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Abstract

Robotic arms have been shown to be able to perform cyclic tasks with an open-
loop stable controller. However, model errors make it hard to predict in simula-
tion what cycle the real arm will perform. This makes it difficult to accurately
perform pick and place tasks using an open-loop stable controller. This paper
presents an approach to make open-loop controllers follow the desired cycles
more accurately. First, we check if the desired cycle is robustly open-loop sta-
ble, meaning that it is stable even when the model is not accurate. A novel
robustness test using linear matrix inequalities is introduced for this purpose.
Second, using repetitive control we learn the open loop controller that tracks
the desired cycle. Hardware experiments show that using this method, the ac-
curacy of the task execution is improved to a precision of 2.5cm, which suffices
for many pick and place tasks.
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linear matrix inequalities, repetitive control
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1. Introduction

This research aims at future applications where sensing and feedback are
undesirable due to costs or weight; or difficult due to small scale, radiation
in the environment or frequent sensor faults. A recent example of such an
application is the control of a swarm of nano-scale medical robots [1]. These
applications inspire us to investigate an extreme case of feedback limitations:
solely open-loop control on robotic arms. Control without any feedback can
only be effective if two key problems are addressed: disturbances (e.g. noise
and perturbations) and model inaccuracies.

The first problem, handling disturbances on an open-loop controlled robot,
has mainly been addressed by creating open-loop stable cycles. The best known
examples of this are passive dynamic walkers, as introduced by McGeer in 1990
[2]. Since those walkers do not have any actuators, there is no computer feedback
control. The walking cycle of those walkers is stable, which means that small
perturbations will decay over time. Such stable cyclic motions are called limit
cycles. Limit cycle theory was later used to perform stable walking motions with
active walkers, of which the closest related work is that by Mombaur et al. 3, 4].
They optimized open-loop controllers for both stability and energy consumption
and performed stable walking and running motions with those robots. Open-
loop stable motions have also been used before to perform tasks with robotic
arms. In 1993, Schaal and Atkeson showed open loop stable juggling with a
robotic arm [5]. Even though their controller had no information about the
position of the ball, they showed that any perturbation in this position decays
over time, as long as a specific path of the robotic arm itself can be tracked. In
a recent study, we showed that it is possible to perform repetitive tasks on a
robotic arm with solely an open-loop current controller [6].

The second key problem with feedforward control (i.e. model inaccuracies)
prevents the approach in [6] to be fully applicable: it causes a difference between
the motion as planned in simulation and as performed in hardware experiments.

Handling model inaccuracies on open-loop controlled robots has recently be-
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Figure 1: This figure shows the top view of the concept of robust open-loop stable manipula-
tion. We first optimize a cycle that stands still at the pick and place positions for open-loop
stability. Next, we check the cycle for robustness to model uncertainty. Then, using repetitive
control on the robotic arm, we learn an open-loop controller that tracks the cycle. After the

learning, the open-loop controller performs the task without any feedback.

come the subject of research. Singhose, Seering and Singer [7, 8] researched
vibration reducing input shaping of open-loop controllers while being robust to
uncertainty in the natural frequency and damping of the system. Becker and
Bretl [9] researched the effect of an inaccurate wheel diameter of unicycles on
the performance of their open-loop velocity controller. In their case, open-loop
control means that the position of the unicycle is not used as an input for the
controller, but the velocity of the wheels is. In a previous paper, we showed
that on a robotic arm, different open-loop current controllers have different sen-
sitivities to model inaccuracies [10]. We found open-loop current controllers of

which the end position of the motion is independent of the friction parameters.



However, the motions that handle the model inaccuracy problem of feedfor-
ward control, the stability problem still exists, i.e., disturbances acting on these
motions will grow over time.

Since these two problems of disturbances and model inaccuracies in open-
loop control have only been addressed separately, no applicable purely open-loop
control scheme has been devised. This paper shows that repetitive tasks can
be performed stably by robotic arms with an open-loop voltage controller, even
when an accurate model is not available.

In order to achieve this goal, the problem is split into two phases (see Fig. 1).
In the first phase the robustness of the system is analyzed with a novel method
based on linear matrix inequalities (LMI)[11]. In the second phase repetitive
control (RC)[12] is used to learn the exact control input, such that the desired
positions are reached accurately. During this learning phase, very slow feedback
is allowed, this feedback can be removed after the learning has been completed.

The rest of this paper is structured as follows. Section 2 shows why the prob-
lem can be split into two phases, and explains the robustness analysis method
and the repetitive control scheme. Next, Section 3 shows the experimental setup
we used to test our approach. Then, Section 4 shows the results of both the nu-
merical and the hardware experiments. Finally, the paper ends with a discussion

in Section 5 and a conclusion in Section 6.

2. Methods

In this section we explain our methods. First, in Section 2.1 we discuss the
basic concept of the stability analysis. Second, Section 2.2 explains our approach
to perform robustly stable open-loop cycles. Then we will describe the two steps
of this approach separately: a robust stability analysis (Section 2.3) and learning

of an open-loop controller (Section 2.4).

2.1. Open-loop stable manipulation
A system described by the differential equation & = f(x, u) can be linearized

along a trajectory x* caused by input u*(¢):
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where Z(t) = x(t) — 2(t)* is the state error. For the ease of notation, the
time dependency of variables is occasionally dropped if it is unambiguous to do
so. For example A*(¢) will be written as A*.

If both trajectory and input are cyclic with period ¢, stability can be as-
sessed by by discretizing the system using a time step ty. To be able to draw
upon the research in stability of limit cycles, note that such discretization is
the same as a Poincaré map of the system with the time appended to the state
vector. The Poincaré section is then taken as ¢ = ¢y, and the time is reset
to 0 after crossing this section. Previously (notably in [3] and [6]), verifying
stability was done using the eigenvalues of the linearized discrete system. But
that approach does not allow incorporating model uncertainty in the stability
analysis.

To obtain a method that does allow uncertain models, we use a quadratic
Lyapunov function, J = z7 M(t)z, with positive definite M(t). The idea is
that for a stable system, an M(t) can be found such that the norm J is always
decreasing over time. For cyclic systems this means the following two constraints

should be satisfied (cf. [13]):
M)A + M(t) + A(t)* M(t) < 0, Vt € [to, ty] C1

M(ty) — M(t) = 0 €2

where < and > are used to indicate negative/positive definiteness respec-
tively, M is the time derivative of M and the subscripts 0 and f denote ini-
tial/final time. The first of these constraints ensures that the Lyapunov function
is decreasing at each time instant. The second constraint makes sure that it be-

comes stricter after each cycle, i.e., that having the same error (z) as a cycle



before means that the Lyapunov function has increased. Note that only one of
the two inequalities needs to be strict in order for stability to hold.

When there are model inaccuracies, two changes occur that make the above
conditions invalid. Firstly, A*(z*(¢)) is no longer accurate when in state z*(t).
Secondly, when using a fixed open-loop controller on an uncertain system, the
trajectory is not fully predictable, so in general z(t) # x*(¢), when using the
input «*(¢). In the next section we will outline our approach to solve these two

issues.

2.2. Robust open-loop approach

To find motions that are open-loop stable even when the model is not accu-
rately known, we will focus on input affine systems with constant input matrix,

i.e., systems that are described by the following differential equation:

#(t) = f(z(t)) + Bu(t) (3)

where B is a constant matrix. The equations of motion of serial chain robots
can be written in this form, by considering phase-space rather than state space
(i.e. using momenta rather than velocities). Systems where the control input
enters the system via a constant matrix have the advantage that the linearized

error dynamics do not depend on u (cf. Eq. (2)):

sy =
0= (@

Because the local stability of the motion only depends on the linearized error
dynamics, the stability for motions of such a system only depends on the states
of the motion, and not on the inputs used. This is the key insight that allows

robust open-loop control, by splitting the problem into two stages:

1. Finding a trajectory through the phase-space that is stable, even if the
(linearized) system dynamics differ from their nominal value by some un-

certain amount.



2. Learning the inputs for that trajectory. When done online, this learning

can take into account the uncertain dynamics.

With this two stage approach, an open-loop controller is found that accu-
rately controls the robot in a way that is both accurate and stable. These
two properties hold even when facing modeling errors, which is important for
hardware implementation.

There are two important remarks to be made about this approach. Firstly,
the robust trajectory found should be a valid trajectory for the physical sys-
tem, and thus for all realizations of the uncertainty in the model. That means
there should exist an input for which the trajectory given is a solution to the
differential equation. In our case this means the inertia matrix has to be known
accurately in order to translate momenta into the velocities that correspond to
the time derivatives of the positions in the planned trajectories. Secondly, for
the learning step some feedback is required, which means the robot is no longer
purely open-loop controlled. However, such feedback can be delayed and can
be removed once the feedforward signal is known. This allows opportunities for
external sensing, such as cameras based feedback during the learning phase.

In Section 2.3 the methods used to find a robust trajectory will be explained.
Section 2.4 explains how Repetitive Control is used to learn the open-loop con-

troller.

2.3. Finding robustly stable trajectories

The first step in our approach is to find trajectories that are stable. To do
S0, we use an optimization approach, further explained in Section 3. Then we
test if the resulting trajectory is robustly stable. In this section we derive a
novel robustness test, which is summarized in Algorithm 1.

For this section, we assume that we have a known trajectory for which we
want to determine how robust it is. We model the uncertainty of the system
through an integer number of uncertain parameters 9;, that enter the lineariza-

tion affinely using known state and time dependent matrices A;(t), i.e.
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rz=x*(t)
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where we will take A*(t) = 3z as the certain part of the dynamics,

@ (t)

and A(t) = Z A;(t)d; as the uncertain part. Here the A; are known matrices
J

describing how the uncertain parameters J; enter the system dynamics. As a
result, we have a time varying uncertain system & = A(t, A)z = (A*(t)+A(t))z.

From theory of Linear Matrix Inequalities [11, Prop. 5.3], we know that if
each d; is constrained to some interval §; € [d;, §;], then the constraint C1 holds
for all A(t), if it holds for the A(t) created by the vertices of the hypercube of
allowed ¢;. The A(t) values connected to these vertices will be called Ag(?),
which is a finite set. The choice for Ag(t) depends on the expected model

inaccuracies. The robust stability constraint now becomes:
MA* + M+ ATM 4+ ATM + MAy <0 C3

Note that this constraint is a sufficient, but not necessary condition for robust
stability. Making M a function of A would reduce the conservativeness [11].
However, in implementation this would also result in much greater complexity
and computation time, so we have elected not to do so.

Furthermore, constraint C3 determines whether the trajectory is robustly
stable or not, but it does not give a continuous measure of robustness. To add
this measure, we try to find the maximal constant €,, such that the following

constraint holds:

MA* + M+ ATM + e, ATM + e, MAy < 0 C4

The value of €, is the robustness measure.

What is left is a way to find an M(t) that satisfies the constraints. Before
describing our approach, we will briefly discuss two approaches that involve
optimizing a parametrized M (t), and are unsuitable in this case, but at first

sight might seem applicable.



The first of these approaches is the most straightforward conceptually and
has been used in literature [13, 14, 15]. The idea in that research is to parametrize
M (t), and then optimize these parameters. The literature referred to establishes
that this parameter optimization can be cast as a convex problem by using Sum
Of Squares programming. The disadvantage of this approach for our problem
is that the optimization of M (t) requires many (> 1000) decision variables and
is therefore computationally expensive and sensitive to numerical errors.

The second approach is to parametrize M (0) only, and rework equation C1
or C3 into a differential equation, which can be integrated to find M (¢). The

basic example would be
M= —e,J — A*M — MA* (6)

with €, a small positive constant. This allows to optimize M (0), such that M (t¢)
found using integration satisfies equation C2. This approach of integrating M
could potentially be extended to incorporate the uncertain dynamics into the
differential equations, for instance by viewing M as an ellipsoid, and using a
minimum volume ellipsoid covering algorithm. However, even then the method
of searching for M (0) and using forward integration is troublesome. The number
of parameters is greatly reduced compared to approaches where M (t) as a whole
is approximated and optimized, but at the cost of loosing convexity. This greatly
increases the computation time and introduces the risk of finding local minima.

Since these two approaches that involve searching for M (¢) do not work, we
propose a method which does not involve such optimization, but rather immedi-
ately computes a (suboptimal) M (¢). This method is based on the fact that all
time varying systems with periodic coefficients are reducible [16, Sec. XIV.3], i.e.
can be transformed into a time invariant system. The idea is to find a Lyapunov
function for the certain part of this time invariant system and then transform
this Lyapunov function back to the time variant system for the robustness check.

The transformation to the time invariant system is based on the state tran-

sition matrix of the nominal system Z(t) = ®(¢)z(0), which can be found by



integrating the following initial value problem:
b(t) = A" (1) ®(t), ®(0) =1 (7)

Now if we define L(t) = @(t)q)(tf)_# and the transformation & = L(t)y, we

get for the state transition matrix of y:

j= - In(®(t))y ®)
f

which is a time invariant, but possibly complex-valued system [16, Sec. XIV.1].
For this system we can then find a Lyapunov function yTMyy by solving for
the positive definite matrix M, using standard LMI techniques. In principle it
would be possible to incorporate a worst-case transformed A(t) in that equation,
but for simplicity we optimize to find a Lyapunov function with the smallest
time derivative, i.e. maximize €, in:

= n(®(e0))" My + My - In(@(t7)) + T <0 )
f ty

The resulting M, is then transformed back to Z coordinates:

M(t) = L(t) " M, L(t) " (10)

Finally, the maximum €, that satisfies constraint C4 at all times is found
using a numerical LMI solver. The time derivative of M that is needed for this
step is readily determined analytically. We omit these expressions because they
are too lenghty.

As Eq. (7) can only be solved numerically, a natural time sampling approach
is used. That is, the constraint C4 is only tested at the sampling times that
are used by the solver that integrates Eq (7). In this case, we used the MAT-
LAB ode45 solver. This time sampling is inspired by [13], which discusses the
correctness of such a sampling procedure for a similar robustness test.

In many cases one or more of the singular values of the state transition
matrix ®(ty) are nearly zero [17]. This means that some errors are reduced to
nearly zero after one cycle. This can happen for instance with a high damping

constant, which could arise from using voltage control.
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Figure 2: Explanation of the transformations required for model reduction. At time t = 0 or
t = tr, the singular value decomposition can be used to find a basis for the solutions space.
In the left figure it can be seen that this basis has the advantage that the singular directions
are clearly separated. The right figure shows that by using the same basis at other times, the
non-singular dimensions are described using more basis vectors than are required to span the
space. The solution, also indicated in the right figure is to use a projection, in our case by
computing the column echelon form. This particular projection ensures the basis is periodic,

which allows the robustness analysis to be performed.

Such a nearly singular state transition matrix makes the numerics of the
above scheme ill-conditioned. Furthermore, the resulting LMI-test is very sensi-
tive to small changes in the nearly singular directions. This numerical sensitivity
is in contrast with the fact that in many cases, such near singularity is some in-
trinsic property of the system or trajectory, and is not influenced by some small
changes in model parameters. In those cases the above scheme is sensitive to
errors that are irrelevant. Therefore we disregard these near-singular directions
by assuming the error in those directions is always 0.

Since the system is time varying, the relevant directions are also time varying.
So what is needed is to find a time varying basis for the non-singular space
of the error dynamics, see Fig. 2. The robustness test described previously
requires a periodically time varying system, therefore the basis for the non-
singular dimension should also be periodically time varying.

First, to disregard the near singular directions, use the singular value decom-

11



position of the state transition matrix at time t;: ®(t;) = USVT. Define U,
as the columns of U that correspond to the singular values that are not nearly
0. These columns are an orthonormal basis for the not-nearly-singular space
of ®(ty). In particular, define &(t) coordinates by the transformation z = UZ.
Then

b(t) = U1 (1)[U,, 0] (11)

is the state transition matrix for Z, where the errors in the singular di-
mensions are immediately set to zero (by the multiplication with [U,,0]). The
columns of U <i>(t) now form a time varying basis for the non-singular space of
the Z-dynamics. However, this basis is not periodic yet.

This periodicity can be enforced by using the following transformation, which
defines &(t):

#(t) = Urcef(ff)(t)) (1) (12)

where rcef signifies the reduced column echelon form. To see that it works,
it is necessary to realize that after exactly one cycle, the columns of P span
the same space. Furthermore, ®(0) is simply the identity matrix with the last
diagonal entries turned into 0. Therefore i)(tf) also spans this same space,
and the reduced column echelon form then finds the correct basis: the identity
matrix with the last entries turned into 0. As a result rcef(®(0)) = rcef(®(t)).
This means that the transformation in Eq. 12 is periodic, and can therefore be
used in the robustness test. The procedure of the robustness test, including this
transformation is denoted in Algorithm 1, in which each step is described and
the relevant equations for that step are then referred to.

This leaves only two remarks on the implementation of this transformation.
First, the reduced column echelon form of a smoothly varying matrix is smoothly
varying, meaning the time derivative of the transformation exists. To speed up
computation we use finite differences to compute this derivative. Second,the
transformation as defined above does not actually reduce the number of states
in the computation, but rather sets the states to zero. By substituting U, for

[Uy,0] in Eq. 11, the size of the state vector is reduced, which again speeds up

12



computation.

Algorithm 1 Robustness test
Compute state transition matrix ®(t), Eq. (7)

if nearlySingular(®(¢;)) then
Reduce system dimension, Egs. (11)-(12)
end if
Make system time invariant by transformation, Eq. (8)
Find M,, the Lyapunov function for that system, Eq. (9)
Initialize robustness measure, €, < 1000
for all ¢ in time discretization do
Find M(t), Lyapunov function of first system, Eq. (10)
Numerically find M(t) as required in constraint C4.
€ < maximum ¢, that satisfies constraint C4 at time ¢
€, < min(Ee;)

end for

2.4. Repetitive control

The stability of the trajectories computed by the optimization is independent
of the input and finite modeling errors. The next step is to learn the input that
tracks the trajectory on the robotic arm. When the trajectory is learned, the
feedback is disconnected and the task is performed stably with the learned
open-loop controller.

There are two (similar) learning algorithms which are commonly used for
learning of repetitive motions: Iterative Learning Control (ILC) and Repetitive
Control (RC) [12]. Both algorithms use the input and error from the previous
iteration (cycle) to compute the input in the current iteration. The only dif-
ference between the two is that in ILC every iteration starts at the same state,
where in RC every iteration starts at the final state of the previous iteration.
We use RC, because it allows us to immediately start a new iteration at the end

of every movement cycle, whereas ILC would require a reinitialization after ev-
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ery cycle to start the new iteration, which would take time and require fast and
precise state feedback. The repetitive control runs on a real time target with
a sampling frequency of 500 Hz. Therefore, we will use discrete time notation
with time step k.

The repetitive control scheme we used is

u(k) = u(k —p) + a(k) - (Aup(k) + Aup(k)) (13)
with
p—1
Aup(k) = o(i)-P-e(k—p+1) (14)
=0
Aup(k) :io(i)~D~(e(kfp+i)fi(k—2p+i)) (15)
i=0
z(k) =z (k) — z(k) (16)

where u(k) is the control input, p is the number of time steps in one iteration,
Z(k) is the error, x* is the desired state and x is the actual state. «a(k), ¢(i),
o(i), P and D are explained below.

The learning rate a(k) is a function of time and can vary between 0 and 1.
A varying a(k) reduces the chance of converging to a sub-optimal solution.

The filter gains ¢(i) and o(7), for ¢ = 1,...,p, determine how much the
different errors in the previous iterations contribute to the change in the input
signal. The filtering accounts for measurement noise and prevents oscillations
in the RC. The sum of the elements of ¢(i) and the sum of the elements of o(7)
are both equal to 1, to obtain a (weighted) moving average filter.

The learning gains P and D are N,, x N, matrices (with N, the number of
inputs and Ny the number of states). The P and D we used have the following
structures:

Py 0 P33 O
0 Py 0 Py

Dy 0 Dz O
0 D22 O D24

14



Using this structure, errors in the state of one joint have no direct influence on
the control signal in another joint (i.e. there are no cross terms). The Aup
term can be seen as the proportional term of the RC, since it leads to a change
in u proportional to the errors in the previous iteration. The Aup term can be
seen as the damping term of the RC between two iterations, since it leads to a

change in u proportional to the change in errors between two iterations.

3. Experimental setup

We tested our approach on a two DOF SCARA type arm. This type of arm
can perform industrially relevant tasks with a simple mechanical design. In the
experiment, the arm has to perform a rest to rest motion, typical for a pick
and place task. In this section the hardware setup and task description will be
addressed, along with parameters in our approach that were set specifically for
the experiments. Note however that the general approach does not depend on

the exact values of the parameters, which were manually tuned.

3.1. Hardware setup

Fig. 1 shows a picture of the experimental two DOF robotic arm [18]. The
arm consists of two 18x1.5mm stainless steel tubes, connected with two revolute
joints, with a spring on the first joint. A gripper is connected to the end of the
second tube. The motors are placed on a housing and AT3-gen III 16mm timing
belts are used to transfer torques within the housing. The joints are actuated
by Maxon 60W RE30 motors with gearbox ratios of respectively 66:1 and 18:1.
The timing belts provide additional transfer ratios of 5:4 on both joints. The
parameters of this robotic arm are listed in Table 1.

The large damping terms are caused by the back-emf of the motors (since
we use voltage control and not current control). The viscous and Coulomb
friction are neglected in this paper since they are small compared to the back-emf
induced damping. The equations of motion and the transformation to momenta

can be derived using standard methods [19, Chap. 3|, and are ommitted from
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Table 1: The model parameters of the two DOF arm.

Parameter Symbol  Value Unit
Damping tol, o2 7.48, 0.56 Nms/rad
Inertia Ji, Jo 0.0233, 0.0871  kgm?
Mass my, me  0.809, 1.599 kg
Length I, s 0.410, 0450 m
Position of COM 41, lgo 0.070, 0.325 m
Motor constant ki1, ko 25.9, 25.9 mNm/A
Gearbox ratio g1, 92 82.5:1, 22.5:1  rad/rad
Spring stiffness kq 1.6 Nm/rad

this paper because they are too long. Because the second joint is connected to
its motor via a parallelogram mechanism (see [18]), the angle of the second arm

is taken as the absolute angle, i.e., relative to the world frame.

3.2. Task description

We let the manipulator perform a cyclic pick and place motion, with pick
and place positions at [0.4, 0.1] rad and [-0.2, -1.2] rad respectively. At the pick
and place position, the arm has to stand still for 0.2s, which would be required
to pick or place an object. The time to move between the pick and the place

position is 1.4s. Hence, the total time of one cycle is 3.2s.

3.8. Optimization

To find a robustly stable trajectory an optimization is used. First, the tra-
jectory is optimized for fast convergence, by minimizing the maximal eigenvalue
modulus of the linearized Poincaré map, see the stability measure in [6]. The
input was taken as a piecewise linear input, consisting of 20 pieces, with an ab-
solute maximum value of 5V. Then, the robustness of the resulting trajectory is
verified using the approach outlined in Section 2. The uncertain dynamics A(t)

consist of two uncertainties: uncertainty on the linearized stiffness on the first

16



and second joint. The bounds on these uncertainties are constant and taken as

+0.3 and £1.0 Nm/rad respectively.

3.4. Repetitive control parameters

We let the robotic arm learn the cycle from simulation while ¢ < trcfinai-
During this learning period, the learning gain decreased linearly from o =1 at
t=0stoa=0att="trcrina s

The filter gains we used are equal to

_ —(1—1) * (i — 50)
| — (i —1) % (i — 50)]

6(i) = o (i) = 0 Vi > 50 (20)

¢(i) = o(i) Vi < 50 (19)

The result of using these filter gains is that the change in input signal depends
on errors in steps k — p to k — p + 50, see Eq. 13. Therefore the RC scheme
is non-causal. This filter has two purposes. First, taking a weighed average
over multiple measurements reduces the influence of sensor noise. Second, the
non-causality takes into account that the input relates to the acceleration, which
means it takes some time to have a measurable effect on the state, which consists
of the positions and the velocities.

The remaining parameters are shown in Table 2. All PD and filter gains
we used in the repetitive control algorithm are based on experience rather than
on extensive calculations. Also, note that in this paper we do not not prove
that the repetitive controller is stable. Experience on the robot shows that the

repetitive controller is stable as long as the gains P;; and D;; are not too high.

4. Results

This section presents the results from both the optimization in simulation
and hardware experiments. First, using the LMI based robustness analysis,
we optimize the trajectory for both stability and robustness. Second, we learn

the open-loop controller that tracks this trajectory. When the controller is
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Table 2: The parameters used in optimization and RC

Symbol  Value Symbol  Value
tRC finat 300 s

Py 1.5 V/rad Dy 0 V/rad
Py 0.6 V/rad  Das 0.4 V/rad
Pi3 0.3 Vs/rad D3 0 Vs/rad
Pyy 0.4 Vs/rad Doy 0 Vs/rad

learned, the feedback is disconnected and the robotic arms can perform its task
with solely open-loop control. The video accompanying this paper shows the

hardware experiments.

4.1. Simulation results

The red dashed lines in Figs. 3a-d show the cycle obtained from optimization.
The cycle has a maximal eigenvalue modulus of 0.70 and a robustness value of

€= 0.038. These results are interpreted in Section 5.2.

4.2. Hardware results

Fig. 5 shows the learning curve of the repetitive control. It shows two curves
that correspond to the absolute position error of the end effector at the pick
positions (blue line) and the place position (red dashed line). These errors were
calculated by taking the errors at the time in the cycle when picking and placing
are to take place. The learning phase takes about 40 cycles, which corresponds
to 128s. After the cycle is learned, the error at the pick position is approximately
lcm and the error at the place position is approximately 2.5cm. These errors are
small enough to perform many basic pick and place tasks, as found for instance
in the food and packaging industry. Furthermore, these errors are also within
the grasping-ranges of modern robotic grippers|20][21]

The blue solid lines in Figs. 3a-d show the cycle after it was learned on the
robotic arm. The graphs show that the cycle on the robotic arm is the same as

the one obtained from simulation.
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Figure 3: The cycle of the robotic arm after learning. The red dashed line shows the desired
cycle that was obtained from simulation. The blue solid line shows the cycle of the robotic
arm after 300s of learning. (a) The position of the first joint, (b) the position of the second
joint, (c) the velocity of the first joint and (d) the velocity of the second joint.

Fig. 4 shows the motion of the gripper in workspace. The red dashed line
shows the cycle that was obtained from simulation and the blue solid line shows
the robotic arm that starts at a perturbed state and converges to the desired

cycle. Within two cycles, the arm follows the desired cycle.

5. Discussion

5.1. Applicability

The techniques presented in this paper make open-loop stable manipulation

applicable. Previous work showed that model uncertainties lead to a cycle that
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Figure 4: This figure shows the motion of the arm in workspace. The red dashed line shows the
desired cycle that was obtained from optimization. The blue solid line shows the motion of the
robotic arm that does not start on the cycle but converges to the cycle. After approximately

two cycles, the arm returns to tracking the desired cycle with its final accuracy of 2.5 cm.

differs too much from the intended cycle to be applicable in e.g. pick and place
tasks [6]. With the learning of the open-loop controller, the errors in the position
of the gripper decreased to 1-2.5cm. Furthermore, when the arm is perturbed,
it converges back to the desired cycle within approximately two cycles.

Some applications, however, might require a more accurate controller (i.e.
with errors smaller than 2.5 cm). There are no fundamental problems that limit
the accuracy of our approach. There are however, two problems specific to our
robotic arm and implementation that do limit the accuracy. Firstly, velocity
estimation is not accurate due to quantization noise due to a coarse encoder.
This makes it hard to learn the desired cycle. Secondly, the state is filtered

in our implementation of repetitive control, leading to a smooth control signal.
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Figure 5: The abcolute error in the pick and place positions while learning. This graph shows
that the absolute error decreases to approximately 1 cm for the pick position and 2.5 cm for

the place position.

However, a non-smooth control signal might be required to track the desired
cycle more accurately. In conclusion, depending on the application, the setup
and implementation can be changed to increase the accuracy to the desired level.

The learned feedforward approach is applicable to many tasks. A new cyclic
task can be handled by the same procedure of learning a feedforward trajectory,
testing the robustness with Algorithm 1, and learning the input signal with
repetitive control. At the moment the learning takes the most time, 300s. The
optimization (1s) and robustness test (5s) take much less time. Reducing the
time needed to learn a new task will further increase the applicability and is
therefore an important part of our future research.

The main drawback of the current approach is that some feedback is required

during the learning phase. However, this feedback can be delayed (almost a
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whole cycle) and can be removed after the learning has finished. The (delayed)
feedback could therefore be provided by e.g. cameras. One interesting direction
for future work would be to research repetitive control schemes without full state
feedback. This could mean omitting certain states or reducing the frequency of
the feedback.

This feedback requirement also comes up in situations where large distur-
bances are expected to occur after learning. In such situations the robot should
know whether it has converged back to the desired cycle. This requirement can
be satisfied with cameras, or even more basically, by using a switch at a certain

position that checks the timing of passing that position.

5.2. Interpreting robustness measure

The robustness test depends on the choice of A, which is to some degree
arbitrary. In previous experiments on this robotic arm, bending of the second
joint was hypothesized to be one of the main causes of model-reality mismatch
[6]. Therefore A was chosen to emphasize this error, which depends only on the
position of the second joint.

For the chosen A, the resulting robustness measure €, of 0.038 indicates that
the spring stiffness of +0.038 Nm/rad could be added to the second joint. This
seems insignificant to the effective spring stiffness of around 1.6 Nm/rad that
is in place on the first joint. However, note that adding any negative spring
stiffness to the second joint would make that joint unstable by itself. Therefore

low values of €, should be expected.

5.8. Hybrid systems and Coulomb Friction

Despite the fact that robustness against modeling errors is checked, there
are still two modeling-related issues that are not accounted for in the current
approach. Firstly, when performing an actual pick and place motion, the model
will consist of two phases with different end-point masses with an impact phase
in between to model the grasping. Secondly, a more accurate friction model

would include Coulomb friction. Both these effects can be added by using a
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hybrid system model. Such hybrid models are quite generally used in analysis
of systems with limit cycles, mostly to cope with impact in walking, e.g. [22].
Under some basic transversality conditions, as discussed in [23], the current
approach can be extended to such hybrid models. We see that inclusion as the

logical next step in the research in open-loop control of robotic arms.

5.4. Scalability

The experiments were done on a two DOF robotic arm. Such an arm has
similar dynamics to SCARA type arms, which are often used in industry. The
current approach therefore already can be used for realistic industrial situations.
However, there are also many robotic arms which have a larger number of joints
and rotate in 3D. For such a setup the approach remains untested.

There are three possible concerns for this approach for higher DOF robots.
Firstly, there is the possibility that no stable trajectories exist. This is unlikely,
and it can be ensured not to happen if springs are used on all joints to stabilize
the system. Secondly, the required computation will become more extensive.
However, because only a feedforward signal is required, no full state exploration
is necessary. Furthermore, the number of free parameters in the robustness
approach is independent of the number of DOFs on the robot. Thirdly, although
earlier results on a two DOF arm suggest that the basin of attraction of our
approach is quite large [6], for multiple degrees of freedom it becomes more likely
that the robotic arm will converge to a different cycle after a large perturbation.
Again, this could be prevented by using springs on all joints to stabilize the
system. Combining all of the above, we expect that our approach scales well to

higher DOF robotic arms.

6. Conclusion

In this paper we showed that repetitive tasks can be performed stably by
robotic arms with an open-loop controller, even when an accurate model is not

available. We used an LMI-based robustness analysis to check the robustness
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to model inaccuracies. We then used a repetitive control scheme to track this

trajectory with the robotic arm. Hardware experiments show that using this

approach, position errors can be reduced to 2.5 cm, making open-loop control

applicable in tasks such as picking and placing objects.
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