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Abstract

Technological advancements have led to the development of numerotebieebotic devices for
the physical assistance and restoration of human locomotion. While manyngesleemain wit
respect to the mechanical design of such devices, it is at least equallgrding and important t
develop strategies to control them in concert with the intentions of the user.

This work reviews the state-of-the-art techniques for controlling ptatattive lower limb prostheti
and orthotic (P/O) devices in the context of locomotive activities of daily li(#aQL), and consider
how these can be interfaced with the user’s sensory-motor controhsy$tas review underscores the
practical challenges and opportunities associated with P/O control, whichecased to accelerate
future developments in this field. Furthermore, this work provides a claasiiicscheme for th
comparison of the various control strategies.

As a novel contribution, a general framework for the control of pdetajait-assistance devices
is proposed. This framework accounts for the physical and informaticactiens between th
controller, the user, the environment, and the mechanical device itself. &trelatment of P/O
— not as independent devices, but as actors within an ecosystem -gisssedjto be necessary|to
structure the next generation of intelligent and multifunctional controllers.

Each element of the proposed framework is discussed with respect tol¢hthat it plays in th
assistance of locomotion, along with how its states can be sensed as inputsctmtitedler. The
reviewed controllers are shown to fit within different levels of a hieraadlscheme, which loosel
resembles the structure and functionality of the nominal human centralusesystem (CNS). Activ
and passive safety mechanisms are considered to be central aspiestging all of P/O design an
control, and are shown to be critical for regulatory approval of ssticés for real-world use.

The works discussed herein provide evidence that, while we are gettergclser, significan
challenges still exist for the development of controllers for portable pedvé>/O devices that
can seamlessly integrate with the user's neuromusculoskeletal systenmeapchetical for use i
locomotive ADL.

Keywords

Prosthetic, Orthotic, Exoskeleton, Control architecture, Intention r@tiog, Activity mode
recognition, Volitional control, Shared control, Finite-state machine, Elestography, Sensory
feedback, Sensory substitution, Seamless integration, Sensory-mitai cBehabilitation robotics,
Bionic, Biomechatronic, Legged locomotion

Introduction

An exciting revolution is underway in the fields of rehabilitation and assistoakeotics, where
technologies are being developed to actively aid or restore legged loconmotindividuals suffering
from muscular impairments or weakness, neurologic injury, or amputatitetiafy the lower limbs.

Examples of energetically passive prosthetic and orthotic (P/O) deviteddek thousands of years
and have been used with varying levels of success [1]. Owing to largéhgtiorelative simplicity, low
up-front cost and robust design, passive devices are a practés to enable functional restoration
of gait for many conditions. The inherent shortcomings of these devieethair inability to generate
mechanical power, their failure to autonomously adapt to the user’s cltangeds, and the lack of



sensory feedback that they provide to the user regarding the stateslwhkthand of the device. Each
of these aspects are required for seamless cognitive and physicattiderbetween the device and the
user.

Intelligent and portable actuated P/Os have the potential to dramatically imprevadhility, and
therefore quality of life, of people with locomotive impairments. As such deviegin to approach the
power output, efficiency, and versatility of the limbs that they assist or cepthie end-users will be
(re)enabled to partake in activities of daily living (ADLs) that require pesitive energetic output (e.g.
stair climbing, running, jumping) in the same ways that an able-bodied coantevpuld. Relative to
their passive counterparts, active P/Os also have the potential to in@el&selected gait speed while
reducing metabolic expenditure [2-4]. Such devices may also incredlssygametry and reduce
wear-and-tear on the user’s unaffected joints that could otherwise dtge to compensatory
movements.

While the potential benefits that such devices may deliver are compelling orottre, the statistics
regarding the populations who may benefit from them are also convinaimgmants for their
continued development. Given the projected demographic shift towarddan opulation [5], an
increase in age-correlated conditions associated with pathological gait $&roke [6], spinal cord
injury [7], Parkinson’s disease [8], and lower limb amputations [9]) caemlike be expected. Robotic
P/O devices may provide more intensive and purposeful therapeutic graimisugh ADLSs, while also
reducing the burdens placed on the short supply of therapists anchetlér care personnel.

Advancements in actuation, energy storage, miniaturized sensing, autqmastierth recognition, and
embedded computational technology have lead to the development of a nofmimabile robotic
devices for the assistance and restoration of human locomotion. Within theeeade it is expected
that many more active lower limb prostheses, exoskeletons, and orthdlsdse vdeveloped and
commercialized.

While many engineering challenges remain with regard to the mechanical defsigrch devices,
additional questions remain with respect to how these devices may be cahtrotencert with the
user’s remaining (impaired and unimpaired) sensory-motor control systemexample, how can the
physical and cognitive interaction between the user and a powered liaveP/O device be improved
through various control strategies, beyond the state-of-the-art? ldawhe control approaches be
generalized across different types of devices and the various jointstibgp actuate? How is
locomotion nominally controlled in healthy humans, and how can this informatiorppked to the
estimation of the user’s locomotive intent and to the structure of a P/O controNérat are the major
challenges and opportunities that are likely to be encountered as thésesdeave well-characterized
research environments and enter the real world? Only once each efabescts have been sufficiently
addressed will it be possible for robotic assistive devices to demonstetestficacy and to become
commonplace in real-world environments.

The objective of this review is to provide some answers to these questioad basour current
understanding of the problems underlying the control of lower limb P/Os andtthtegies that have
been used to overcome them. As a novel contribution, we present aagdranework for the
classification and design of controllers for portable lower limb P/O devicepromotes a common
vocabulary and facilitates the cross-pollination of ideas between thegesivatar, yet fundamentally
different, classes of devices. Furthermore, this review understoeeshallenges associated with the
seamless integration of a P/O device with the sensory-motor control systdra oger. Through the
referencing and classification of the state-of-the-art control stratethis review is intended to provide
guidelines for the acceleration of future developments, especially in thexta@f active physical P/O
assistance with locomotive ADLS.



Definitions, scope and prior work

Adopting the terminology provided by the review of Herr [10], the texxoskeletoiis used to describe
a device that enhances the physical capabilities of an able-bodiedwissgas the terrorthosisis
used to describe a device used to assist a person with an impairment of the Tinthggh exceptions
exist, orthoses and exoskeletons typically act in parallel with the limpro&thesids a device which
supplants a missing limb, and therefore acts in series with the residual limb.

Several related review papers have been published in recent yatusthprehensively establish the
state-of-the-art in portable and active lower limb prosthetics, orthoticseandkeletons, mostly in

terms of the design and hardware realization [10-15]. While these redevisuch on some of the

implemented control strategies, the holistic descriptions of the considerézbsi@ften do not leave

room to ruminate on this particular subject. Chapters 4 and 5 of [16] pravidiee depth of theory

regarding cognitive and physical human-robot interaction, which camgiés the breadth of practical
examples provided herein.

Controllers for robotic prosthetic, orthotic and exoskeletal systems farikle were recently reviewed
by Jimenez-Fabian and Verlinden [17]. The present work extendsé&viw by considering controllers
for the hip, knee and ankle, with special emphasis on P/O devices. Thessi@e and classification
of controllers herein is structured and enhanced by the provision ofiergéezed control framework.
Furthermore, this architecture is also proposed as a template for the daeelopf the next generation
of multifunctional controllers for active lower limb P/O devices.

This review also considers modalities for artificial sensory substitutionegdbfick. Though much of
the work in this field is relatively nascent in the context of robotic lower limb Ptlis is seen as a
promising and necessary future avenue of research for the seantggation of the device’s controller
with that of the human user.

It is duly noted that the power output characteristics vary substantiallyeeetthe hip, knee, and ankle
during a given activity [18]. Additionally, the nature of the physical @ssise required of a prosthesis
is substantially different than that of an orthosis for the corresponding jdhough these differences
fundamentally preclude the direct translation of control paradigms betd@eéces, there are also many
concepts that can be applied universally.

This review excludes explicit consideration of controllers for energéticeet-passive devices and
powered exoskeletons intended exclusively for performance augmoentaf able-bodied users.
Attention is only given to devices which are wearable and portable in naiuie,principle could be

made as such in the near-future. This would exclude treadmill-based gaitgrarthoses such as the
LOPES [19] and the Lokomat (Hocoma AG, Volketswil, Switzerland), whigdrevamong the classes
of devices discussed in the review of Marchal-Crespo and Reinkeresni2g]. Furthermore, this

excludes consideration of studies involving purely stimulatory devices tttainathe absence of
external mechanical assistance (e.g. functional electrical stimulation))FERich were reviewed

in [21-23].

Generalized control framework

To structure the classification and discussion of the various controbagipes for active lower limb
P/Os, we propose the generalized framework of Figure 1. This frankemas inspired by and extended
from that of Varol et al. 2010 [24] to be applied to a wider range of dev{ce. prostheses and orthoses)
and joints (i.e. hip, knee and ankle). The diagram reflects the physicghdtitsn and signal-level
feedback loops underlying powered assistive devices during priacsieaThe major subsystems include



a hierarchical control structure, the user of the P/O device, the emv@otthrough which he ambulates,
and the device itself. The framework has been generalized to descrita"“@ach component of the
hierarchical controller should do rather than “how” it should be dordet$ layers have been included
to emphasize the importance of safe human-robot interaction, especialiideong the amount of

power such devices can generate. Furthermore, the structure obtlu# tiee paper follows that of this

framework, which provides a holistic consideration of the challengesddei® control developments
today.

Figure 1 Generalized Control Framework for Active Lower Limb Prostheses and Orthoses.The
proposed framework illustrates the physical and signal-level interadiietmgeen a powered lower limb
prosthetic or orthotic (P/O) device, a user, and his environment. Thevsinalicate the exchange of
power and information between the various components of the P/O ecosysteigrarchical control
structure is implemented, with the estimation of the user’s locomotive intent takiog ptathe high
level, translation of the user’s intent to a desired device state at the mid lexeh device-specific
controller responsible for realizing the desired device state at the low Bafdty mechanisms underly
all aspects of P/O design, including those which are mechanically pasgivh@se which are actively
controlled. Adapted from Varol et al. 2010 [24].

Motion intentions originate with the user, whose physiolog&tateand desires must be discerned and
interpreted. In this context, the uses®terefers to the pose (i.e. position and orientation) and velocity
of the head, trunk and limbs, as well as the existence and status of phgtécattions between the user
and the environment or the user and the P/O device.

Motion intention estimation requires an understanding of how locomotion is nomicatigrolled in
humans and how the user’s state and intent can be sensed. The tettaiedand surface conditions of
the environment (i.e. thenvironmental stajeconstrain the type of movements that can be carried out,
and if perceived by the controller can be taken into account. Interaciioas exist between the device,
the user, and the environment, which can also be sensed as an inputdotioder.

At the high level, the controller must perceive the user’s locomotive inteativily mode recognition

identifies the current locomotive task, such as standing, level walkingtaivdlescent. Direct volitional
control allows the user to voluntarily manipulate the device’s state, i.e. joirtiquus velocities and

torques. It is possible to combine both of these, where the volitional camivdulates the device’s
behavior within a particular activity.

The mid-level controller translates the user’s motion intentions from the high tevdesired device
states for the low-level controller to track. It is at this level of control that user’'s state within the
gait cycle is determined and a control law applied. It may have the form oS#ign/velocity, torque,
impedance, or admittance controller.

The desired device state is passed to the low-level controller, which cosnibigterror with respect to
the current state. It then sends commands to the actuator(s) in an effedute the error. This can be
achieved through feedforward or feedback control, and typicallgwats for the kinematic and kinetic
properties of the device.

Finally, the P/O device is actuated to execute these commands, and thus toélooptrs closed. The
device may also provide artificial sensory feedback to the user for feljration with the physiological
control system.

Given that a robotic P/O device is likely capable of generating substantialioforces and is to be
placed in close physical contact with the user, both passive and aetigty snechanisms are of
paramount importance and must underly all aspects of device hardwaresaftware design.



Therefore, safety considerations are intended to be implicit to all subsystethe generalized control
architecture, despite the lack of explicit connections.

Each subsystem within the generalized control architecture can be di&fina set of physical and
signal-levelinputs by a set ofprocesseshat operate on those inputs to control the exchange of power
through the subsystem, and by a sebofputsthat transmit power and signals to connected subsystems.
In the following sections, each of these subsystems will be discussed wahdrto the roles that they
play in the proposed generalized control architecture for activelytaddiscomotion with mobile lower
limb P/O devices.

The prosthesis/orthosis user

The overarching design goal for the controller of an assistive devibai®fseamless integratiowith
the user’s residual musculoskeletal system and sensory-motor claaipsl| all of which are under the
supreme command of the central nervous system (CNS). In other viioedsiiman and the robot must
work together in an intuitive and synergistic way: the device recognizassirés motion intentions and
acts to assist with that movement with minimal cognitive disruption and requiregeasatory motion,
and rich sensory feedback is provided to the user. Thus, a well-aéesad interactive P/O controller
must begin with an understanding of the human controller.

First, the physiological systems responsible for the nominal control ofotion in unaffected humans
will be considered. This condition serves as a benchmark to contrast witbnuing discussion on
compensatory and assisted control of locomotion. Then, various pogabs®r modalities that have
been used in P/Os for the estimation of the user’s physical state and motiotoiméezre presented.
Finally, techniques for providing artificial sensory feedback to the tesgarding his interactions with
the device and the environment are discussed.

Nominal control of locomotion

Human control of locomotion is a fascinating area of ongoing researclterenphysiologists,
neuroscientists and engineers are working to increase our undéngtaofl the structure and
functionality of nature’s most optimized controller, the CNS, and how it stthées movement.

It is widely accepted that human locomotion depends both on basic pattaresatg at the spinal
level, and the wvolitional and reflex-dependent fine control of these rpattat different
levels [25-27] (Figure 2). Basic motor patterns are thought to be gemkby a network of spinal
interneurons, often referred to as the central pattern generator) (@8-G1].

Figure 2 Nominal sensory-motor control loop for human locomotion Motion intentions originate
from supraspinal input, which along with afferent feedback servemddulate basic underlying
locomotor patterns within a network of spinal interneurons, commonly exfda as the central pattern
generator (CPG). Efferent stimulation is transmitted through motor neuramdivedual muscle groups,
which are recruited to effect the movement. Afferent feedback, incfuitiat from proprioceptors of the
muscles and joints and mechanoreceptors of the skin, is used to directly madatatecommands via
mono- and polysynaptic reflex arcs, thus contributing to the efficiencyibfugder normal conditions
and stability of gait in the face of unexpected perturbations. Sensorgniaton is also transmitted
to the brain, where it is combined with higher level inputs from the visual, aydiemd vestibular
systems to provide information required for the maintenance of balancetaiiie and control of
precise movements.




The volitional control of movement and high-level modulation of locomotor padtis originated at the
supraspinal or cortical level, i.e. premotor and motor cortex, cerebelhghioenin stem (Figure 2, top).
The latter regulates both the CPG and reflex mechanisms [32]. Also at tlespinal level, information
from vestibular and visual systems are incorporated, which are cfocitde maintenance of balance,
orientation, and control of precise movement [32].

Locomotor patterns are also modulated by afferent feedback arising finascle spindles, Golgi
tendon organs, mechanoreceptors lining the joint capsules, tactile meebgptors and free nerve
endings of the skin that sense stretch, pressure, heat, or pain [3Z;B8]modulation via reflexive
pathways is twofold: taking place under normal conditions, principally toezee the efficiency of
gait, and during unexpected perturbations, to stabilize posture [34,88awing neurological injury,
the reflexive behavior may be abnormal and can result, for example, icleragasticity.

Efferent nerve fibers, i.e. motor neurons, transmit the resulting motor cadsna individual muscles,
which are recruited to contract and thus to generate force about omarefjoints of the skeletal system.
Coordination of these forces through synergistic muscle activation angjdinié coupling is exhibited
during locomotor execution [31,36]. Afferent nerve fibers, i.e. sgneeurons, transmit information
from the musculoskeletal system to the CNS, thus closing the feedbackdotigefnominal control of
human locomotion.

Incidentally, some loose analogies can be made between the structure rartibrfality of the
physiological sensory-motor control system of Figure 2 and the gizestacontrol structure of
Figure 1. For example, high-level motor commands and volitional control @Ement originate at the
supraspinal level of the human, which corresponds to the high levalotien These commands, along
with afferent feedback via reflex arcs, modulate the basic patterns @RI& This is analogous to the
integration of high-level commands with feedback from sensors in the mitldem&oller to determine
a desired output behavior. The resulting motor commands are transmitted via meatons to the
muscles, which then contract to generate movement about the joints. Repiiom provides feedback
regarding the execution of movement. This is similar the action of the low levekofdhtroller that
sends commands to the actuators that move the structure of the P/O.

Compensatory and assisted control of locomotion

In the wake of a neurologic injury or limb amputation, parts of the sensorysaintrol loop
responsible for locomotion may be disrupted and would need to be assigteeintaken over by a P/O
device. Stemming from the inherent adaptability and plasticity of the CNS, carafmy mechanisms
may arise to counteract the loss of structure and function post-diseas@rgr These are typically
manifested as a gait abnormality and may range from a simple limp to a total inabilitykpamg of
which may be considered to be the optimal outcome for a given condition [F2jus, the P/O
controller must be robust enough to accommodate gait patterns that antigitytéar-removed from
the nominal condition.

Pathological gait has also been linked to humerous secondary conditiohaling increased energy
expenditure [37], increased risk and fear of falling [38,39], ancedegative bone and joint disorders
(e.g. osteoarthritis, osteopenia/osteoporosis, and back pain). Thkeeetwenly involve the affected
limb, but also the unaffected limb and others involved in compensatory movef&ms§].

The purpose of a powered assistive device is to interface with the résidusomusculoskeletal
structures such that the support, control and actuation loops arenemted. This provides the
immediate benefit of re-enabling locomotive ADL, and potentially the long-ternefit of
rehabilitating and retraining physiological gait patterns over time. This mayltresa “spiral of



adaptation” as the user adapts to the new conditions imposed by the use ofla¥tl§ and that the
device itself may need to adapt to the evolving needs of the user [41].

Based on the review of Marchal-Crespo and Reinkensmeyer [20], waosing paradigms for gait
rehabilitation can be classified into two groups. @ssistive controlledirectly helps the user in moving
their affected limbs in accordance with the desired movementch&@llenge-basedaontroller could
be used to provoke motor plasticity within the user by making movements more Wifficough, for
example, error amplification. While there remains some debate regarding whtblese strategies
would provide the most lasting rehabilitative benefit to the user when empldyeadg a dedicated
therapy session [42], intuition indicates that an assistive controller waaldde the most utility in the
performance of ADL in a real-world setting. This may at least partially exphdig, within the scope
of the devices covered in this review, no examples of challenge-basawlters were found.

It is left as an open question whether one of the control objectives afdbiee should be to minimize
the user’s exhibition of compensatory mechanisms or whether restoratifunctional ADLs is
sufficient. In either case, an oft-cited hypothesis motivating the develdpshantive P/Os is that only
an actuated device would be capable of providing the full power-outpiakilities of the
corresponding physiological joints, and could thus enable gait pattesesbling those of unaffected
persons across a wide variety of activities and terrain [15,43]. Thalaoy is that the aforementioned
secondary conditions could be prevented — providing a direct bemefithé user and a potential
incentive for health care and insurance providers to opt for an adtiviee as opposed to a passive one.

The take-away message is that a practical P/O controller must take intona¢ketndividual user’s
capabilities and physiological constraints in order to realize functionabmés. These can be achieved
both through assistance and rehabilitation, either of which may dramaticallyvenfite mobility and
quality of life for the user.

Sensor modalities for motion intention estimation

The intention of a user to execute a movement can be estimated through they s#nsortical and
neuromuscular activity, posture, locomotive state, and physical intemagiib the environment and the
P/O device. The sensor modalities corresponding to each of these diffdywn terms of their relative
invasivenesand therichnessof the provided information [15]. Here, invasiveness is intended to itglica
the relative ease (in time, effort, and risk) with which a sensor may be agpigtdemoved. These range
from completely noninvasive (e.g. fully embedded within the device) to highlysine (e.g. surgically
implanting electrode arrays in the motor cortex) [15]. The richness ofrmdtion is related to both
the variety of discernible activities and the specificity of motion intention obté&niibough a given
modality.

The optimization to be performed is to maximize the richness of information while minimthimg
invasiveness of the required instrumentation. From a practical staridploe error threshold for
correctly identifying the user’s motion intentions needs to be such that heengigéts frustrated (or
potentially injured) by incorrect estimates, nor feels like a Christmas tree dine tadecoration” of
one’s self with a multitude of sensors with each donning and doffing of thiecele The level of
invasiveness required must also correspond to the severity of the mosbigienming from the
underlying condition. Societal acceptance and cosmesis are also cniicitplity issues [44].

Here, a summary is provided exclusively for the sensor modalities thatbemme documented in the
literature in the context of lower limb P/O control, organized by the level athwtiie user’s intentions
are sensed.



Supraspinal neural activity

Recalling that motor intentions originate at the cortical level, several grioayes investigated methods
for triggering the device to provide assistance through Brain-Computerfdces (BCI) [45].
Recording of activity at this level has the potential to allow for a wide-vaiétyolitional movements,
however, these may be difficult to decipher given that the brain is coemly responsible for a
multitude of tasks, including the control of the other limbs. In addition, many ofctdrol loops
responsible for physiological locomotion take place at the spinal levektliexrarcs (Figure 2), which
may fundamentally preclude the use of neural activity to directly control e Wehile maintaining
balance during a dynamic task. However, there may still be utility in using brdivity to provide
high-level commands to the device, which it will then execute (as instered controlcontext
promoted in [45-47] and demonstrated in [48,49]).

Functional near-infrared spectroscopy (fNIRS) uses optical ligtitters and receivers placed on the
scalp to sense the haemodynamic response of the brain, which correlttdsrain activity. This
modality is subject to non-specific brain activity, motion artifacts, significaeniodynamic delay, and
requires that optodes be worn on the head. Even so, a recent pilgtistedtigated the use of an
fNIRS-BCI to detect the preparation for movement of the hip in seatedessakjects, which may
indicate its suitability in shared control with severely impaired subjects [50].

Electroencephalography (EEG) uses an array of surface elestimden-invasively record the electrical
activity of the brain as evident on the scalp [45]. The EEG electrodgsatypically used in research
are built into a snug-fitting skull cap that can be extremely difficult and tinresgming to put on by
oneself, especially for the patient groups whose injuries would nedesditact cortical input to the
P/O controller. This supposedly could be countered with advancementé-aos&ined EEG headsets
designed for consumer use. The electrodes can be either dry or wehdieg on whether an electrically
conductive gel is required. Signals recorded via EEG can encodecavatitbty of movements with high
temporal resolution.

In practice, the use of EEG signals demands a high level of focus amemation from the user and
is susceptible to movement artifacts, autonomic neural activity and electdisa. nUse in real-world
environments is further complicated by the presence of distractions an@tfoerpance of tasks that
are unrelated to locomotion. However, EEG signals could be combined withsgthsory inputs in the
framework of the so-called hybrid BCls [51,52] in order to decode’si$ggh-level commands more
reliably.

Environmental sensing (see section below) can add an additional lagafedy in the context of shared
control with BCls, as the controller may prevent certain movements due togkenze of obstacles [47].
For example, prior to executing a high-level command (e.g. go forwanaJeft), the controller would
check first whether there are any terrain features in the way. Similarlgxeution of the high-level
command “sit down” would not require the user to align perfectly with the chair would rely on
the controller’s ability to compensate for the misalignment. As these examples t#ystinared control
reduces cognitive workload, as the user does not need to carethbauid-to-low-level execution over
long periods of time or during critical operations.

Implanted electrode arrays within the motor cortex enable measurements whycencade a wide
variety of movements, with the noted downside of requiring a highly invasind étill experimental)
surgical procedure [15,53,54]. Such an interface may also be usedvme sensory feedback to
the user, thus closing the sensory-motor control loop [54]. Intracbriestrode arrays have been
successfully demonstrated to allow control of multi-degree-of-free@dairand grasp movements with
robotic arms in tetraplegic subjects [55,56], though to date there are nankexamples of cortically-
implanted electrodes being used to control a lower limb device in humans. Sinlariments have



been done, however, in rhesus macaques to demonstrate the predidégmadvements to control of
bipedal gait in a humanoid robot [57]. It remains to be demonstrated hdwhisetechnique would
translate to the control of a wearable P/O device.

Peripheral neural activity

The closer that neural activity can be recorded to the innervated mtiselejore specific the motor
commands become. Also interesting is the electromechanical delay betweenttineomomands and
the generation of force in the muscle on the order of 10s of milliseconds\ys8¢h would provide a
significant head-start to a controller based on muscle activity over el mechanical feedback
alone [59]. This delay, however, may also be a source of instability witaviae with a faster control
loop is coupled to the user to provide high levels of assistance [60].

These peripheral nerve signals can be sensed through the usetadrelegraphy (EMG). Surface
EMG is the least invasive technique, where electrodes are placed okinhaver the muscle belly of
interest. Assuming that the musculature remains somewhat constant ane theitte can be fastened
to the body in a consistent manner, it may be possible to embed the electrodisthdgtthuman-
robot physical interface, thus significantly reducing the amount of timeimed| to don and doff the
device [61,62]. Surface EMG activity is susceptible to changes in eleeshkith conductivity, motion
artifacts, misalignment of the electrodes, fatigue, and cross-talk betvwasrhynmuscles [60,61,63].
Myoelectric signals are also non-stationary in nature during a dynamidtactisich necessitates the
use of pattern recognition techniques [64]. In practical use, a calibratiatine is typically necessary
each time the device is put on [60,65].

In the event that a limb has been amputated, the residual neuromuscuiskaleture must be
surgically stabilized. Depending on the location of the injury, the musclesmsgige for the actuation
of the amputated joints may still be present and natively innervated, albeiatetband fixed to the
bones in a non-physiological manner. In this case, it may be possibledaré® EMG signals in the
residual leg for the control of a particular joint (e.g. using muscles in theldeg to control the
ankle [66]). If the amputation is more proximally located (e.g. above the kiiee)nuscles to control
the distal joint (e.g. the ankle) are altogether missing, and thus can no¢tielimsctly. However, given
that the nerves that would normally control these muscles are still predectrsique called “targeted
muscle reinnervation” (TMR) can be used [64,67]. For TMR, the severerves are surgically
reattached and allowed to reinnervate a foreign muscle, which can thesebeas an EMG recording
site for the amputated muscle. The reinnervated muscle acts as a “biologiddieairipr the severed
nerve and provides a means to record its activity noninvasively viacsuelactrodes.

Joint torques and positions

Mechanomyography (MMG) can be used to estimate the force productionsolenoy measuring the
sound or vibrations evident on the surface of the skin using microphamascelerometers [68]. A
potential advantage of MMG over EMG is that the muscle force estimated MG is less sensitive

to fatigue [69]. Force production can also be estimated via changes in nasdigess [70,71] and the
volume of the muscle [72,73]. A substantial downside to all of these apipesas their high sensitivity

to motion artifacts, which may be significant given the nature of the physicgdling at the user-device
interface.

Joint torques can be estimated via inverse dynamics provided measurefmiet$oint positions and
external forces being applied to the limbs. Wearable sensors for estimaiimgg@sitions or limb
segment orientations are summarized in [74] and include goniometers, inclimsjreteelerometers,
gyroscopes, magnetometers, and inertial measurement units (IMUsundreaction forces can be



sensed using instrumented insoles worn under the foot (reviewed indivby measuring the load in
the shank of a prosthesis (e.g. [76]). A variety of foot switches cankaused to deliver binary ground
contact information, for example using force-sensitive resistors,egeais pressure in a sealed tube
under the foot, or a physical switch.

Furthermore, interaction forces can be measured at the physical aetdréaween the user and the
device. Useful sensors may include load cells, strain gages, pressosers, and force-sensitive
resistors.

Alternative input modalities

Simple manual inputs (e.g. keypads, buttons or joysticks) may be effectére though the used
signals are completely artificial [77,78]. Voice commands or eye movemenisisees have also been
demonstrated as possible ways to interact with P/O devices [79-81]. Haire the seamlessness and
intuitiveness of these input methods are suboptimal, but they can repvesae alternatives when no
input other methods are possible.

Artificial sensory feedback and substitution

In the nominal sensory-motor system, sensory feedback from preptios, exteroceptors, and the
vestibular and visual systems close the physiological control loop, allowiable and efficient
locomotion, while also triggering supportive reflexes. Following neuroligigathologies or
amputation, this sensory feedback may be diminished or disrupted.

While it is possible to restore locomotive functionality without this information, ai#fisensory

feedback is necessary for the seamless integration of the P/O with the imp&insdry-motor

system [82]. Feedback modalities may be either invasive or non-inyaddwices are stationary or
portable, with the latter being more relevant for every-day use in combinafithna P/O. A recent

review has summarized the clinical impacts of wearable sensing and féeelohoologies for normal
and pathological gait [74], though the scope does not include their atiphicto P/O devices.

Artificial feedback can be used for sensory substitution or augmenta&iemsorysubstitutionreplaces

a lost sensor modality with another modality, e.g. by providing a sense of &ftextamputation of the
upper [83,84] or lower [85] extremity. Sens@ygmentatioromplements attenuated information using
the same or a different sensor modality, e.g. visual feedback about tresmeat of a passively guided
or prosthetic limb. Both sensory substitution and augmentation exploit braiticglasand different
sensory modalities can be used to convey information and thereby rastateh.

For non-invasive feedback, three major sensory channels are visadl, auditory and tactile. Visual
cues can convey diverse information, and can be projected, for égaompa screen or on the ground,
or can be presented via virtual reality goggles. The visual channeldgirgerves important functions
during gait and other activities, which makes it susceptible to overloadiraddition, most of the visual
feedback systems documented in studies are not portable, which may limisitslfgato rehabilitation
and training in controlled environments [86,87] rather than everyday lifavdder, information about
the center of pressure [88] or gait asymmetries [89] can be visualizagortable device, for example
using a smart phone or headset. In these studies, a significant modufatiengait pattern was found
when visual feedback was provided. Interestingly, subjects also bedieapreference for visual over
auditory and vibro-tactile feedback.

Another commonly used sensory channel is hearing. Auditory cuesasgrinvstereo balance, pitch,
timbre and volume [90], and therefore may transmit rich information via spsakeéneadphones. The



auditory channel is also subject to overloading, and thus has limited suitabiliéyéryday use. It may
even be possible that relevant information, e.g. the sound of an ajpjprgazar, is masked. Even so,
there are some studies that implemented and evaluated auditory feedb&8,9192], for example,
acoustic signals sounded when the gait symmetry ratio (i.e. ratio of time speighorioot vs. left)
exceeded preset thesholds. Differences between pre- and postrtesetry ratio and a postural sway
metric indicated that the subjects successfully incorporated the feedbatikritdheir gait. Gilbert et
al. [93] acoustically displayed the knee angle of a prosthesis to ab@edmputees. Two of the study
participants appreciated additional information; the third terminated the studg employed feedback
system drew unwanted attention from bystanders. This result is also tdlirgpaial-acceptance hurdle
that wearable P/O devices, including their sensors and feedback systasi<lear.

The tactile sense can be used to transmit low-dimensional information, aand affariety of interfaces
for feedback systems. Tactile cues can vary in frequency, strengtitjah, pattern, and location [94].
The majority of feedback systems transmit discrete information [95-97] bwingctimuli are also
possible [76,98,99]. Electrotactile [95,96,100,101] and vibrotactile [8810&?} stimulation have been
used to convey information about characteristics of gait and postuniot@nd possible deviations.
Sabolich et al., for example, successfully demonstrated in 24 lower-limb aegthiat their “Sense-of-
Feel” feedback system had positive effects on weight bearing andygainetry. Other tactile feedback
schemes have been tested to display, for example, information abouteliecoe levels underneath the
foot [104]. Perceptual testing with an unimpaired and an amputee sulgegbinomising, however, the
complete feedback system using balloon actuators has not yet been tested

Besides non-invasive feedback systems, it is also possible to directeidelectrotactile stimuli to
peripheral nerves via implanted electrodes [84,85]. For example, Clippat@l. conveyed information
about heel strike and bending moments in lower-limb prostheses [85]. &wakients were fitted with
this system and qualitatively reported increased confidence during alkin

As stated previously, artificial feedback about the state and action oftitiae device should ideally
not increase the cognitive load on the user. Therefore, it is importanétermdine the minimum
information needed to improve the interaction with the device. This is nontrigait @equires

knowledge about the nominal role of sensory feedback in human pbatgdocomotion control.

Lower-limb prostheses have, for example, been equipped with embeddsdrs to measure the
pressure distribution underneath the prosthetic foot [96,104], the locafithe Center of Pressure
(CoP) [88], the knee angle [95], or to detect gait events such asdhéled [92]. The choice of

information to convey is mainly based on subjective experience and thedrasisessment of motor
control.

Experimentally assessing [105,106] or simulating [107] the user’s interagtith the orthotic or

prosthetic device in conjunction with a feedback system may increase dearatanding of which

types of information are meaningful, superfluous or even incriminatoryly @wensive long-term

testing and training in the real world will reveal whether artificial feeditagly closes the cooperative
human-machine control loop, and thus allows for the efficient, safe dactigé use of powered P/O
devices.

Environmental interaction

The environment provides the reaction forces responsible for thedeglampport, and propulsion of the
P/O user. These forces are a function of the ground contact sedadéion, the slope, and the elevation
of the terrain. Other forces arise due to the physical properties of theoement, such as gravity and
fluid dynamic drag.Obstaclesare terrain features that impede motion in a particular direction, thus



forcing the user to circumnavigate or to perform a compensatory motion tatiatgy Each of these
environmental properties have a great influence on the stability, balmdtenergy consumption of the
device and of the user [18] and thus should be considered in the osenalbl scheme.

The state of the environment can be indirectly inferred based on the statesuser and of the device
or directly estimated using sensors explicitly for this purpose. This procioletextual information that
can be used for the strategic implementation of control policies over a time wioflegveral steps, as
well as tactical information that can directly influence the control behavithtimthe current step.

Implicit environmental sensing

It may be possible to discern certain environmental features from the sfdtesuser and of the device
at various instants of the gait cycle. Note the distinction between the identifigaitienvironmental
features and the recognition of the activity mode: listed here are cases wiepropertiesof the
terrain are identified, which may subsequently be used e.g. for activity negdgnition.

When the heel and toe of the foot are in static contact with the ground, the cdm be estimated using
an accelerometer mounted on the foot [108-110]. Given that there igonthe acceleration vector will
match that of gravity, which can then be compared with the orientation of tlsisemgive the slope.
An IMU comprised of accelerometers and gyroscopes can be used th detelevation change of the
ground between successive steps [110-112].

Explicit environmental sensing

Scandaroli et al. presented a method using gyroscopes and infearears [113] for estimation of the
ground slope and elevation of the foot above the ground. In this applicatvo single-axis gyroscopes
and four distance-measuring infrared sensors were mounted uattemprosthetic foot. So far, only
bench-top test results have been presented. Zhang et al. preséifetlain Recognition System”
comprised of a body-worn laser distance sensor and IMUs fixed to the[ih#d The system estimates
the height and slope of the terrain and was tested using an unassistedodiele user with the laser
sensor attached to the waist. An array of sonar sensors and digital cadeeras was used to detect
obtacles, which was used in the shared control context allow/disallowcesemands with a brain-
controlled wheelchair [47]. This approach could easily be extended ta@&/toes.

Relatively few examples were found regarding active lower limb P/O devitasinclude explicit
environmental sensing and adaptation, which is likely attributable to seeetar$. One is that many
of the documented devices are still confined to well-defined and contralidtbements as imposed
by hardware and experimental constraints. Another is that much of thettendevelopment has so
far focused on the mastery of executing a particular task in a particulargsefiiso possible is that
sensors appropriate for environmental sensing have only recenttyneeavailable and practical for
use in a portable device. As each of these aspects attain sufficient egiloabmaturity to provide
generalized assistance that is responsive to real-world settings, it éstegpthat sensing of the
environmental state and its physical and signal-level influence on thetlisaevice and the controller
will gain higher priority.

Environmental context

Knowledge regarding the setting through which the user moves is usefstrétegic control planning
because it constrains the likelihood of encountering a particular terraiaréeand the degree to which
the environment is structured. Within certain contexts, the environmenteagghrded as quasi-static
—that its properties remain somewhat constant over time until a new settingnscentée exception to



this would be an unstructured environment containing erratically locatedades (e.g. a rocky hiking
trail, a child’'s messy room) or with variable surface conditions such as,s#wl, or loose gravel.

As an example of how contextual information could be used, when the useide a modern public
building, the floor is typically flat and level, stairs are regularly spacedi aaoessibility ramps will have
a slope that is bounded by local construction codes. Thus, if a deviep#ble of localizing itself to
within such a context, the decision space for high-level activity mode rétog can be weighted or
reduced and the mid-level controller can be optimized for the most likely ter&ich knowledge is
also useful in a shared-control context, where the device is respemfsitexecution of the user’s high
level commands.

There are currently no known examples where the environmental cdrasXteen used in P/O control.
Nevertheless, such information could prove to be extremely valuable anggsested as a future avenue
of research.

Control strategies

As depicted in Figure 1, the controller for the P/O device can be subdiwidedhree parts. The high-
level controller is responsible for perceiving the user’s locomotive triiesed on signals from the user,
environment, and the device. This information is all passed to the mid-leviebtlen which translates
the user’s motion intentions to a desired output state for the device. This cahttelegated to the low-
level controller, which represents the device-specific control loopetketutes the desired movement.

It is noteworthy that there are relatively few studies that document the implatien of a complete
hierarchical, multifunctional control structure similar to the one suggesteddme have demonstrated
its use in a practical setting [24,67,115-120]. Instead, most studiesefd@rsa particular subset one
or two of these, typically the mid- and low-levels. It is contended that, foctfmal applications in the
context of multimodal ADL, the majority of powered lower-limb P/O controllers wiketually adopt
a structure that can be described by that of Figure 1.

High-level control

The purpose of the high-level controller is to perceive the locomotive tirgéthe user through a
combination ofactivity mode detectiorand direct volitional control Depending on the user’s
underlying pathology, the ability to generate, transmit, and execute apefrcomotor commands
may be impaired at some level. Therefore, once the user has providedh-#eveéd) command, the
device should be responsible for the execution of movement via the mid- anldvel controllers.
This shared controbpproach limits the cognitive burden imposed on the user [45,46].

The desired high-level control output allows for the device to autonolpeudtch between different
locomotive activities, ideally without imposing any conscious inputs from thes. ug\ctivity mode

recognition can be coupled with direct volitional control to provide the tiserability to modulate
the device’s behavior within a particular activity [121]. It is also possiblprtavide direct volitional

control of the device in the absence of activity mode recognition.

Activity mode recognition

Activity mode recognition is what enables the high-level controller to switctwéen mid-level
controllers that are appropriate for different locomotive tasks, sadbwel walking, stair ascent, and
standing. The cyclic nature and long-term repeatability of various modgsibfend themselves to
automated pattern recognition techniques for classification. The inputs tdasifier include the



sensed states of the user, the environment, and of the device. Impamaiderations for choosing a
classifier include the number of activities from which to choose, the proweaequired for training, its

error rate in real-world conditions, signals that are required as an iapdttheclassification latency

i.e. the time required by the classifier to reach a decision.

As useful definitions, Huang et al. coined the tecnitical time to describe the time by which a
classification decision must be reached to ensure proper kinematic anid kinasitioning between
modes [59]. Thus, the classification latency must be shorter than the clithiegato execute a proper
transition. The critical time is an especially important constraint when transitjdmtween activity
modes with substantially different characteristics, for example level waltanstair ascent, where
excessive latency may cause a loss-of-balance. In subsequédntZkaing et al. use the ternoritical
error to describe any error that results in the subjective feeling of unstabledeald22]. This
definition emphasizes not only that a loss-of-balance is to be avoidethdiuhe user must also feel
secure with the performance of the device.

First, different types of classifiers that have been used for activityermedognition will be discussed,
then the sources of information that have been used as inputs to thesgectasdl be presented. For
additional information related to these topics, see the review of Novak aneR23] on sensor fusion
methods in wearable robotics.

Heuristic rule-based classifiersare a very simplistic, but fairly effective method for identifying mode
transitions. Examples include finite state machines (FSM) [108,115,116,#4].8at2l decision trees
[110,114,125-127]. Each of these methods operate using the samelprigoipn the set of all possible
gait modes, the designer identifies a fixed set of rules that indicate thditnarfisom one gait mode to
another. These rules may be based on the sensed state of the userpdévé&cenvironment at a given
point in the gait cycle. For example, a transition from level walking to staermtstould be indicated by
a sufficient change in elevation of the foot from the beginning of onetstége next [110]. In another,
an iteration of the HAL-3 orthosis controller used a set of rules basedeosehsed ground reaction
force and the positions of the hip and knee joints to identify sitting, standingvatking [125].

Note that while the rules themselves in this case have been selected heuridhieatijteria used may
either be manually selected [125] or determined through analytical meafslPll]. Hysteretic
thresholds can be used to prevent the device from inappropriately swjtbhck and forth between
modes, and must usually be set manually [108]. The latency of a ruletbtssifier depends on how
precisely the relative time within the gait cycle can be determined, thus up to-atrice delay is
typical, albeit potentially unacceptable, for certain transitions. The nunfbvates and thresholds that
must be established increases nearly combinatorially with the number of gadésnficel neglecting
unlikely transitions, like stair ascent to sitting), and it is likely necessary to migntune these
parameters for a particular user [115]. Clearly, the heuristic ruleebagproach is not scalable beyond
a handful of very distinct activities and would be cumbersome to retrain easighr adapts to the
device, potentially regaining locomotor capabilities over time.

Automated pattern recognition techniques, rooted in the fields of machine learning and statistics,
have yielded a variety of classifiers that can be used for activity moadgmémn. Here, “automated”
refers to the generation of classification decision boundaries duringngdire. the classification itself

is automatic even for the rule-based classifiers discussed above). sOpeersised training has been
completed on a representative data set, the classifier can be used toaasisigh to a newly observed
set of data based on its features. The decision boundaries may be limesioear, depending on the
classifier. The inputs to the classifier may include the sensed state of the,dée@environment and
the user.



The clear benefit of using an automated classifier over one based dsticewles is that data from
a multitude of sensors can be input to the classifier, from which additioaflries may be computed
and used to make classification decisions that are less biased and potentiallggnarate due to the
high-dimensional input. Manual identification of these decision boundaaedd likely be intractable

otherwise.

The biggest shortcoming of this approach is the necessity of properbifadstraining data for all of
the desired activities and the transitions between them, preferably inatingpsufficient variability
such that the classifier will perform well in real-world scenarios. Furtfoee, optimal classifier
performance often requires training data from the user himself, which raagolmewhere between
difficult, impractical, and impossible to obtain [24,128]. Training of the clagsidan be greatly
facilitated through the use of standardized tools and procedures, subk &ontrol Algorithms for
Prosthetic Systems (CAPS)” software used by the University of Newdviok and the Rehabilitation
Institute of Chicago [120,129]

Examples of such classifiers that have been demonstrated with lower limb Pi@gmclude Naive
Bayes [112], Linear Discriminant Analysis (LDA) [128,130-132], @tetic Discriminant Analysis
(QDA) [133], Gaussian Mixture Models (GMM) [24,49], Support Veactdachines (SVM) [59],
Dynamic Bayesian Networks (DBN) [67,134], and Artificial Neural Netk#go(ANN) [130,135,136].
Consideration of the relative merits and disadvantages of these clasaiigthe mechanics of the
classification process are beyond the scope of this paper.

All of these classifiers requir priori offline training, preferably conducted by the user himself. Young
et al. explored the possibility of generalizing an activity mode classifier thedireed on one group of
users and applying it to a novel user, with generally dissatisfying remgtgdless of the input source
of the classifier [128]. However, the classification accuracy improuédtantially when the classifier
was “normalized” to the novel user by including some of his own level-walkigig in the training set.
Classifier accuracy can also be significantly improved when transitionscwpeled in the training data
in addition to steady-state data [120].

Inputs to the classifier, regardless of classifier type, can come from any number of sounohsding
the sensed states and interaction forces between the user, the enviramdehe device. The required
sensors may be built into the structure of the device itself, worn on theceuwsfahe body, or implanted
within the body, as discussed in a previous section. Here, the souricdsraiation that have been used
for activity mode recognition in portable powered assistive devices faeldimbs are considered.

Embedded mechanical sensing provides estimates of the device'’s state tadifiec, and is an
appealing approach because the required instrumentation can be fullatategith the device itself
i.e. does not have to be donned separately [24,137]. Such signalsdniolatpositions and torques,
segment orientations and velocities, and ground reaction forces. Ronpéx, Varol et al. [24]
employed a GMM to switch between sitting, walking, and standing modes usingnthedeled sensors
in an actuated transfemoral prosthesis. LDA was used to reduce the eimaditg of the input feature
set. The frame lengths were then optimized to yield high classification accacaeptable latency.
The authors showed that following an initial 2-hour training proceduecthssifier remains accurate
across several days of testing and despite sudden changes in thet'subgss. Subsequent work has
proposed the extension of this classifier to include standing on inclineacgsrf109], running [138],
and stair ascent [139].

Environmental sensing was presented in an earlier section, and preddeble information to the
controller regarding the upcoming surface conditions, terrain, and>dontéis information has also
been used to trigger an activity mode transition [108-111,113,114]. Emieatal information provides



an additional layer of safety in the context of shared control, whereaieadler is partially responsible
for allowing/disallowing certain movements [47].

Body-worn force and position sensors, as discussed previouslydprestimates of the user’s state that
can be input to a classifier. These can also provide useful informatiimes when the device’s state
is ambiguous. In principle, some of these sensors could be embedded witldevilbe [112]. For
illustration, Novak et al. document a method for predicting the initiation and tetiomaf level gait in
real-time using 9 IMUs distributed about the body and pressure-sensioig$nvia classification trees,
with promising results [127]. So far only unimpaired and unassisted sulbjaeésbeen tested, so it is
unclear how well this would translate to assisted or pathological gait.

Movement of the Center of Pressure (CoP) or Center of Gravity (CaS&projected onto a virtual
ground plane, provides another means for the user to indicate their motiationte For this method,
it is assumed that the user is capable of voluntarily shifting their body weigbhdotim the frontal and
sagittal planes, potentially through the use of a walker or forearm citdralowing an appropriate
shift in the CoP, a mid-level controller is called upon to execute the desired mofibis approach
has been demonstrated in hip and knee orthoses for assistance follgiiagcord injury for level
walking [4,118,140-143] and for ambulation of stairs [144], and have tAubeen implemented using
heuristic rules-based classifiers. In most of these cases, movemeat@bfhor CoG are also used as
inputs to a mid-level finite-state controller, as will be discussed later on.

Sensing of cortical activity may be useful since physiological motion interisiattimately rooted in

the brain. Thus it makes sense to look at brain activity for high-level obn8hared control, which
was originally described and successfully implemented with brain-controltexklehairs for severely
impaired patients [45,47], lends itself well to this purpose. EEG-basedtgctiode recognition has
only recently been deployed with portable lower limb orthotic devices [48,59148].

Surface EMG provides a physiologically intuitive way to trigger activity modeditéons, even before
an externally observable movement can be executed [130]. Au et al. nd&raed a neural network
to switch between level walking and stair descent in an ankle prosthesd basactivation of the
gastrocnemius and tibialis anterior muscles [135]. Tkach et al. used LDArwat a virtual 3-DoF

ankle prosthesis using signals from multiple muscle groups in the upper aed llegs [147]. Jin et
al. demonstrated the classification of six different activity modes baseé@ainrés calculated from
the myoelectric signal from three muscles [126]. Huang et al. implementedseftependent LDA
classifier to classify seven movement modes based on 16 channels of EpMGLR0].

Neuromuscular-mechanical fusion was first documented in a subdesqudy by Huang et al. [59] as a
means to improve classification accuracy and speed beyond that whictsiblpaising EMG [130] or

mechanical signals alone [24]. The technique has been replicated byaraliars at the Rehabilitation
Institute of Chicago (RIC) with a powered transfemoral prosthesis [B28] a powered transtibial
prosthesis [132]. In later work at RIC [62,67], a DBN classifier wasdusith the transfemoral

prosthesis in place of the SVM or LDA of [59,128]. The motivation for dasags that a DBN (which

is similar in concept to a hidden Markov model) uses prior sensor informataircéim be mixed with

current information in order to estimate the likelihood of a transition betweemiotiee modes.

Note that with the EMG-based approaches listed above, the excitatoryssfgma the muscles are
not directly used to manipulate the device as with the direct volitional contrdiedosv, but strictly to
switch between mid-level controllers for a given activity.

Manual mode switching is an effective alternative to convey user intentdevace. This can be
implemented through selections made on a remote control [77,143], pushurtpa br squeezing a
lever [141,148], and the execution of a particular sequence of fiig&j,[eye [80] or limb movements



made with the device [137]. While these methods produce a nearly unambigunal definitive
classification of the desired activity, they require conscious input frenusier and disrupt the nominal
physiological processes. Nevertheless, these may represent theialsly options depending on the
severity of the underlying condition. It is noted that several of thesenpias that use manual mode
switching are commercialized devices.

Important considerations regarding activity mode recognition include the latency and error rates that
are tolerable for each of the possible gait mode transitions. At best, amantor late classification
results in suboptimal assistance from the device; at worst it can resuttatastrophic loss of balance.

A study by Zhang et al. on the effects of imposed locomotion mode errors wpitkvared transfemoral
prosthesis concluded that the impact on the user’s balance depenbysdmnighe gait phase where the
error occurs and the change in the amount of mechanical work injectéeelevice as a result of the
error [119].

For transitions between gait modes with substantially different character{stig. level walking to
stair descent), errors in activity mode recognition tend to be much more cidtichimay present a
safety hazard for the user. Thus, while seamless transitions reptaseitteal controller, practical
safety considerations favor robust and unambiguous mode switchimgurably, this is why many
commercial devices favor the manual mode switching described above.

Regardless of the type of classifier that is used in the high-level contribire is always a mid-level
controller running underneath. As a result, in many cases the penalty folassgication or delayed
classification of a given activity is not catastrophic due to the similarities betwegain gait modes,
such as level walking and ramp ascent [24,62,67,110,119]. While thdexzblea-level controller may
be suboptimal, the user may be able to adapt and accommodate the misclassification

It would also be very practical provide some form of feedback to thenegarding the mode switching
as reassurance that the device has correctly identified the next interodedhent, for example through
auditory or vibratory feedback [77,143] or via the other modalities diszmligsthe section on artificial
sensory feedback.

Direct volitional control

\olitional control grants the user the ability to voluntarily modulate the devidate sSuch functionality
is especially important in scenarios where the locomotive activity is irregulammcyclic (e.g. walking

in a crowd or standing and shuffling), in situations where foot placemenritisal (e.g. stair descent,
walking on rough terrain), and during nonlocomotive activities (e.g. sijpoing legs while sitting,

bouncing a child on one’s knee). It is emphasized for consistency ttéie the volitional intent is

determined at the high level, the conversion to a desired device state attuesmid level.

Myoelectric signals are an intuitive approach to volitional control since #neyalready present during
voluntary movement of the user’s own limbs. Sensing of peripheral hactraity for control does come
with limitations, as were highlighted in the section on sensor modalities for human niot#orions.
Surface EMG has been demonstrated for this purpose in transfemostheses [61,121,131,133,150,
151], virtual above- and below-knee prostheses [152], a hip aeé kmnthosis [153], knee orthoses
[60,154,155], a transtibial prosthesis [66] and an ankle-foot orthibS&].

EMG-based control approaches differ in the way that the myoelectrialsigacorded from the various
muscle groups are mapped to the desired device state. The simplest appraadirectly modulate
the actuator’'s torque based on EMG activity [63,153,156]. A more compigroach uses a
neuromusculoskeletal model to calculate net joint torques from the EMG@lsigh joint flexor and
extensor muscles [60,150,155,157]. One can also map processed Eldls dig a desired joint



position, velocity, or acceleration by using a model of the coupled usécalsystem [154] or to the
set-point angle or stiffness of an impedance control law [61,66,1313233,1

It is also possible to use the EMG signals to contribute an additional flexottensor torque to the
nominal torque output by a mid-level controller. This was demonstrated to alaiv ascent in a
transfemoral amputee with a powered knee prosthesis [151]. Thisagpaombines the inherent
stability of the underlying controller (e.g. in the absence of any myoelectrigt)rphile providing
moderate levels of volitional control to the user.

As the user acclimates to and is able to predict the output behavior of thegubassistive device, it
may be possible for him to volitionally manipulate the device by providing the gpatte set of inputs,

possibly involving contrived or compensatory movements. This is likely truenid-level controllers

based on correlated postures [158] and invariant trajectories [18%&6discussed in the following
section, though long-term studies would be required to show that uselsara to control the device in
this manner.

Mid-level control

The purpose of the mid-level controller (Figure 1) is to convert from gterated locomotive intent
output from the high-level controller (i.e. activity mode recognition coupledirect volitional control)
to a desired device state for the low-level controller to track. In many ctsse will be multiple mid-
level control laws to accommodate the various activity modes. This controligrtaka as inputs the
sensed state of the user, the environment, and the device.

An important differentiator between mid-level control implementations is the catibmof temporal
information, user or device states that are used to determine the gait phasame cases, the
controllers do not even explicitly account for timing or the gait phase. Gtaits which depend on the
gait phase are referred to phase-basedwhile controllers that do not depend on the gait phase are
called non-phase-based One implication of the phase-dependency is whether it is possible for a
high-level controller to switch between activity modes within one gait cycleylwther this can only
occur at the beginning of the next cycle.

The input-output form of the control laws used in the mid-level controlleehaprofound impact on
the device’s ability to interact with the user and the environment in a stableuapdgeful manner. As
such, the different forms of control laws will be discussed within this sectio

The mid-level controller is also responsible for the coordination of coteblveen multiple actuated
joints, whether contained within one device or across multiple devices. ltdsrafgortant to consider
the contributions of the user toward locomotive dynamics. Coordinatedot@rtd load sharing are
treated at the end of this section.

Phase-based controllers

In time-based control, a set of actions is performed based on a progratmreedelay following a
clearly identifiable gait event, for example heel strike [161,162] or tb¢i@3]. This technique is
simple to realize and relies heavily on the regularity of the steady-state stgmgriiogl. As such, the
weakness inherent to time-based control is its inflexibility to accommodate laregyuunprogrammed
gait patterns (e.g. walking in a crowd or over rocky ground), unebgaeevents such as tripping, or
within-cycle switching of activity modes [164].



Invariant trajectories represent user states which vary with respéw gait phase, and do not change
substantially with respect to gait speed, between different users, omivitir intra-gait-mode variations
[165,166]. By projecting a set of invariant trajectories onto judiciouslyseim axes, one can derive an
invertible relationship between the user’s state and the gait phase thatllg iddapendent of time,
gait speed, or subject. While this technique does not represent a lEmiy itself, it can be used
to input phase information to a mid-level controller without relying on the elhpisee between gait
events, as with time-based methods. As such, walking backwards is akiblpagith this technique
without altering the controller [159,160]. It remains to be shown, howevkether these trajectories
remain invariant when the user dons an actuated assistive devices diffesent modes of gait, or
during pathological gait.

Normalized-trajectory control takes a prototypical joint trajectory froratao$ previously recorded gait
data and scales it to match the pace and physical size of the user as anfafig&t phase. So-called
“dynamic pace control” is one such example that uses the fast Fourisfaran(FFT) to represent the
prototypical trajectory by a set of Fourier coefficients. These carsbd to scale and generate a desired
device trajectory by taking the inverse transform [159]. One of the Bigg®llenges with this approach
is identifying trajectories that can be appropriately scaled to both the spdedeight of the user. The
output of the control law is typically a desired position.

Echo control is a combination of time-based and normalized-trajectory ¢omnehich the position
trajectories of the unassisted limb are recorded and replayed on thedsistavith some time delay
and scaling during steady-state reciprocal gait [115,167,168]. Dudrtgin activities (e.g. sit-to-stand
transitions), no phase shift is required and the movement of the sound linfiecaapped directly to the
impaired one. Such an approach assumes symmetry of movement between #ieesy and as such
is inappropriate in cases where bilateral assistance is required or thieenequired stepping pattern is
inherently asymmetric. Activities involving an odd number of steps can alsodi®gmatic. Note also
that any undesired/compensatory movements that are recorded will alsplaged, which may result
in instability or loss of balance. Gait mode switching can only be achieved &ktjianing of a stride,
and must be initiated with the unassisted limb.

Virtual constraint control is a strategy that has been used to contrahloibon in bipedal robots [169],
which has since been implemented and demonstrated with a powered kneakbngrasthesis [160,
170,171]. For this method, the anterior-posterior location of the CoP orrdisghetic foot is used as a
phase variable, which is possible given that this trajectory monotonicallyases throughout the stance
phase of level walking. The so-called “effective shape” of the afidd-and knee-ankle-foot complex
resembles a circular rocker when plotted against the CoP phase variabis itvariant with respect
to speed, heel height, and body weight [166]. These effectiveeshamstitute virtual constraints that
can be enforced through actuation of the device during stance, whilieadiate impedance controller
(described below) was used during swing. The choice of a diffefesdgvariable may enable swing-
phase virtual constraint control as well. As implemented, this techniqudesnahlking patterns that
are qualitatively similar to nominal ones using only generic, normalized stapengters from literature
(i.e. subject-specific tuning is not required).

Finite-state controllers (FSCs) decompose gait as a periodic activity thas@ilded by a series of
distinct phases, typically further delineated on the basis of foot contacit® or joint velocities, as
illustrated in Figure 3 and elaborated in the caption. A FSC implements a discteit pametric
control laws that will cycle through as each new phase of gait is ent€texke control laws differ in the
way that the desired state of the device is computed, with popular choicesfmsition and impedance
control, as will be discussed below. A different FSC is required fohestivity mode included in the
high-level controller.



Figure 3 Finite-state decompostition of level human gait.  Steady-state locomotion can be
represented as a periodic sequence of states (or phases), whaantions between the states are
triggered by events within the gait cycle. The choice of the number of statbshe type of events
used are somewhat arbitrary, and will depend on what information is blaileom the sensors and
which joint the P/O is to actuate. In this example for the knee joints, stance basibéded into three
states, with early and middle stance initiated by ground contact events atehaniketoe of the foot,
for example determined using pressure sensitive insoles. Late stancgésdadgvhen the user’s center
of mass is estimated to be over the ankle, again using the insoles or estimateas#rthevhole-body
posture through joint position sensing or inertial measurements. Swingrflbrigins as the toe of the
foot leaves the ground, and swing extension begins as the knee'styétasensed to be less than zero.
The cycle begins again as the heel comes into contact with the ground.

FSC is far-and-away the most popular mid-level control approach. yMaoups have successfully
implemented FSCs using different numbers of activities and states with a wiggywef devices [2,3,
14,24,41,44,108-110,115,118,119,122,124,125,135,138-140,144A87,24 87].

The most of the referenced FSCs use a set of static parameters that@ueded into the controller,
usually requiring a heuristic tuning routine involving the end-user. Giverirtherent variability in the
gait patterns between individuals, such tuning is likely necessary anddrdkesired to optimize the
user's comfort and efficiency. However, this approach quickly bexounwieldy, as the number of
tunable variables rapidly increases with the number of parameters peoldanirthe number of states
per activity, the number of activity modes, the number of joints to be actuatddha number of limbs
to be controlled [177].

To reduce parameter tuning time, Simon et al. documented the “modified intringiwkstrategies”
to reduce the number of tunable parameters in a knee and ankle prosthasisdimpedance control
laws based on joint position or load as opposed to a set of static paranis8}s Aghasadeghi et al.
demonstrated a model-based method to predict initial parameter values fdicalpauser based on
invariant trajectories and his particular anthropomorphic characteri¢®&.[Wang et al. describe the
use of an expert system to automatically tune the impedance parameters to rmatétindalthy human
gait based on fuzzy logic inference [190].

Furthermore, because these parameters are fixed in value, the P/O deycenot optimally

accommodate changes in the user’s gait, for example due to user fatiquddensveight change, or
variations within a particular gait mode. One approach to overcome this is tolatedu torque

superimposed on the output of the control law through surface EMG].[154nother approach

implements a stance-phase control law based on a neuromuscular modélwasksidemonstrated to
adapt to changes in both terrain [173] and gait speed [191] in a trahgtib&thesis.

Non-phase-based controllers

Complementary Limb Motion Estimation (CLME) infers the intended motion of affelitelds from

the motion of the residual limbs, and maps this to a reference trajectory foticd®/O joints to
track [192]. This is possible due to the strong inter-joint coordination exkildteing physiological
human motion [36]. The mapping is derived through regression of phgsialbgait recordings of
healthy subjects.

CLME is sometimes confounded with echo control, as described above. oByast, CLME

complements residual body motion without delay. In addition, the recordets jaimd their sensed
states (e.g. position, velocity, acceleration) need not directly corrdgpdahe controlled joint, as with
echo control. For example, the motion of the arms and upper body are oftely borrelated to the



motion of the lower limbs, and thus represent potential recording sites fbtfEzhased control [193].
CLME does not depend on information of the gait phase, and no changentrol is necessary
between stance and swing. However, instrumentation of selected resatlygparts must be provided.

CLME was first evaluated with the LOPES gait rehabilitation robot, showingititan both replace
(unilateral) leg function when needed [194], and be transparent wheassistance is needed [192].
Later, it was shown that an amputee subject can walk at different sp@eldhegotiate stairs [158] with
a CLME-controlled actuated knee prosthesis. This study also demonstraieditative reduction in the
compensatory motion of the sound-side foot relative to a commercial coatadieping prosthesis.

Recently, CLME has been extended to generate not only referencaadics, but also stiffness. To
obtain training data, active muscle stiffness during gait was quantifieddingao [195]. In a case
study, an amputee subject successfully walked with CLME-controlled inmoedd 96].

In all of these studies, the training data used to generate the mapping came difierent subject than
the controller was tested on. Even so, the controller was shown to beieffex restore functional
gait patterns. This is an important consideration as it is often difficult to olotampathological gait
data from the user himself, which would contain the “ideal” joint trajectory nmaggp CLME is only
suitable for patients who can still control specific body parts, under graipe that these body parts are
sufficiently correlated with the other limbs in physiological motion. Generalizaifahis method for
different activities remains to be investigated.

Force-feedback control measures the interaction force betweenghandthe device and acts to reduce
it according to an assistance ratio. Zero-force or transparencyotoaiso given the colloquial name
“get-out-of-the-way control”, is a special case of force-feedbemhtrol. It serves various practical
purposes, especially with execution of non-locomotive tasks. The firpoge is for assisting the user
with tasks that require force amplification while maintaining lower limb agility, as witisk&letons for
performance augmentation [11,13,197]. The second use would be t&r teedlevice to be transparent
such that the user’'s own movement is unrestricted. The renderablparansy of a device can also be
used as a performance metric that is indicative of how well the physicaips of the device can be
controlled [198-200].

Forms of control laws

The output from the mid-level controller is the desired state of the devices state may consist of
a combination of joint positions, velocities, and torques. The design of tieedand the actuators it
contains will have a strong influence on how well the desired state canhimvad, and thus must be
taken into account during the development of the mid and low level controllers

Commanding joint positions or velocities is a straightforward approach ta wmmdrol, for which an
abundance of theory exists. In this case, the robot is tasked with tHegreproduction of a pre-defined
trajectory. This type of controller works best when the output mechainigedance (as defined below)
of the actuator is high relative to the load, thus enabling the device to rejgarlmions from the
user or the environment. Controlling the position or velocity of the device BilLaden the desired
trajectory and the interaction forces are well-characterized; but bdtieeé may be difficult to predict
given the dynamic nature of locomotion. Interaction with stiff objects (e.g. tkie@ment) can lead to
instability and the generation of high forces under this type of control][2Bdesumably, it is because
of these issues that very few examples of assistive devices for lower etesfound that use position
control.

The causal dual of angular velocity is torque. Torque control is plessiben the output mechanical
impedance of the actuator is low relative to the load, and is useful for pnovéssistive forces when the



desired position is ill-defined or unimportant. Problems can arise, howstien torques are applied
without regard to the position of the joint (e.g. uncontrolled motions, bumpingRotd limits).

Impedance is defined as the transfer function between an input flomnaodtjput effort [202]. In the
domain of mechanical rotation, controlling the impedance of a jointis to conwattationshipbetween
the accepted angular velocity and the yielded torque. Since the outputrapadance controlled joint
is ultimately a torque, the output mechanical impedance of the actuator musatbeshe low. A wide
variety of virtual dynamics can be rendered under impedance controlcwiitimon intuitive examples
being linear stiffness, damping and inertia. By applying passivity consiregrthe rendered dynamics,
the stability of the impedance-controlled system can be guaranteed [2001,203

A leading theory regarding physiological movement is that the CNS contreldlitibs through

impedance control [204,205]. It is partly due to property that human mavesnean be robust to
perturbations despite the delays inherent to transmission of effererdifferdnt signals via neural
pathways, as explained in the section on nominal control of human locomdtiars, it is possible to
realize a bio-inspired approach to P/O control through impedance modulatian. improved

understanding of how humans control the impedance of the lower limbs issageo optimize the
mechanical design and control of P/O devices and is the topic of ongoingeblmanics and
neuroscience research [157,195,206-210].

Admittance is defined as the inverse of impedance, and thus also defilesanship between effort
and flow. Admittance control has been proposed as an approach to mas&inndesired dynamics
(e.g. added friction and inertia) imposed by an exoskeletal device [Zh1§.type of control has been
used with treadmill-based gait orthoses [212], but no examples of admittant®| implementations
with a portable device were found.

It is impossible to say whether it is best to control a device’s position, vedoitgue, impedance, or
admittance, though the choice may be constrained by the physical dynanties ddvice and how it
is actuated. There are distinct advantages and disadvantages to each ¢gptrol, and there may be
different conditions and gait phases that lend themselves to switchingdretsatrol modes [135,186,
213].

Coordinated motion control and load sharing

Prosthetic and orthotic devices are part of an overall system involviggigal interactions, and thus
cannot operate as if in isolation. A coordinated mid-level control schemecisssary whenever there
are multiple actuated degrees of freedom, whether contained within one d&¥®,171,182,214,215]

or distributed across multiple devices [177]. Uncoordinated motion betwees amd joints can result

in loss of balance or falls, and so the states of each should be communindteaken into account to

prevent such an occurrence. Monitoring of the state of the user {@ugndjcontact state, joint positions)
also provides relevant information to the controller.

It should also be noted that the joints in the human body are subject to biarti@mulpling on both

a mechanical and neural level [216]. As a result, the realizable vojutdegue output and range-of-
motion (RoM) of the user’s joints are functions of posture, which potentiallglires joints that are not
specifically actuated by the device. Considering this, the mid-level contsbitarld take into account
the configuration of the user to ensure that the device does not owergee joint nor exceed his RoM.

Recalling that an orthotic device typically acts in parallel to the user’s limb, it $sipte (and indeed
desirable, as per the "Slacking Hypothesis" [20]) to make the usermsipe for sharing a portion of the
load carried at the joint. The fraction of the load borne by the device is tetinesipport ratio[60] or
theassistance rati¢217], and is normalized to either the net torque required of the joint faracplar



movement or to the maximum torque of the device. The load carried by the figisal joint can be
estimated from muscle activity [60,70,155,217] or through direct force nneasent [218].

Care must also be taken that the device does not provoke unphysiblogisele activity, for example
excessive cocontraction or off-nominal timing of muscle activation. Notetkieanet joint torque may
look “normal”, even though the underlying muscular activity is not naturahisTs an especially
important consideration in the context of retraining gait patterns followingaiegical injury, and may
be monitored e.g. via EMG.

In the wake of certain impairments (e.g. spinal cord injury), however, #resinission of voluntary
locomotor commands is interrupted. Short of physiological recovery idginig the communication
gap with neuroprostheses [21], functional electrical stimulation (FESpeaused to actuate the user’s
muscles in cooperation with an orthotic device [219,220]. Such stimulation mpsbbieled in concert
with the user’s intentions and locomotive state and provides a means forahwugctively participate
in the locomotive task with the support of the orthosis. One obstacle to eegryse of FES is the need
to precisely place electrodes over the muscles, which may be difficult farsveto achieve without
assistance. A mid-level controller, such as a FSC, must underly the FES\&gmthe movement of the
device itself.

Low-level control

The purpose of the low-level controller (Figure 1) is to calculate the &etween the device’s current
and desired states (i.e. the output from the mid-level controller) and te tievactuator to reduce this
error. This execution-level of control tends to be highly device-speeifid may rely on a combination
of feedforward and feedback loops.

Feedforward control requires some form of model to predict the systiitire state based on the past
and current set of inputs and device state. Such control inputs cdifielotive at reducing undesired
interaction forces due to the added mass, inertia, and friction of the déwiég [

Feedback controllers do not require a model of the sygmse but do require an estimate of the current
state. The controller compares this with the desired state of the device and tesdléapower input to
the device to drive any discrepancy to zero. A wide variety of contrdirtiegies can be used to achieve
this, the details of which are left to any reputable controls textbook. Marsgicial control strategies
employ negative feedback, though the Berkeley Lower Extremity Exaskel@BLEEX) employs a
positive feedback loop [221,222]. In this example, the net effect optsitive feedback is to increase
the controller’s sensitivity to the user’s interactions without requiringd@ensing between the user and
the device. The trade-off is that very precise models of the device'andys are required for each of
the bilateral ground contact states. This was counteracted using thd bghtrol scheme outlined in
subsequent work [215].

The physical configuration and dynamics (i.e. friction, inertia, actuatamepoutput) of the device will
fundamentally limit its ability to stably track a desired output trajectory. The paidace of digitally-
controlled systems is further constrained by sensor noise, signal catémizdiscrete sampling effects,
and control loop execution times. The use of passivity constraints (i.ethiaakevice is controlled to
store or dissipate energy, but not add) provides a means to guaraatstaltiiity of the device as it
interacts with the user and his environment [183,201,203].



The P/O device

The device represents the hardware embodiment of the robotic P/O. Tlideéathe device’s physical
structure, actuators, embedded sensors, control system, eneagestmnd power amplifiers. While the
mechanical design and implementation of P/O devices is beyond the scoperef/ibig the hardware
must be taken into account as it heavily influences the low-level contsslilpiities. For example, it
may be difficult and inefficient to render forces with an assistive deviuese actuator output impedance
is high [198], conversely the maximum torque output, controllable bandwidthtee dynamic range of
renderable impedance (i.e. Z-width) are reduced for an actuator withuggubimpedance [203].

Additional considerations are the performance limitations and saturatioctsefi the actuator and

power source [14,60,171]. Even state-of-the-art portable devicesbauwriven beyond their continuous
operating range to achieve the power outputs required during eneligetieenanding activities, such

as sit-to-stand, stair ascent, running, or jumping [61,218]. While this isrgyacceptable for short

bursts, it may be necessary for the controller to derate the actuator ifdtbed#ions are sustained for
long periods.

A further optimization for the controller may be the energy efficiency of afi@n. In addition to
minimizing the energetic expenditure of the user, the device may also be tagtkeohiwimizing its
own energy consumption, thus extending its useful range of operatatald®e devices are inherently
limited in their energy storage capabilities, and as such the conversion ef poa usable form should
be as efficient as possible. Aside from improvements in amplifier or transmisshnology,
energy-saving approaches include the wuse of passive compliance, [8,806,223],
mechanically-variable impedance actuation [224,225] and the recipr@oedfér of power between
joints [214,226-229] or between portions of the gait cycle [230-232].

It is reiterated that for an active P/O device to be practical for daily usth the mechanical design
and the controller must be of sufficient maturity. In order to develop cbetsothat are optimized
for unencumbered human-robot interaction, it would be advantageaisetdevices whose energetic
performance exceed that of the human body. Toward this end, Stevlms@233] has called for the
development of “universal wearable robot emulators” — devicesderini a laboratory that are tethered
for power, control, and actuation (see e.g. [156,163,167,207,213,2B¢]removing the mechanical
constraints, research can focus on the development of optimal cordifolterse pending improvements
in the power output capabilities of portable devices.

However, depending on where and how the opposite end of the tetleensoanted, a different set of
constraints may be imposed on the types of movements that can be executéatridng direction and
magnitude) or on the realism of the terrain that can be tested. To overcose ihmay be possible
to develop a portable tethered emulator that either follows the user arogndrédled on a cart [72]
or carried by a second person) or is carried by the user himself in a \maynidty be impractical as a
product, yet informative for research purposes.

Controllers can also be developed via numerical simulations [235] or robo#fogs [236]. These
approaches come with the benefit that many different algorithms can bd bestehighly repeatable
setting without ever risking a human subject. While extremely informative, tbhecgming is that

these methods rely on models of the human control system, which is still heabéyede These also
may neglect certain “human factors” and the variability inherent to physdbpcomotion.



Safety mechanisms

Considerations of safety must underly nearly all aspects of the mechdegign and control of P/O
devices. These must include safety of the subject, his environment, ahe afevice itself. This
is especially important for powered devices, which may be capable ofaérg destructive forces
and whose controlled output behavior may not always be in agreementheitbser’s intent. The
identification, quantification and mitigation of risks is thus a critical aspectvitdalevelopment.

Common risks to locomotion include slipping, tripping and falling, all of which magXscerbated by
the presence of the P/O device. The cause of such incidents may belita¢heedevice (e.g. controller
failure) or due to external factors, such as encountering unexpegtaih. The severity of these risks
spans a wide range, and must be weighed against the probability thatithegour, and whether such
a failure is detectable. The risks are also not limited to physical harm, but lsayrelude social,
emotional, and psychological effects [38,39].

In early 2014, the International Standards Organization (ISO) publistendard 1SO 13482, which
provides definitions, design guidelines, and safety requirements feoedrcare robots [237]. Though
this standard expressly does not cover robots as medical devicesr{gdhzs would be considered),
it does apply to wearable suits and exoskeletons for physical assistBeoding the development of
safety standards specific to personal care robots for medical U3€,3832 perhaps provides an initial
set of guidelines for the identification and assessment of risks in weatddgiéc devices.

Some additional tools for risk identification and quantification include Failurelédoand Effects
Analysis (FMEA) [238], Hazard and Operability (HAZOP) and Hazarchalysis (HAZAN)
studies [239], and Fault Tree Analysis (FTA) [238]. All of these methare semi-empirical and rely
on the developers’ expertise in identifying potential causes of injury arag@, and thus may not
capture all hazards that may arise.

Despite the paramount importance of safety in P/O design and control, thts refssafety evaluations
are rarely, if ever, reported in the literature. Thorough considerafitimstopic is critical to the future
of robotic P/O development, and thus should be given much more attention {hassible here.

Mitigation of risk involves the inclusion of passive and active safety mdsha@ Passive safety
mechanisms are those which fundamentally limit the power transmission of thee deiticout
requiring any input power or feedback control. These include mechlasiops that limit the RoM,
intrinsic force/torque limitations [207,213], and electrical circuits with appet@ grounding and
fuses. Switches to manually disable the device are themselves passigh they require intervention
from the user [213].

Active safety mechanisms are those that limit power transmission throughafgedontrol, which
typically requires input power. This includes configuration-dependatctuation torque and
range-of-motion limitation as an active safety mechanism, as suggested in thessilim on
coordinated control. Redundant sensing allows for the system to monitowitiealth and to identify
controller, actuator, or sensor failures. Upon detection of a failure¢anéroller implements a “safe
behavior” (e.g. making the joints stiff or compliant), where the appropriat@er must be decided
upon by the controls designer [60,115,117]. These failures can be mtiaentary or persistent. In
either case, the device should alert the user to the situation and provide toeanover or to reset the
controller of the device [77,137].

Examples of failures discussed in the literature include inappropriate dentautputs due to
misinterpretation of user intent or invalid sensor inputs [24,67,117,119322,17,215,240], unstable
interactions with the user and environment [60,108,139,182,185,203]at@actufailures due to



overloading/saturating the actuator [137,171,215], failure of an unter@d system to achieve its
desired state, power failures due to a loss of power to the actuator or tortrelter [137,232], and
controller failures due to software bugs or overloaded computationalimess [60]. As a quasi-failsafe
measure against falling, the commercialized ReW4lkrthosis includes a wearable airbag system that
can either be deployed manually by the user or autonomously using builtsorsdi43].

The user, as an integral element of the control system, is also partiallyngbfe for ensuring safety.
This includes the rational avoidance of potentially unsafe situations, mtresesponse to unexpected
locomotive events, such as tripping, stumbling and slipping [115-117,16207,241]. Falls represent
a substantial hazard to the user, and so the device must (at minimum) natse¢he risk of falling.
Until advanced balance recovery controls have been developedythepaiate response of the device
in these cases is most likely to become transparent for the user to reataecd on his own [200].

For the commercialization and adoption of powered P/O devices in ADL, demedanust establish

trust with regulatory bodies, funding agencies, insurance compatii@sians and end users that such
devices are not only effective at their intended application, but are teafise within reasonably

expectable circumstances (see e.g. [242,243]). This will typically neatesslinical trials.

How, exactly, to establish the efficacy (e.g. in terms of ADL performanaelmabilitative outcomes)
and safety of a device is beyond the scope of this paper. Based owidwed literature, however, we
can echo some recent observations by Farris et al. [4] that theraragpebe little standardization in
the methodologies and outcome measures that are used to evaluate thg effmetore P/O devices,
and very few papers provide balanced criticism of the limitations own methoeéslogoward this end,
an increase in clinical trials is required of developers, along with the creatistandardized evaluation
criteria.

As a recent example, the ReWHk became the first FDA-approved powered orthosis to be marketed
for personal use via the “de novo” classification process. This cleasin is reserved for novel devices
for which there have been clinical studies and extensive performastiregebut clear effectiveness and
safety evaluation standards have yet to be established. The use of thisftglassification indicates
that there is currently a regulatory gap that has yet to be filled.

Some parallels can be drawn between the fields of wearable roboticsrinhktobotics in that these
(potentially powerful) devices are working in intimate proximity to humans. Afisooe may draw
inspiration from the design framework for surgical robots recentlygresi by Sanchez et al., where
an in-depth discussion of design methodologies, passive and actiety gafidelines, and relevant
certification standards is provided [244]. While the hazards associatbdrebotic surgery will
typically garner higher risk classification than powered P/Os, many of théwaae and software
design principles are universal.

Conclusions

Through this literature review, the state-of-the-art in control strategigsdrtable, powered lower limb
P/O devices has been established. The control strategies that havedeekermary substantially in
accordance with the intended application and functionality of the P/O devisirilicture and scope of
the control scheme that is implemented, and with the instrumentation necegssenpgong the state of
the human-robot system. There may also be marked differences in thelitiexdb the control
algorithms to adapt to changing conditions with respect to the user and toumernanent, and the
ability to recognize and to make transitions between different locomotiveiteetiv Though these
differences may fundamentally preclude the direct translation of certaitratgparadigms between
devices, there are also many concepts that can be applied universally.



These control strategies were presented in the framework of a noweriadized control framework. This
accounted for the physical and signal-level interaction between all afdmponents of the active P/O
ecosystem, including the user, the environment, the controller, and thedisélf. This framework is
suggested for future use in the holistic design of controllers for sudceiev

The user was discussed with respect to his role as the pilot of such slandeas an integral part
of the control plant. This includes consideration of the physiological systesponsible for control
of nominal locomotion and the compensatory mechanisms exhibited duringsiedss assisted gait
following neurological, muscular or skeletal injury. Various sensor modslitiere highlighted for

tapping into the user’s physiological control system. The chosen modalitissbm@appropriate for the
user’s physiological condition and personal preferences.

To date, there have been relatively few long-term studies regarding steofu artificial sensory
feedback in conjunction with powered P/Os and whether it may enhancediie sense of control and
embodiment of the device. It is contended that the provision of suchée&db a necessary future step
to achieving seamless integration of the P/O controller with the user’'s semsxioy control scheme.

The environment plays an important role in human locomotion as it places aonsn the movement
possibilities. Sensing of the surface conditions, terrain, obstaclesnaimndremental context can provide
valuable information to the P/O controller. So far, there have been few sttidiespecifically account
for environmental conditions and context within their control architecturethis is expected to change
as more of these devices begin to operate in unstructured and real-warichenents.

The generalized controller is represented as a three-tier hierarchatateature that very loosely
resembles the structure and functionality of the CNS, and is an effectiyeéonecompose the task of
controlled locomotion. As research in this field matures and shifts towardediely multifunctional
devices for daily use, this type of architecture is the most likely to be adofeared control can be
implemented within this structure, which delegates the cognitive burden of niavttevel
decision-making to the device.

The high-level controller is responsible for perceiving the user'srumive intent, which consists of
activity mode recognition or direct volitional control. Determination of the 'asseady-state activity,
as well as the transitions between them, requires the use of a trained alaBsifper intent recognition
is necessary for the controller to execute a response that is both @pprdpr the task and corresponds
to the user’s expectations. Advancements in machine learning techniglitreearecent proliferation of
wearable sensor technologies is likely to fuel developments in this area.

Direct volitional control allows the user to voluntarily modulate the devicetpatubehavior, and is of
particular importance during non-periodic or non-locomotive activitiesthoge which require precise
positioning of the limbs. The combination of activity mode recognition with diretitisonal control
combines the robustness of steady-state activity detection with the ability totawlypmodulate the
limb movements for fine placement. This strategy is seen as the most promisingeppy smooth and
accurate multifunctional human-robot interaction.

The mid-level controller translates the user’s locomotive intent to a desagttory for the device to
track. Depending on the type, these controllers may or may not depeneé osehs gait phase. FSCs
are the overwhelming mid-level controller of choice, owing largely to theicceptual tractability and
ease of implementation. They are not, however, without their shortcomiaggyarly the exploding
dimensionality of the tunable parameter space. The use of so-called “modtfrgtsic control
strategies” is a promising approach to minimize the number of tunable parameters.



The choice of input-output variables, along with the form of the mid-levetroblaws (e.g. admittance,
impedance, or other), will determine the overall system behavior. Eaitlesé forms is a valid choice
for different scenarios. The coordinated motion between joints, whéatimaan or robotic, is also the
task of the mid-level controller and is critical to the safety and stability of assgsé. Coordinated
sharing of the load between the human and an orthosis may also be ngtessalize rehabilitative
outcomes.

The role of the low-level controller is to realize the desired trajectory of ghecsed output variables
as specified by the mid-level controller. This is typically achieved througbeddoop control, which

may involve feedback or feedforward loops. It is at this level of cdrlrat the device’s kinematics and
dynamics are taken into account and used to compute the set of actuatortinpatseve the desired
states in a dynamic, yet stable manner.

The hardware-realization of the device was considered in terms of its impfis&tio control design,

in particular the constraints that it places on real-world performance.yMéathe existing portable

powered P/O devices must be operated near the edge of their enveloptiofious operation during
normal use. Advances in actuator, energy storage and power samvegchnology, and efficient control
strategies may eventually overcome many of these issues. Meanwhile, tloé nesaotely actuated

devices will accelerate the development of unencumbered controllersuifitiently powerful devices

are available.

Safety considerations lie at the heart of all aspects of wearable robcticdiegy. Designers should
view hardware and software failures as inevitabilities and should includlsafi@ measures and
redundant systems to prevent injuries to life or property. These coatimes will be of critical
importance to the development, social acceptance and regulatory dpgfrdeaices that are effective
and appropriate for assisting persons with disability in locomotive ADL.

In summary, this field of research is entering an age where the techndlogitarity of both the
hardware and software are sufficient to realize bionic lower limb P/Os thapractical and safe for
real-world use. This would represent a substantial achievement in hamtory, and holds the
potential to dramatically improve the quality of life for those living with impaired mobilithisTcan
only be attained through continued collaboration and open communicationdretesearch groups,
interdisciplinary cooperation between engineers, physiologists, clinjciansistrial partners, and
end-users, and the expansion of funding opportunities from publipavate entities.
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