

Coulomb friction and torque dependent friction introduce

discontinuities in the equations of motion, which are difficult

for GPOPS to handle. Therefore, we optimized the open loop

controller on a model with only viscous friction, and added a

torque afterwards to compensate for the Coulomb friction and

torque dependent friction. Such a compensation can only be

done when it does not effect the stability of the cycle, so when

A∗ is independent of both the compensated friction and the

input. Both the Coulomb friction and the torque dependent

friction depend on the state through a sign function, which

is a piecewise constant function. Since A∗ is the result of

linearizing along the state, A∗ does not depend on those

friction terms (neglecting the always stabilizing effect of the

discontinuity in the sign function). To make A∗ independent

of the input, we consider momenta instead of velocities. The

equations of motion then become:

ẋ = f(x) +Bu(t) (14)

With x, the state consisting of positions and momenta, and B
a constant matrix. Following the definition in eq. (6), we see

that A∗ is therefore independent of u. Such a transformation

is possible for many mechanical systems. Although such a

transformation is not necessary, our specific optimization was

faster with the transformation. For easier interpretation, we

will show the velocities in the results.

B. Task

The robotic arm has to perform a pick-and-place task.

The important task parameters are the pick state, the place

state and the time per stroke. We show the results of the

optimization for a motion which starts at t = 0 at the pick

state xpick, goes to the place state xplace at t1 and then returns

to the pick state at tf with

xpick =









−0.7 rad

−0.85 rad

0 rad/s

0 rad/s









;xplace =









0.7 rad

−0.3 rad

0 rad/s

0 rad/s









(15)

Where x is the vector consisting of the positions of the first

and second arm, and their respective angular velocities. t1
and tf are free parameters in the optimization, but bounded

as follows:

0.1 s ≤t1 ≤ 1.2 s (16)

0.1 s ≤tf − t1 ≤ 1.2 s (17)

The goal is to find a path that statisfies the task constraints

(that also include a stability-enforcing constraint) according
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Fig. 4. This figure shows the plot of the end point of the arm in simulation.
The plot shows the stable cycle from simulation (thick dotted red line) and
the motion of the robotic arm that starts from a perturbed position and
converges to the stable cycle (thin blue line).

−1.2 −0.4 0 0.4 0.8

−2

0

2

Position (rad)

V
e

lo
ci

ty
 (

ra
d

/s
)

 

Upper arm
Lower arm
Stable cycle

-0.8

Place state

Pick state

Fig. 5. This figure shows the state space plot of the simulation data for
the two DOF robotic arm. The plot shows the stable cycle (thick dotted red
lines) and a motion that starts from a perturbed position and converges to
the open loop stable cycle (thin lines).

to eq. (10), and then minimize the integral of the square of

the current (see eq. (9)). Although we only show the result

of one specific task, similar results were obtained using other

task constraints. In none of these cases multi-starts or tuned

initial conditions were needed, even though the optimization

is non-convex.

C. Simulation results

Fig. 4 shows the position of the gripper in the workspace.

The gripper does not start at the stable cycle, but converges

to it. The sharp corners in the motion are the pick and place

positions. Similar results were obtained for different pick and

place positions.

Fig. 5 shows an example motion converging to the stable

cycle in state space. The motion starts at a distance from the

pick state xstart = xpick + [0.07;−0.15; 0; 0] and converges

to the open loop stable cycle.

Fig. 6 shows the motion and current profile that result from

the optimization. In Fig. 6a and 6b, we see that the motion

starts and ends at the pick state, while at t ≈ 1.2 s, the arm

is at the place state.

D. Hardware results

Fig. 7 shows the position of the gripper in the workspace.

It clearly shows that the gripper does not start at the stable

cycle, but converges to the cycle. Comparing the hardware

results (Fig. 7) with the simulation results (Fig. 5) leads to the
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Fig. 6. This figure shows the simulation data for the two DOF robotic
arm as function of time. The figure shows the positions of the joints (a), the
velocities of the joints (b) and the torques about the joints (c).
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Fig. 7. This figure shows the plot of the gripper in hardware experiments.
The plot shows the motion of the robotic arm that starts from a perturbed
position and converges to the stable cycle.

conclusion that although both the simulation and hardware

results show convergence to a stable cycle, the stable cycles

themselves are different. In Section V-B we will argue that

the difference is probably caused by a bending of the second

DOF due to gravity. In Section IV, we will show that for

a simpler system (i.e. an inverted pendulum), our model is

accurate enough to predict the exact cycle.

Fig. 8 shows the motion of the arm in state space. We

see that the motion converges to a stable cycle in state

space. When comparing Fig. 8 with Fig. 5, we see that

range of positions of the upper arm is smaller in hardware

experiments, and that the range of positions of the lower arm

is larger in hardware experiments.

Fig. 9 shows the time series of a typical cycle of the robotic

arm in hardware experiments. Again we see that the hardware

results differ from the simulation results. In Fig. 9b, we notice

that the velocity signals show a vibration at approximately

10 Hz. This vibration is caused by the elasticity of the timing

belts between the motors (with encoders) and the joints.

The accompanying video shows a demonstration of the

disturbance recovery of the two DOF arm. This video also

indicates that the basin of attraction is large. In Section V-B,

we will show this basin of attraction in more detail.

IV. INVERTED PENDULUM

In the previous section, we showed the results of a two

DOF SCARA type arm. These results show that pick and
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Fig. 8. This figure shows the state space plot of the hardware experiments
on the two DOF robotic arm. The plot shows the motion of the robotic
arm that starts from a perturbed state and converges to the open loop stable
cycle. In order to obtain a smooth graph, the velocity data is filtered with a
fifth order Butterworth filter with the cutoff frequency at 10 Hz.
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Fig. 9. This figure shows the data of a typical motion of the hardware
experiments on the two DOF robotic arm as function of time. The figure
shows the positions of the joints (a), the velocities of the joints (b) and the
current through the motors (c).
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Fig. 10. Side view of the one DOF system with linear viscous friction and
gravity.

place motions can be performed in an open loop stable

manner. However, there was a difference between simulation

and hardware results due to model inaccuracies. In this

Section we move to a simpler system, allowing us to both

give an intuitive explanation for how the stabilization works,

and indicate that with a more accurate model hardware

experiments and simulation can be made to match. For this

purpose an inverted pendulum is used (see Fig. 10).

A. System description

Fig. 2d shows a picture of the inverted pendulum setup we

used. The pendulum consists of a disk with an off-centered

mass, which is connected to a DC motor without a gearbox



TABLE II
THE MODEL PARAMETERS OF THE TWO DOF ARM. THE VALUES ARE

OBTAINED THROUGH A SYSTEM IDENTIFICATION OF THE INVERTED

PENDULUM.

Parameter Symbol Value Unit

Gravitational term c1 112.9 s−2

Motor parameters term c2 28.0 V −1s−2

Damping term c3 -1.8 s−1

in between. This direct drive actuation results in low friction,

which makes the system easier to model. The DC motor

is voltage controlled with a maximum voltage of 5 V (see

eq. 10).

The differential equation for this system is

[

θ̇
ω̇

]

=

[

ω
c1 sin(θ) + c2U + c3ω

]

(18)

Where, U is the input voltage, and c1, c2 and c3 are the

model parameters, which we identified through a system

identification and are listed in Table II. In this model, c1 can

be seen as the gravitational term, c2 as the motor parameters

term and c3 as the damping term, which includes the back-

emf term of the motor. All these terms have the inertia of

the pendulum included.

We again used GPOPS to optimize an open loop controller

such that we obtain an open loop stable motion for the task

described below.

B. Task

The task we will look at is a motion with the initial and

final position of the arm both at θ = 1/5π (nearly upright

position). Simply not moving will not result in stability, since

by itself this is an unstable position. So at first, it seems

impossible to find an open loop stable solution. However,

this is possible when we allow the pendulum to swing to the

region between 1/2π and 3/2π (around the lower equilibrium)

during the motion. The goal is to find a path that is stable

according to (8), and then minimize the integral of the square

of the voltage (see eq. (9)). We limit the duration of the

motion to 1.2 seconds.

C. Simulation results

Fig. 11 shows the result of the optimization, which can be

explained intuitively. Since eq. (18) is linear in the velocity

and the input, the A∗-matrix of the pendulum only depends

on the position. That is, being in a state with θ between −π/2
and π/2 has a destabilizing effect, and being in a state with θ
outside that range has a stabilizing effect. Loosely speaking, a

stable motion requires that the stabilizing effects compensate

the destabilizing ones. This means that the system should

spend enough time in sufficiently stabilizing positions to

counter the time it spends in the destabilizing positions. In

Fig. 11, we see that the pendulum moves directly from the

destabilizing initial position to stabilizing positions, where it

spends most of the time before moving back at the end of

the motion. We use the condition in eq. (8) to evaluate if the

stabilizing effects are compensating the destabilizing effects.
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Fig. 11. This figure shows the data for the single pendulum in the vertical
plane as function of time. The figure shows the position of the joint (a),
the velocity of the joint (b), and the torque about the joint (c) for both the
simulation as the hardware experiments.
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Fig. 12. This figure shows the state space trajectory for the single pendulum
in the vertical plane. The plot shows the stable cycle as determined in
simulation (thick dotted line) and a motion on the hardware setup that starts
from a perturbed position and converges to the stable cycle (thin line).

D. Hardware results

Fig. 12 shows the results of applying the input signal found

in simulation on the hardware setup. It shows a motion being

initialized in a perturbed position, after which it converges

towards a cycle close to the one predicted by simulation.

Fig. 11 shows that the motion over time after convergence is

the same in simulation and hardware experiments. This shows

that when an accurate model is available, the method we

used finds a controller that performs the desired task on the

real system. Extending the method to allow task performance

even when accurate models are not readily available is an

important next step in the research on open loop stable

manipulation.

V. DISCUSSION

A. Model mismatch

For the two DOF robotic arm, the results from simulation

(see Fig. 4, 5 and 6) are clearly different from those of the

hardware experiments (see Fig. 7, 8 and 9). However, both

simulation and hardware experiments show convergence to

a stable cycle. These results show that the specific cycle

the system converges to is sensitive to unmodeled behavior.

For the inverted pendulum, we showed the results from



simulation and hardware experiments are the same. This is

due to the fact that the inverted pendulum is easier to model

accurately.

There are three possible ways to reduce errors due to

unmodeled behavior and thereby improve the control per-

formance. First, the model of the system can be extended to

include more of the unmodeled dynamics. Since modeling

inaccuracies will always exist, a second approach would be

to include the sensitivity to modeling inaccuracies in the

optimization as in [4]. However, since sensitivity to modeling

inaccuracies cannot always be reduced [4], we expect the best

results from the third approach: tuning or learning open loop

stable cycles online.

B. Basin of Attraction

In this paper we focused on the calculation of open loop

stability, which is a minimal requirement for making open

loop manipulation work, but it gives little information about

the rejection of realistic (i.e. finite) disturbances. Therefore,

we simulated the arm using a grid of initial positions in order

to see if they converge to the intended stable cycle. Fig. 13

shows this data, which is a slice of the 4D basin of attraction.

This shows that the majority of initial positions (within the

mechanical limits of the arm) result in convergence to the

cycle. This result means that precise initial positioning of

the arm is not required for converging to the intended cycle.

Interestingly, the basin of attraction analysis shows that

all initial positions converge to the same cycle, although

in some cycles, the second joint has rotated for exactly

one or multiple revolutions. While implementing several

feedforward controllers on the robotic arm, we found that

most feedforward controllers (including the one shown in

this paper) result in two stable cycles: one with negative θ2
and one with positive θ2. We expect that this is caused by

a bending of the arm due to gravity, which is larger around

θ2 = ±
π

2
rad than around θ2 = 0 rad. We suspect that this

difference between the model and the arm is the main cause

for the mismatch of the cycles in simulation and in hardware

experiments. In order to improve the prediction of the cycle

by the model, a stiffer arm can be used or this bending can

be modeled. A second cause of the model mismatch could

be the friction, which is hard to model in general.

C. Implications

The idea of using open loop stability of periodic motions

to analyze repetitive manipulation tasks is a new approach

in robot manipulator control. It allows for robotic arms to

be controlled when feedback is too slow (e.g. using camera

feedback or control over great distance), too imprecise (e.g.

due to cheap, noisy sensors [26]) or even impossible (e.g.

in micro-scale applications or due to radiation), or when the

input is limited and planning is required.

There is no fundamental reason why stable cycles would

not exist in robotic arms with more DOFs, or for more

complex tasks (e.g. obstacles or interactions with the envi-

ronment). However, we expect that it will be more difficult

to find such cycles and maybe impossible to find cycles that
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Fig. 13. This figure shows the basin of attraction of the open loop stable
cycle for different initial positions. The white region depicts all initial
positions that result in convergence to the cycle. The blue dotted line depicts
the mechanical limits of the robotic arm. All initial positions within the red
line result in convergence while staying within the mechanical limits. The
non-converging initial positions are divided into three groups. First, light
blue depicts convergence to the intended cycle with an error in θ2 of 2π
rad; second, dark blue depicts an error in θ2 of 4π rad and third, black
depicts an error in θ2 of 6π rad or more. So all initial positions converge
to the same cycle, although in some cycles, the second joint has rotated for
exactly one or multiple revolutions.

include the pick- and place positions. Finding trajectories can

be made easier by tuning the dynamics of the system, such

that all trajectories are stable, i.e. the system is contractive.

Such tuning could be done by adding springs on all joints or

changing the mass distribution.

D. Applicability

The concept of open loop stable manipulation as presented

in this paper is not fully applicable yet, since it consists of

finding one stable cycle. In practice, tasks consist of moving

between multiple positions in a certain (not necessarily

predefined) order. Since the computations are too complex to

perform online, we see two approaches to make open loop

stable manipulation fully applicable in the future.

The first approach is to move in a stable periodic motion

which covers most of the task space. Whenever necessary, the

controller can make open loop controlled deviations from this

cycle to the specified positions after which the manipulator

returns to the main cycle.

The second approach is to divide the space into a grid and

build a library of feedforward controllers for moving between

the grid positions. The controller can then create various

stable cycles by combining multiple trajectories from this

library into a stable cycle that tracks the specified positions.

VI. CONCLUSIONS

In this paper we introduced an approach to control robotic

arms, without the need for state feedback. We conclude that

this approach is promising for robotic arms that perform

repetitive position tasks without feedback. Small disturbances

on the state of the system will decay over time and the robotic

arm will asymptotically return to its original trajectory. Both

simulation and hardware experiments show convergence to an



open loop stable cycle, but the cycles they converge to are not

the same, probably caused by a bending of the second DOF

due to gravity. We expect that this problem can be solved by

online learning of the stable cycles.
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