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Chapter 1

Introduction

Erwin de Vlugt

This thesis comprises experimental and model studies that aim to reveal the neuro-
muscular properties involved in the maintenance of arm postures. In this chapter, a
brief introduction is provided to the components of the neuromusculoskeletal sys-
tem that are relevant to the study of human arm posture control. With this, a basis is
laid and a framework is given for the subsequent chapters. Anatomical properties
of muscles and proprioceptive feedback pathways are briefly described and basic
system functioning is explained from a control engineering point of view. Theories
of posture control are discussed and existing experimental approaches to identify
components of the neuromuscular machinery are briefly reviewed. A new experi-
mental paradigm is introduced that is based on the usage of continuous force dis-
turbances facilitating natural position tasks. A novel two degree-of-freedom force
controlled manipulator has been developed that is used to explore the arm admit-
tance in the horizontal plane. Experimental findings were synthesized using de-
scriptive models that represent underlying dynamical processes. Derivation of the
models from known physiological functioning is explained and their applications
for both parametrization and optimization purposes are founded. The last part of
this chapter describes the goal and the lay-out of the thesis.
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1.1 Introduction

Movement generation and posture maintenance are common everyday life perfor-
mances of the human body that are learned by trial and error in our early years.
What has been gained by learning is the appropriate activation of our muscles and
to apply the right corrections based on sensory information of the state of our body.
To understand how movement is controlled, the human movement system has to
be analyzed in its complete constellation of bones, sensors, muscles and the cen-
tral nervous system (CNS) that controls and supervises movement. How flexible is
the CNS in performing movement under different conditions? What are the con-
straints imposed by the biological properties of the neuromusculoskeletal (NMS)
system? What signals are important to the CNS and how does it make usage of all
information sensed? An integral approach to reveal the functioning of the human
movement system is not only important to fundamental research but also highly
valuable for understanding the pathophysiology of movement disorders. Yet there
is still no convincing evidence of how muscles are controlled to perform a move-
ment or maintain a posture.

In this thesis the control properties of the CNS during posture maintenance of
the human arm are quantified and analyzed. During posture control, we like to
keep an object at a specific place in space, like holding the steering wheel dur-
ing car driving, holding a cup of coffee, positioning a drilling machine etc. Very
often, external disturbances are present that tend to displace the arm from the de-
sired posture. In most cases, the exact properties of the disturbances are not fully
known, as they appear at random time instants such that one cannot anticipate on
them. To maintain position is to increase the mechanical resistance against such
perturbations. Posture control is therefore characterized by disturbance rejection to
keep displacements within acceptable bounds or make them as small as possible.
The intrinsic stiffness and viscosity of muscles are highly beneficial to disturbance
rejection. The reflexive feedback system can further enhance disturbance rejection
based on sensory information of the mechanical state of the muscles. Most feedback
control mechanisms are fast and, compared to the intrinsic properties, are energy
efficient as the muscles are only activated when displacements occur.

Ultimately, full knowledge of the NMS system is obtained if the properties of
each subsystem (bones, sensors, muscles, CNS) can be measured directly. In gen-
eral, system properties are derived from input-output measurements of the par-
ticular subsystem. As an example, muscle stiffness can be derived from measure-
ments of the muscle’s length (input) and force (output). It is obvious that to obtain
the properties of all subsystems, invasive measurement techniques are required.
Besides, appropriate measurements of the input-output behavior of the sensory
part and in particular of the CNS is technically not possible yet. Since ethical laws
prevent the application of invasive experiments on humans, invasive experiments
have been undertaken numerously on animals. A lot of these studies have been
directed to reveal the mechanical properties of skeletal muscles from controlled
stretching one muscle and measuring the responding muscle force. Voluntary and



Introduction 3

reflexive forces were mostly excluded by dissection or anesthesia. Explaining nat-
ural control functioning from these studies is hardly possible.

For a functional understanding of human motion control, experiments need to
be carried out on the intact functioning system. Consequently, one is restricted to
those measurements than can be obtained non-invasively such as reaction forces of
the whole limb with some sort of environment, hand positions, joint angles from
kinematic data and lumped muscle activation from electro-myography (EMG). Sys-
tem properties can be obtained by perturbing the intact system and analyzing the
response.

Because the properties of the underlying systems can not be measured directly,
a-priori knowledge must be used in the form of descriptive models. These models
must include descriptions of the relevant subsystems such that they can be evalu-
ated at the global level at which the measurements were taken. In fact, the absence
of detailed measurements is to be compensated for by models. Depending on the
application, these models vary by size, i.e. the number of joints included, and by
level of detail, i.e. global or detailed mathematical descriptions from basic physics.

A major part of this thesis comprises the development of identification tech-
niques to quantify the intrinsic and reflexive properties of the intact human arm in
vivo during posture control. From such an approach, the role of these properties to
the overall performance of the arm can be explained functionally. An appropriate
measurement technique requires the application of force perturbations that appeal
as natural during posture maintenance. Consequently, the usage of intrinsic and re-
flexive properties have direct effect on the displacements that result from the force
perturbations.

The human reflex system is adaptive and it might as well be the case that the
measured behavior is particular for a certain condition. Therefore, the experiments
should be designed as to cover a wide range of natural conditions. The formulation
of the task instruction has major impact to the control of posture. Furthermore, it
does make a difference if someone is only told to keep his or her hand on a target
instead of asking to minimize the amplitude of the displacement (Burleigh and Ho-
rak, 1996). Accompanying learning effects with either task instruction presumably
differ as well. The latter, more demanding task formulation was chosen.

Experiments were conducted on healthy subjects and the mechanical admit-
tance at the hand level was estimated. From the mechanical admittance, the under-
lying joint dynamics were quantified with the aid of descriptive models. To apply
force disturbances, an advanced force controlled manipulator is required which act
as an external dynamical load to the human arm. As a consequence, the human is
embedded in a closed loop configuration with that load. To separate the human
response from that of the load, closed loop identification techniques are required.

Experimental and model studies were entangled throughout the thesis exhibit-
ing a continuous interchange of knowledge about the physiology of the human
movement apparatus and about theories of posture control.
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1.2 The neuromusculoskeletal system

1.2.1 Basic functioning

To understand NMS system functioning, it is necessary to know of which parts it
exists and how these parts are mutually related. In this subsection, the general func-
tioning of each part and the coupling between the parts of the NMS are described.
The functioning of each subsystem will be explained in the context of posture con-
trol. The architecture of each subsystem is described in detail in the subsequent
sections.

Basically, the NMS system is build up of four parts, being the skeleton, sensors,
CNS and the muscles as schematically shown in Figure 1.1. The skeleton is a con-
stellation of bony segments which are interconnected by joints. The mass of the seg-
ments determines the mechanical behavior at fast movements. Also the resonance
frequency is directly determined by the inertia of the NMS system.

The state of the skeleton is measured by different type of sensors. For posture
control of the human arm, the relevant sensors are the propriocepsis and the visual
system. Propriocepsis is a system that provides information about the displace-
ment and velocity of the segments and the forces applied to them. This information
is generated by mechanoreceptors in the skin, the joint capsules and the muscles.
Most important to the control of arm posture are the mechanoreceptors in the mus-
cles, called the muscle spindles, providing length and velocity feedback. Another
important mechanoreceptor is located in the muscle tendon junction that measures
muscle force, the so called Golgi tendon organs. The visual system also provides
information of the position and velocity of the segments.

The CNS comprises the signal processing in the brain and the spinal cord. Neu-
ral signals that originate from inside the CNS (voluntary actions) are integrated
with neural signals that enter the CNS from the sensors, and processed into motor
commands. These motor commands activate the muscles. The skeleton has to be
kept into a position by muscle forces. The muscles behave like mechanical spring-
dampers of which the elasticity and viscosity increases with activation level.

Clearly, the human posture control system is characterized by a closed loop sys-
tem of sensing, integrating and processing of control signals and actuating. There-
fore, the dynamics of all subsystems in the loop are of direct importance to the
overall performance of the movement task. Another important aspect is the neural
delay involved in the transport of sensory signals to the CNS and in the transport
of motor commands to the muscles. These time delays substantially limits the per-
formance of the closed loop control system. The NMS system behaves like a hier-
archical control system where the spinal cord acts as a subconscious fast controller
based on proprioceptive information. Visual information is processed by higher
brain centra and is less effective due to the larger time delays involved.
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Figure 1.1: Basic components and functioning of the NMS system. The system

exists of a closed loop where sensory information about the state of the skeleton

(position, velocity, force) is monitored and send to the CNS (the afferent pathways).

Sensory information is integrated and processed by the CNS into control signals to

activate the muscles (the efferent pathways). Muscles produce force that aceller-

ate the skeleton (the controlled system). Undesired displacements that result from

external forces are to be suppressed by the CNS.

1.2.2 Nervous system

Information processing and transport in the central nervous system (CNS) is estab-
lished by nervous cells or neurons. There are three types of neurons that are im-
portant to movement control: sensory neurons, motor neurons and interneurons.
Sensory or afferent neurons transmit information from the musculoskeletal sys-
tem to the CNS. Motor or efferent neurons transmit information from the CNS to
the muscles. The interneurons are located in the CNS and form complex networks
that process sensory information and generate motor control signals. Signal trans-
fer between neurons is the result from electro-chemical processes. If the electrical
potential of a neuron is raised to above a critical threshold, a chain reaction takes
places which rapidly increases the potential to a positive level and then back to the
negative rest potential again. The resulting electrical pulse is called the action po-
tential (spikes) and can be transferred to neighboring neurons via neurotransmitter
substances. Signal transfer can be inhibitory causing the potential of the receiving
neuron to decrease and consequently lowering the chance to cause an action poten-
tial. Alternatively, an excitatory transmission causes the potential of the receiving
neuron to increase and therewith increasing the chance to start a new action po-
tential. Since many neurons project on many others (1000 connections per neuron
on average), the final determination of an action potential is the result of a lumped
weighting of all inhibitory and excitatory connections. The nervous system acts as
a regulator of signal strength and can modify the total gain of the signal pathways
from the sensors to the muscles which is crucial to the control of movement and
posture.
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1.2.3 Muscle anatomy and physiology

The main function of the skeletal muscle is force generation and energy transfer in
order to rotate the joints and move the limbs for a variety of tasks or for posture
maintenance. When a muscle generates force and shortens, it transfers chemical
energy into mechanical energy which moves the skeleton. It absorbs mechanical
energy while it stretches, transferring energy into heat. To generate a force, contrac-
tile machinery in the muscle must be activated by motor commands from the motor
neurons.

Active muscle tissue

Active tissue of muscles consists of elements able to shorten when activated. The
construction of the skeletal muscle is depicted in Figure 1.2. Skeletal muscles con-
sist of bundles of muscle fibers. Each fiber consists of thick and thin filaments into
functional units called the sarcomeres (Fig. 1.2B and Fig. 1.2C). On both sides of the
sarcomere boundary the thin filaments of subsequent sarcomeres are attached. The
filaments are aligned in parallel and are able to generate force by means of bend-
ing proteins called the cross bridges in between the filaments. The globular head of
the cross-bridge has two components, one for binding to the active site of the thin
filament, and the other contains the enzyme myosin ATPase, which splits ATP and
releases its energy for contraction.

Activation dynamics

Important to the control of muscles is their responsiveness to motor commands.
How fast does force build-up? Because of the closed loop configuration of the
movement system, activation dynamics directly affects overall control behavior
and must be taken into account when identifying the NMS as a whole.

Muscle contraction is initiated by action potentials along the muscle fibers which
on their turn are caused by action potentials from the motoneurons. The cell bod-
ies of these motoneurons lie in the spinal cord and its branches or axons inner-
vates a group of muscle fibers called a motor unit. Stimulation of the motoneuron
causes all muscle fibers of the motor unit to be activated and to contract simul-
taneously. An action potential that is propagated down the axon causes an action
potential that will propagate along the sarcolemma (muscle cell membrane). Action
potentials that are generated along the sarcolemma propagate into the transverse
tubule system (Fig. 1.2A) and increase the permeability of the sarcoplasmic reticu-
lum membrane. Ca2+ ions are released from the sarcoplasmic reticulum, raising the
cytoplasmic concentration of Ca2+ in the muscle cell about 100 to 1000-fold. Due to
the catalyzing effect of Ca2+, cross-bridges are formed and the myofilaments gen-
erate force. During the excitatory state brought on by each action potential, Ca2+

continually cycles from the sarcoplasmic reticulum to the myofilaments and back
to the sarcoplasmic reticulum.

The time constant for activation, i.e. from action potential along the sarcolemma
to force build-up, is smaller than for de-activation. The intracellular processes of
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Figure 1.2: Structure of the skeletal muscle (from Kandel et al., 2000). A. Sec-

tion of a muscle fiber showing the relationship of the myofibrils to the membrane,

transverse tubule system and the sarcoplasmic reticulum. B. The sarcomere as

the functional unit of a muscle. It contains the contractile proteins. C. Detail of the

contractile proteins or thin and thick filaments.



8 CHAPTER 1

calcium activation and de-activation are therefore nonlinear. For continuous vari-
ations around a mean force level, the activation process can be accurately approx-
imated by a linear first-order model (Chapter 2 and Van der Helm et al. (2002)).
Further improvements resulted in an extension to a second order model that more
accurately described the experimental findings (Chapter 3).

1.2.4 Mechanics of muscles

Force-length characteristic

Active muscles have a spring-like characteristic which is useful for the maintenance
of posture. When operating in antagonistic pairs, muscles provide the joint the ap-
propriate stiffness depending on their individual lengths and activation level.

The length of a muscle determines how much force can be developed. Mus-
cles develop lower force at lengths shorter than, as well as longer than the optimal
length LM

0 , i.e. muscle length where force is at a maximum. For static isometric sit-
uations this results in the force-length relationship as depicted in Figure 1.3A. This
relation is obtained by high stimulation rates of the muscle for a relatively long
period of time so that a fused tetanic contraction arises. The difference in force dur-
ing the active and passive state of a muscle is called active muscle force (Fig. 1.3A,
solid lines). The region were the active muscle force is generated is approximately
0.5LM

0 < LM < 1.75LM
0 for most skeletal muscles. The length at which passive

muscle generates force is nominally at LM
0 and longer. The passive force of muscle

(Fig. 1.3A, dotted lines) results from binding structures of the fibers (endomysium)
and surrounding tissues of whole muscle (perimysium).

The isometric force-length relation can be explained from the sliding filament
theory (Huxley, 1957) and is schematically represented in Figure 1.3B. For simplic-
ity, it is assumed here that all sarcomere lengths along the muscle fibers are equal,
each contributing the same force to the total active force. Taking the length from
small to larger values, the ascending limb of the force-length relation is because
of increasing filament overlap. At optimal muscle length LM

0 , the overlap is max-
imal and all cross-bridges can be formed. Stretching the muscle further from this
point, the filament overlap decreases and less force can be generated. At very small
lengths the thick filaments bump into the sarcomere boundaries and little external
force can develop. The sliding filament theory is a rationale for the force-length
property of the isometric contracting muscle. Mainly due to sarcomere length inho-
mogenity and different fiber types (slow and fast), the actual isometric force-length
curve has a shape comparable to Figure 1.3A rather that that of the simplified curve
shown in Figure 1.3B.

Muscle stiffness is important for the maintenance of a posture and can be de-
rived by taking the slope of the spatial derivative of the force-length curve at a
certain muscle length: ∆F

∆L
. However, the force-length curve is determined isomet-

rically while muscle stiffness plays a role during small movements around an equi-
librium postural position. It is known that derivation of the stiffness from the force-
length relationship results in an underestimation of the apparent stiffness during
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Figure 1.3: A. Force-length relationship of muscle when passive (dotted curve)

and active (dashed curve). The difference between the total force and the passive

force is the active force (solid line). LM is the length of the muscle, F M is the

muscle force, LM
0 is the optimum muscle length at maximum muscle force F M

0

and maximum stimulation. B. Schematic force-length diagram of muscle related to

sarcomere length and the amount of actin-myosin overlap (reproduced from De

Vlugt (1998a), p. 28).
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Figure 1.4: Force-velocity relationship of fully activated muscle, vm is the maximum

shortening velocity (reproduced from De Vlugt (1998a), p. 29).

movement. Dynamic properties like the short range stiffness from attached cross-
bridges and the dependency on contraction history of the contractile machinery
also enhance whole muscle stiffness (De Vlugt, 1998b). The models used in this the-
sis description the net muscle stiffness and so implicitly comprise these additional
contributions to stiffness.

Force-velocity characteristic

The velocity at which a muscle shortens or lengthens also determines the force
than can be produced, as described by the characteristic force-velocity relation. Hill
(1938) measured initial shortening velocities under various isotonic afterloads and
demonstrated that the force-velocity relation can be described by two parabolic
curves (Figure 1.4). In case of zero velocity a certain number of cross-bridges are
in an attached state, others are unattached, even at maximal activation. When the
muscle is stimulated constantly the cross-bridges are in cyclic transfer from the
attached state to the unattached state and vice versa. If the muscle shortens cross-
bridges will bend and detach. After detachment a new bonding place is sought and
re-attachment will take place and so on. If shortening velocity increases less cross-
bridges are in attached state and total force decreases. Indeed some cross-bridges
can not detach in time generating a contracting force and will be forcibly detached
by the action of other cross-bridges at the expense of total force. At maximum short-
ening velocity vm, all force of force-generating cross-bridges will be consumed for
detaching other cross-bridges and zero net force results. At stretching velocities
there is an extra net force needed for breaking the cross-bridges. The muscle force
therefore increases as can be seen from Figure 1.4. At high stretching velocities less
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cross-bridges are able to attach in time and force decreases: muscle yielding.
Muscle viscosity determines the amount of damping of the joints. Well damped

systems show little overshoot in the response to steplike force disturbances. Un-
derdamped systems on the contrary show oscillatory behavior that slowly decays
in time. Therefore, muscle viscosity plays an important role to the performance of
the NMS system during posture maintenance. Muscle viscosity for small displace-
ments around a mean muscle length can be derived from the force-velocity charac-
teristic as the derivative at zero mean velocity where the viscosity is expected to be
largest (Fig. 1.4). Net muscle viscosity is described by one parameter in all models
used in this thesis.

1.2.5 Passive tissues

Passive structures having the greatest effect on muscle force reside in the tendons
and the fascicle that surrounds the muscle. Tendons are located on both sides of
the muscle and function as stiff force transfer elements in series with the contractile
tissue. The contribution of tendon stretch to the total lengthening of the muscle-
tendon complex is very small. Tendon stiffness is at least 10 times higher than the
stiffness of the active contractile tissue and is therefore neglected in all subsequent
analyses in this thesis. The fascicle is involved in force transfer as well, acting in par-
allel to active muscle tissues. Other contributions from passive parallel structures
are those from binding tissues inside the sarcomeres and the fibers membranes.
At optimal muscle length, the parallel stiffness of these passive structures have a
modest contribution to the overall muscle stiffness.

1.2.6 Muscle sensory receptors

Muscles contain two important mechanoreceptors that transduce mechanical stim-
uli into neural activity. The muscle spindle senses changes in muscle length and
lengthening velocity while the Golgi tendon organ senses changes in muscle force.
The process of sensory transduction occurs in several successive stages. First, the
mechanical stimulus causes deformation of the terminal membranes of the receptor,
producing conductance changes which give rise to the receptor potential. The re-
ceptor potential (or current) is then encoded into nerve impulse activity at a nearby
impulse-initiating site.

Muscle Spindles

Muscle spindles are mechanoreceptors which respond to stretch and stretch rate.
They consist of intrafusal muscle fibers and sensory nerve endings encapsulated
in spindle-shaped structures that are distributed throughout a muscle in paral-
lel with the extrafusal fibers (Figure 1.5). There are two types of sensory inner-
vation to intrafusal muscle fibers, primary endings (group Ia), which are large,
fast-conducting nerve fibers, and secondary endings (group II) which are smaller
slower-conducting nerve fibers. Group Ia afferents respond to stretch and stretch
rate. Group II afferents respond mainly to stretch.
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Figure 1.5: Simplified diagram of the central region of the muscle spindle. Inside

the spindles, two types of intrafusal muscle fibre exists: nuclear bag (static and dy-

namic) and nuclear chain fibres. The middle portion of the fibres contain sensitive

celbodies that evoke action potentials in two nerve types: the Ia (primary endings)

and II (secondary endings) afferent nerve endings. Stretch of the intrafusal fibres

evokes action potentials in both nerve endings. Group Ia afferents are sensitive

to stretch and stretch rate. Group II afferents are mainly sensititive to stretch. Fi-

bres endings exist of contractile tissue that are innnervated by γ motoneurons. By

intrafusal contraction the sensitivity of the muscle spindles can be changed (from

Kandel et al., 2000).

Intrafusal fibers are innervated by γ-motoneurons, which are divided into static
and dynamic groups. Static refers to the stretch-sensitive part and dynamic refers
to the stretch rate-sensitive part.

When an intrafusal fiber is stretched, the sensory endings undergo a mechani-
cal deformation that results in a receptor potential. Under the driving force of the
receptor potential, the impulse-initiating region of the nerve membrane produces a
sequence of nerve impulses (action potentials) that are conducted along the sensory
nerve fiber to the spinal cord (afferent transmission). The mechanical properties of
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Figure 1.6: Morphology of the Golgi tendon organ (from Kandel et al., 2000). Mus-

cle force causes the Ib nerve endings to squeeze between the collagen fibers re-

sulting in axon action potentials. Golgi organs lie in series with the muscle fibers

and in parallel with the surrounding connective tissues (perimysium).

intrafusal fibers determine the proportion of an applied stretch that will act on the
sensory endings and consequently how the stretch will be transduced into nerve
impulses. The sensitivity of primary and secondary sensory endings can be altered
by changes in intrafusal fiber stiffness. The polar zones (regions near the ends) of
an intrafusal fiber are considerably stiffer than the sensory zones, which are lo-
cated near the center of the fiber. Therefore, when a muscle spindle is stretched
most of the change in length takes place in the sensory zone. Stimulation of the γ-
motoneuron produces localized contraction of an intrafusal fiber. The contraction
stretches the sensory zone, which is more compliant, and also enhances its sensitiv-
ity to stretch since the polar zones become relatively stiffer and hence more resistant
to stretch (Chen and Poppele, 1978).

Tendon organs

Tendon organs are mechanoreceptors which respond to force. They consist of bun-
dles of collagen strands and sensory nerve endings enclosed in connective tissue
capsules located at junctions between muscle fibers and tendon or aponeurosis
(Fig. 1.6). The collagen breaks up into fine strands which are woven around sensory
nerve endings. Force is transmitted from the tendon and muscle ends of the organ
to its sensory endings through the collagen bundles and capsule cells in which they
are embedded. The resulting mechanical deformation of the terminal endings of
the sensory nerve fibers gives rise to the receptor potential, which is then encoded
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as nerve impulses. The sensory nerve fibers that innervate the tendon organs are
known as group Ib afferents. Tendon organ afferents begin to discharge at the onset
of contraction of in-series muscle fibers. If the in-series force applied to the tendon
organ is sustained afferent discharge will be maintained (Houk and Henneman,
1966). Tendon organs have relatively low sensitivity to tension generated by pas-
sive stretching of the tendon, but are highly sensitive to forces generated by active
contraction of in-series muscle fibers. In a passive muscle most of the stretch will be
taken up by the muscle fibers rather than the tendon. Tendon organs require higher
levels of passive tension to produce sustained discharge than do muscle spindles.

1.2.7 Spinal reflexes

Spinal reflexes result from activity in sensory afferent fibers, originating in the pe-
riphery, that project either directly or indirectly to motoneurons. Reflex actions are
the direct result of synaptic connections between afferent fibers and motoneurons
(monosynaptic) or from indirect pathways via of one or more interneurons. The in-
puts to a single neuron may include sensory inputs from the periphery, descending
inputs from supraspinal regions and inputs from other interneurons.

Inputs from descending commands from higher centra of the nervous system
onto interneurons can enhance (amplify) or depress (attenuate) the effects of sen-
sory input to the motoneurons. In particular, some interneurons act as gates that
control whether a peripheral input reaches motoneurons. Gating can be achieved
directly also by descending fibers acting presynaptically on the terminals of affer-
ent fibers to produce presynaptic inhibition (Rudomin, 1999). The excitatory and
inhibitory inputs onto motoneurons also allows for the possibility of a change in the
sign of reflex action from excitatory to inhibitory or vice versa (Jankowska, 1992).
An inhibitory stretch reflex of a tensed muscle will decrease its stiffness since its ac-
tivation decreases when the muscle is stretched. Reflexive stiffness reduction also
occurs in the case an antagonistic muscle is excited when the agonist stretches. This
is called reciprocal excitation.

The fastest reflex pathway is the monosynaptic excitation of alpha-motoneurons
by Ia afferent fibers. This excitation is distributed to motoneuron pools which are
close synergists at the same joint, as well as synergistic motoneurons at neigh-
boring joints (Kandel et al., 2000). In parallel with the monosynaptic excitation
of alpha-motoneurons, activity of Ia afferents also causes reciprocal inhibition of
alpha-motoneurons of antagonist motoneuron pools. This inhibition is mediated
by a class of interneurons known as Ia inhibitory interneurons (Rudomin, 1999). In
the stretch reflex, Ia inhibitory interneurons mediate the reciprocal inhibition that
coordinates the actions of opposing muscles. As one muscle contracts, the other
relaxes. This mode of coordination is also useful in voluntary movements where
relaxation of antagonist muscles enhances speed and efficiency by allowing the ag-
onists (or prime movers) to contract without having to work against contraction of
opposing muscles.

Activation of tendon organ Ib afferents can lead to the inhibition of alpha mo-
toneurons of the muscle of origin since there is one inhibitory interneuron in the
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path. However, an excitatory effect has also been reported to enhance muscle force
for leg extensor muscles that act against gravitational forces during gait. See Duy-
sens et al. (2000) for a qualitative overview of force feedback functionality.

There are other reflex pathways, originating from cutaneous sensory afferents,
that are known to play important roles in motor control. However, because cuta-
neous mechanoreceptors provide less accurate sensory information about position
and force (along with a larger the time delay) compared to muscle spindles and
Golgi tendon organs only reflex pathways involving the latter will be considered in
the context of feedback control.

1.3 Posture control

Human posture control is the maintenance of a specific desired position of the body
in 3D-space. From a control theoretical point of view, the CNS acts as a regulator to
suppress disturbing forces that displace the body segments from the intended po-
sition. The CNS regulator requires information about the actual state of the neuro-
musculoskeletal system for comparison with the desired reference states for subse-
quent determination of the appropriate corrective muscle forces. It depends on the
amount of degrees of freedom which sensors are effective. For whole body stance
control many different sensory information channels are useful like visual, vestibu-
lar and muscle spindle feedback (Van der Kooij et al., 1999). For arm posture tasks,
visual and muscle spindle feedback sensory signals are effective to suppress exoge-
nous disturbing forces. Experimental studies on muscle spindle responsiveness to
different local stimuli and whole body functioning support this property (Brouwn,
2000; De Vlugt et al., 2001; Schouten et al., 2001). The role of golgi tendon organs
has not been studied still. A possible function proposed by Rozendaal (1997) is that
feedback of muscle force increases the bandwidth of the activation dynamics, i.e.
making the muscle respond faster to motoneuron excitation. On its own, this is an
elegant theory albeit that there is a secondary effect to it, namely that force feedback
drastically decreases the mechanical resistance (i.e. the effect of muscle stiffness and
viscosity) which is not beneficial for the maintenance of posture.

Characteristic to feedback control loops in general is the existence of a circular
information flow from sensors to effectors (muscles) to payload (skeleton) to sen-
sors and so on. The benefit of feedback systems is their self-regulatory property. If
not properly adjusted, these feedback systems might become instable by showing
a progressive increase or oscillation of the signals inside the loop. Instability occurs
when the loop gain (traveling once around) is larger than one and the loop phase
shift is smaller (more negative) than -180 degrees. Figure 1.7 shows a blockscheme
that illustrates the feedback configuration of human arm posture control. Deriva-
tives of this basic scheme are used throughout this thesis.

Time delays from neural transportation to, from and through the spinal cord
are the major threats to stability since they introduce an increasing phase lag with
frequency. Consequently, at higher frequencies fast control using spinal feedback
pathways (± 30-40 ms for arm muscles) is more effective than control via slower
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Figure 1.7: Human arm posture control scheme. The reference position is an en-

coded neural representation in the higher nervous centra that provides a setpoint

to the outer feedback loop. In the outer feedback loop sensory information of the

actual arm position is provided by the muscle spindles (ascending pathways, e.g.

from slow II afferents) and the visual system. Difference between the actual and

reference position are amplified (or attenuated) by supraspinal control and send

downwards to command the spinal motoneurons. A subsequent similar compari-

son is performed at motoneuron level based on force feedback from golgi tendon

organs (Ib spinal afferents) and position feedback from muscle spindles (Ia spinal

afferents). The spinal controller produces the excitation signals (EMG) that activate

the muscles such that the displacements resulting from the external force distur-

bance are counteracted.

supraspinal pathways (± 60-120 ms). Other contributions to phase lagging come
from the activation dynamics, intrinsic muscle viscosity and inertias of the skeleton
and possible external attached loads. The effective frequency range for stable con-
trol is called the bandwidth of the closed loop. Typically, the spinal feedback loops
of the shoulder joints have an average bandwidth of 2.5 Hz, depending on intrin-
sic and reflexive properties and the configuration of the joints (Rozendaal, 1997).
For comparison, the bandwidth of the supraspinal visual feedback loop is ± 1.0
Hz (McRuer and Jex, 1967). For posture control, high feedback gains are desired
for disturbance suppression which at the same time can lead to instable behavior.
Stability is the constraint for successful control which the CNS has to preserve. This
leads to the concept of optimal control where the control facilities of the CNS (feed-
back settings, muscle contraction, joint angles) are utilized to obtain a desired and
sufficiently stable system behavior.

1.3.1 Optimal control

A functional approach towards understanding the concept of human movement
control is the idea of optimal control. Optimal in the broadest sense means the best
performance (goal) at the lowest effort (costs). A frequently used explicit function
of performance is the minimum average jerk (third power) of the hand position
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over time (Hogan et al., 1987). Stroeve (1999) implemented minimum jerk weighted
against a cost function with muscular activation terms to learn a neural network
during continuous external force disturbances. It was found that the arm stiffness
was primarily determined by reflexive feedback from muscle spindles whereas the
arm viscosity was to a large extent due to intrinsic muscle contraction. The draw-
back of the minimum jerk function is that it puts relatively large emphasis on fast
movements which can only be controlled stably by intrinsic muscle visco-elasticity.

Another performance measure is related directly to the dynamical properties
of the whole arm, i.e. the relationship from external force disturbance (input) to the
hand position (output), and is called the endpoint admittance. The lower the admit-
tance the more the effect of external disturbing forces is suppressed. The endpoint
admittance is the only appropriate description of the arm during posture mainte-
nance as it represents the arm as a position controller. More or less, each subsystem
in the position control loop effects the endpoint admittance. Apart from a good
performance measure, admittance is therefore the key entrance to obtain the un-
derlying properties of the NMS system. Rozendaal (1997) optimized a two degree-
of-freedom (DOF) arm model on the assumption that the endpoint admittance is
always critically damped. A general variant of the endpoint admittance is used in
recent 1-DOF and 2-DOF model studies based on the minimization of the variance
(related to the second power) of the hand position (De Vlugt et al., 2001; Schouten et
al., 2001). Minimization of the variance was shown to be similar to the minimization
of the admittance equally at all frequencies. Instead of a cost function, stability was
taken as the constraint. It was predicted that reflexive length and velocity feedback
from muscle spindles were substantial and always resulted in boundary stable be-
havior. These results were comparable to those obtained by Stroeve (1999) and to a
similar experimental study by (Van der Helm et al., 2002), suggesting that the CNS
optimizes the endpoint admittance only over the frequencies included in the force
disturbance.

1.4 Experimental approach

In the last three decades many different in vivo experimental studies have been per-
formed to retrieve the control properties of the human arm subserving the main-
tenance of posture. All studies used some kind of mechanical perturbation signal
(transient or continuous) that was applied at the hand and derived neuromuscular
properties from the analysis of the response. Most of the time these studies con-
cerned the control of singles joints (wrist, elbow, ankle, knee) and less frequently
multiple joints were studied. All studies can be divided roughly into two categories
(see Table 1.1 and Abbink (2001) for a complete literature overview).

The first category comprises studies that imposed continuous position pertur-
bations (noise-like signals) while subjects were requested to maintain a mean con-
stant force amplitude (Kirsch et al., 1993; Cathers et al., 1999; Kearney et al., 1997;
Zhang and Rymer, 1997; Mirbagheri et al., 2000, 2001; Perreault et al., 2001; Per-
reault, 2002). These studies can be divided into two categories. The ones that mea-
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Table 1.1: Combinations of task and type of mechanical perturbations used in pre-

vious studies to identify the control properties of the human arm. For each combi-

nation, the effectiveness of the human controller parts for posture maintenance is

given.

Perturbation type
Task Position Force

Position Unfeasible, Small endpoint admittance
endpoint admittance has (high resistance) is desired.
no influence on imposed Beneficial usage of:
position - intrinsic muscle visco-elasticity

- feedback from muscle spindles

Force High endpoint admittance Unfeasible,
(low resistance) is desired. endpoint admittance has no
Beneficial usage of: influence on imposed (pure) force
- minimal intrinsic visco-elasticity
- possibly force feedback from
Golgi tendon organs

sured the global admittance at endpoint without further analysis of the underly-
ing control system. The others that used quantification methods that basically rely
on neuromuscular models (i.e. a-priori knowledge) and optimization algorithms to
minimize the difference between measured and predicted variables. From these lat-
ter studies, quantitative measures of the reflexive system were obtained. However,
the main argument against the usage of position perturbations is that any correc-
tive control actions by the CNS has no effect on the hand position since movement
is imposed by a manipulator rather than being the result of the human controller.
The estimated properties of the muscle spindle reflexive system are therefore hard
to interpret with respect to functional motor tasks (bottom left in Table 1.1). There-
fore, position perturbations are not appropriate to study the stabilizing properties
of intrinsic and reflexive mechanisms that are essential for posture maintenance.

Alternative to continuous position perturbations, transient (step, pulse) dis-
placements were often used (Mussa-Ivaldi et al., 1985; McIntyre et al., 1996; Stein
and Kearney, 1995; Tsuji et al., 1995). In contrast to the reaction to the perturbation
in the case of continuous perturbations, transients reveal the state of the NMS sys-
tem just before the onset of the perturbation. In most of these studies, subjects were
asked ’not to intervene voluntarily’ with the perturbation. From the responses of
the reaction forces or EMG recordings, qualitative measures about the timing of re-
flexive activity was derived. Some studies derived the static stiffness was the ratio
of the change in force and position after transient effects were vanished. In an-
other study, even the damping and inertia of the whole arm were derived from the
transient position and force signals (Dolan et al., 1993). The drawback of using tran-
sients is that voluntary actions can not be fully excluded. Right from the onset of
the perturbation humans will more or less react which might induce changes in the
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reflexive system. Reactions to the perturbation and voluntary interventions coexist
which lead to ambiguous results.

The only proper condition required to analyze posture control is the usage of
continuous force disturbances in combination with position tasks, which are most
natural for the study of posture maintenance (top right in Table 1.1). Force distur-
bances allow the position to be controlled by the human. By increasing the mechan-
ical resistance of the arm, the displacements that result from the force disturbances
can be reduced. Intrinsic muscle visco-elasticity and reflexive feedback from muscle
spindles are perfectly suited for this task.

It is difficult to distinguish between the intrinsic and reflexive components of
human arm dynamics during postural control. Many disturbance experiments have
been reported that hypothesized the role of stretch reflexes. Whereas the intrin-
sic mechanics of muscles are reasonably known, reflex dynamics are not. A well-
known variability of the stretch reflex is the increase in reflex activity with muscle
activation level (Matthews, 1986; Kirsch et al., 1993). Other experiments with iso-
lated cat hindlimb muscles demonstrate that reflexive muscles have different force-
length (stiffness) characteristics compared to de-afferented muscles (Feldman and
Orlovsky, 1972; Nichols and Houk, 1976; Hoffer and Andreassen, 1981; Shadmehr
and Arbib, 1992). The reflexive contribution to postural control has been quantified
by the reflexive EMG activity as a response to disturbances, by H-reflexes and by
the mechanical behavior, i.e. the change of stiffness and viscosity.

EMG is the most often used source of information about reflex activity. Sig-
nificant EMG activity has been measured during step-like disturbances, which is
attributed to stretch reflex mechanisms (Crago et al., 1976; Lacquaniti et al., 1982;
Carter et al., 1990, 1993). Agarwal and Gottlieb (1977a) perturbed the ankle joint
and suggested that the stretch reflex mechanism plays an important role for sinu-
soidal torque disturbances within the 5-8 Hz region, where ankle rotation becomes
strongly resonant. However, EMG is a combination of reflex activity and other in-
fluences, like voluntary actions (Crago et al., 1976). Moreover, the EMG to force
relation is also affected by the muscle length and contraction velocity. It is difficult
to estimate the contribution of reflex activity to the mechanical behavior using EMG
only.

A second technique to quantify the amount of reflex activity is the use of H-
reflexes (Toft and Sinkjær, 1993). A nerve is stimulated, and the relative magnitudes
of the direct EMG response and indirect, reflexive EMG response are assumed to
show the loop gain of the reflexive pathways. However, many afferent pathways
from skin sensors, Golgi tendon organs and muscle spindles are likely to project on
the α-motoneurons, some with excitatory and some with inhibitory connections.
Stimulating the nerve results in stimulation of many of these pathways, and the re-
sultant EMG response will be a summation of the strength of the combined afferent
pathways. The specific mechanical stimulus for each of the pathways (e.g. force,
position, velocity) is not taken into account, and therefore the mechanical meaning
of the H-reflex response is not clear.
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1.4.1 Force controlled manipulators

The generation of force disturbances requires devices that must be strong enough to
transmit sufficient mechanical power to the human on the one hand and lightweight
to add the least payload to the human arm on the other hand. The payload or
the dynamical properties that are apparent to the human at the point of contact
are referred to as the virtual dynamics of the manipulator. If the virtual dynamics
would be substantial (i.e. large virtual mass, damping or stiffness) it had large dis-
turbance suppressing effect. Consequently it would (partly) take over the posture
task that was meant to be performed by the human. The contradicting requirements
(strong and virtually compliant) oblige the usage of lightweight stiff materials and
fast powerful actuators. A haptic device, called the ARMANDA manipulator, that
satisfies these principle design specifications has been build for the purpose of pos-
ture control analyses in the horizontal plane of movement (Chapter 6). Haptic refers
to the sense of touch providing the subject the experience as if they were moving
real physical objects. The virtual dynamics it represents at endpoint was realized
by using force control. This means that a virtual trajectory was determined on-line
from the force applied by the subject to the manipulator, as being measured by
force transducers at the point of contact. Then, the actuators of the manipulator
were controlled in such a way that the reference trajectory was followed. These
force controlled haptic devices can be used perfectly to impose force disturbances
for identification purposes by simply superimposing a self generated signal to the
measured force generated by the subject. Force controlled manipulators are there-
fore highly valuable for the identification of the movement system during natural
tasks in realistic environments.

Over the last ten years, haptic control gained an increased attention for many
different fields of application such as virtual surgical training (needles in biological
tissues), movement rehabilitation (gentle movement assistance) and master-slave
application (manual control of a remote plant). In contrast to the purpose of iden-
tification, these latter applications are all based on human induced motions that
do not require high power transmission from the device to the human. This differ-
ence made the ARMANDA manipulator the first force controlled device build for
studying the human movement system.

1.4.2 System identification

Nonparametric identification

In the case of posture control where the position deviations are small, linear sig-
nal decomposition and system identification techniques can be applied. The main
advantage of linear techniques is that analytical descriptions of system behavior
can be obtained from the measured signals, like frequency and impulse response
functions. Linear techniques are widely developed in the broad field of system
identification. Basically, system identification can be divided into two different ap-
proaches. The first is to obtain explicit descriptions of the global input-output be-
havior and is often a first step of identifying a system. This approach is referred to
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as non-parametric identification, as it obtains descriptive transferfunctions without
requiring apriori physical knowledge.

Frequency based techniques that obtain frequency response functions (FRFs)
from measured spectral densities are fast and easy to implement. Complementary
time domain methods computing the impulse response functions can also be used.
However, time signals do not directly give insight into the dynamical aspects of
the system (e.g. oscillation frequency, relative damping, time delays etc.) which can
directly be visualized from FRFs. Another method to identify FRFs is by using sub-
space techniques. In this case the global structure in which underlying mechanisms
contribute to the overall (measurable) input-output behavior has to be determined
and approximated by a model of sufficient order (the subspace) from which the
empirical data is to be explained. Subspace methods are available in many differ-
ent forms, basically distinguished by the algorithms used to determine the order of
the subspace from the measured signals. These methods are generally referred to
as parametric identification techniques.

A determining factor to the usage of any identification technique is the presence
of feedback loops in the system of concern. If feedback loops exist, as generally is
the case in NMS systems, a measured signal from inside the feedback loop acts
as both an input and an output simultaneously. It then depends on the amount of
noise and the location at which the noise enters the closed loop if the right sub-
system is identified (Kearney and Hunter, 1990). Special closed loop identification
methods solve this problem by making use of relationships between measurements
from inside the loop and an independent perturbation signal from outside the loop.

Parameter estimation

The second approach to identify a system is the estimation of certain properties of
the system that are known to be present, based on apriori knowledge of the system.
Properties that are relevant to know in this context are joint stiffness and viscosity,
feedback gains, time delays etc.

There are two ways to quantify system properties. The first is a rather trivial
and that is to include additional measurements of signals that are closer related to
the mechanism of interest. Nonparametric (or parametric) identification onto these
additional measurements results in more detailed input-output descriptions. The
other way is to include a-priori knowledge from physics in order to develop a para-
metric descriptive model that includes the properties aimed for, comparable to the
model as shown in Figure 1.7. Such a model can be fitted onto the identified input-
output (non)parametric models to gain the parameters. This step is referred to as
physical parameter estimation.

1.5 Goal of the thesis

The prime goal of the thesis is to provide insight into the functionality of reflexive
mechanisms subserving human arm posture control. To reach this goal, experimen-
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tal and analytical techniques are developed to identify the role of the intrinsic and
reflexive mechanisms separately in vivo, based on their contributions to the me-
chanical behavior of the human arm. In addition, the nature of the reflex system is
to be quantified in terms of position, velocity, acceleration and force feedback.

Different experimental conditions were to be designed in order to provoke vari-
ation of the reflexive system. These were a) the properties of the disturbance signal,
b) the properties of the environment and c) the configuration of the arm joints. The
results will be explained from basic control theory using model simulations and
optimizations.

1.6 Lay-out of the thesis

With the exception of Chapter 1 (Introduction) and Chapter 8 (General discussion),
the chapters are written as autonomous papers and thus can be read independently.

In Chapter 2, The goal if this study was to examine if the reflex system of the
shoulder adapts to the properties of the environment. In the experiment subjects
were asked to maintain their hand at a predefined position while continuous forces
were applied to the hand. For this purpose a 1-DOF force controlled haptic ma-
nipulator was used of which the apparent damping and mass were varied. As a
consequence, the stability margins varied and it was investigated if the CNS takes
advantage of these changes. The forthcoming results are important to understand
the flexibility of the CNS in modifying the combined mechanical properties of the
arm and environment.

Nonparametric frequency response functions (FRFs) were estimated from the
measured hand position and hand reaction force describing the mechanical end-
point admittance. Onto the admittance a model of the NMS system was fitted to
obtain intrinsic and reflexive parameters. Model optimizations were performed to
find out if the estimated reflexive feedback could be explained from a trade-off of
performance against feedback control effort.

In Chapter 3, To improve the parameter estimation, the reflexive impedance was
incorporated in the estimation procedure in addition to the mechanical admittance.
Reflexive impedance is the dynamic input-output relationship between hand posi-
tion and muscle activation. The latter was measured by electromyography (EMG).
The NMS model used for parameter estimation was improved by inclusion of a sec-
ond order model for the activation dynamics and an additional acceleration term in
the muscle spindle feedback model. The merits of the reflexive impedance is that it
facilitates the estimation of the time delay involved in the short latency reflex path-
way and that no assumptions regarding intrinsic and reflexive properties had to be
made, which had to be included a-priori in the previous experiment.

In Chapter 4, the effect of different disturbance signals and task instructions on
the settings of the reflexive feedback properties were investigated. Based on their
sensing abilities it was hypothesized that muscle spindles are dominant during po-
sition tasks while golgi tendon organs (GTOs) are dominant during force tasks.
Subjects performed two types of tasks that were randomly ordered. The first was
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to minimize their hand displacements (position task) and the second was to main-
tain a mean pushing force level (force task). Force perturbations were used in the
case of the position task and position perturbations were used in the case of the
force task. Additionally, while remaining the task the same the type of perturbation
was changed (from positing to force or vice versa) to investigate if the NMS reacts
to type conflicts between task and perturbation signal.

Chapter 5 marks the breakpoint from the previous one degree-of-freedom (1-
DOF) to multi-DOF studies. The previous single joint studies have contributed to
the fundamental understanding of neuromuscular functioning. However, single
joint motions are rare under normal physiological conditions and do not provide
the opportunity to study the complex interactions between joints that are typical
of normal motor functioning. Multiple DOF movements are more natural and pro-
vide a richer field of study. In the case of posture control, multiple DOF facilitates
the modification of the endpoint admittance in different directions. This directional
property of multijoint control is beneficial when resistance in one specific direction
is required. In this chapter, a nonparametric identification technique is developed
to estimate the multivariable endpoint admittance. Its application and performance
are described in the case study of estimating a two-by-two endpoint admittance.

In Chapter 6, the utilization and performance of the newly developed 2-DOF
ARMANDA manipulator is described. This highly accurate force controlled ma-
nipulator uses an admittance based controller that requires a fast inner position
servo controller. Difficulties that raised from this control scheme are explained and
a systematic approach was taken to optimally adjust the control gains. The final
performance was validated using different technical loads and its application was
demonstrated by identification of the planar (2-DOF) endpoint admittance FRF of
the human arm.

In Chapter 7, it was investigated how the reflexive system in the multiple DOF
case adapts to different external conditions. Therefore, parameters of the human
arm in 3-DOF joint space (shoulder, elbow, wrist) were quantified, using the AR-
MANDA manipulator, a parametric closed loop identification technique and a large
scale NMS model. Movements of the arm were constrained to horizontal plane of
movement while perturbations were applied in two orthogonal directions. Despite
the kinematic mapping from endpoint position to joint angles is not unambiguous,
consistent (dynamical) parameter values were found between subjects. Apart from
intrinsic muscle properties and reflex gains (muscle spindles and GTOs), important
additional properties were quantified such as the cut-off frequencies of the activa-
tion dynamics and neural time delays from feedback pathways of different muscles
groups.

Chapter 8 discusses the experimental and analytical techniques and the main
experimental findings. Research topics for future directions are indicated.
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Chapter 2

Adaptation of reflexive feedback to different

environments

Erwin de Vlugt, Frans C. T. van der Helm, Alfred C. Schouten
Biological Cybernetics 2002; 87: 10-26

In this study we have examined the ability of the central nervous system (CNS) to
use spinal reflexes to minimize displacements during postural control while con-
tinuous force perturbations were applied at the hand. The subjects were instructed
to minimize the displacements of the hand from a reference position that resulted
from the force perturbations. The perturbations were imposed in one direction by
means of a hydraulic manipulator of which the virtual mass and damping were
varied. Resistance to the perturbations comprised intrinsic and reflexive stiffness
and by the virtual environment. It is hypothesized that reflexive feedback during
posture maintenance is optimally adjusted such that position deviations are mini-
mal for a given virtual environment.

Frequency response functions were estimated, capturing all mechanical proper-
ties of the arm at endpoint (hand) level. Intrinsic and reflexive parameters were
quantified by fitting a linear neuromuscular model to the frequency responses.
The reflexive length feedback gain increased strongly with damping and little with
the eigenfrequency of the total combined system (i.e. arm plus environment). The
reflexive velocity feedback gain decreased slightly with relative damping at the
largest eigenfrequency and more markedly at smaller eigenfrequencies. In case of
highest reflex gains, the total system remained stable and sufficiently damped while
the responses of only the arm were severely underdamped and sometimes even un-
stable.

To further analyze these results, a model optimization was performed. Intrin-
sic and reflexive parameters were optimized such that two criterion functions were
minimized. The first concerns performance and penalized hand displacements from
a reference point. The second one weights afferent control effort to avoid ineffi-
cient feedback. The simulations showed good similarities with the estimated val-
ues. Length feedback was adequately predicted by the model for all conditions. The
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predicted velocity feedback gains were larger in all cases probably indicating a mu-
tual gain limiting relation between length and velocity afferent signals. The results
suggest that both reflex gains seemed to be adjusted by the CNS where in particu-
lar the length feedback gain was optimal as to maximize performance at minimum
control effort.

2.1 Introduction

Human posture control is basically characterized by minimization of position de-
viations from a reference position. In most cases, these deviations result from ex-
ternal force perturbations acting upon the body. Formalizing the body as a sys-
tem excited by forces and reacting with corresponding movements, it is appro-
priately described as a mechanical admittance (dynamic relation between an in-
put force and an output position). Low admittance (large stiffness and damping)
results in high resistance to perturbations. Admittance reduction during posture
maintenance can be realized by two mechanisms: (1) co-contraction and (2) affer-
ent feedback. Co-contraction increases intrinsic muscle stiffness and damping at
the expense of metabolic energy. Afferent length and velocity feedback from mus-
cle spindles can further increase stiffness and damping. Since reflexive feedback
introduces phase lags due to inherent neural time delays, its effectiveness is lim-
ited in avoiding oscillations.

The ability of the central nervous system (CNS) to specifically adjust length and
velocity reflex gains to correct for displacements has been demonstrated in previous
studies for the whole arm or segments of it (Bennett et al. 1993; Doemges and Rack
1992a,b; Dufresne et al. 1978; Hogan 1985; Lacquaniti and Soechting 1986).

Compared to constant contraction, the usage of reflexive feedback is energy ef-
ficient because muscles are only activated when stretched. Therefore it is hypoth-
esized that under conditions where force perturbations are present or expected,
reflex gains are modulated such that the arm admittance is decreased and the re-
sulting position deviations are minimized.

In Van der Helm et al. (2002) the human arm was disturbed with stochastic
force perturbations having different frequency content. For small bandwidth per-
turbation that did not excite the eigenfrequency of the arm (± 3 Hz), the reflex
gains were substantial. With increasing bandwidth of the perturbation the gains
decreased to avoid oscillations around the eigenfrequency. This is because oscilla-
tions worsen performance. In nearly all cases, the estimated gains led to boundary
stable solutions of the model indicating that performance was always close to opti-
mal.

A model study by De Vlugt et al. (2001) demonstrated that the experimental
feedback gains were nearly optimal. Schouten et al. (2001) used a two degree-of-
freedom (2-DOF) musculoskeletal model with six muscles, including non-linear
actuator and sensor dynamics, to simulate the experiments. It was demonstrated
that under these particular experimental conditions (small position deviations) lin-
earization of the neuromuscular system was appropriate. Again, reflex gains were
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found to be substantial and directly determined by the task requirements and sta-
bility constraint indicating that control effort weighting played a minor role under
the experimental conditions.

When the arm is physically attached to an environment (manipulator) the total
combined admittance is the parallel connection of arm admittance Harm(s) and ad-
mittance of the environment He(s) (called the environmental admittance), Fig. 2.1.
All system descriptions will be expressed in the frequency domain with s = λ +
j2πf (λ = 0 because the initial transient response is not of interest). The relation
between force and position is:

D(s) =
(

H−1
arm(s) + H−1

e (s)
)

X(s) (2.1)

with D(s) the force disturbance and X(s) the common position of hand and envi-
ronment, such that the combined admittance HDX(s) with force as the input (causal
form) becomes:

HDX(s) =
X(s)

D(s)
=

Harm(s)He(s)

Harm(s) + He(s)
(2.2)

The performance and stability are now determined by the mechanical properties
of the combined system. Changing the properties of the environment evidently
changes the effect of the arm admittance on the combined (total) behavior. The
combined admittance is dominated by the system having the lowest admittance
(Eq. 2.2). Milner et al. (1993) demonstrated the influence of an unstable environ-
ment on reflex feedback from wrist muscles. They attached the wrist to a manipula-
tor of which the damping was negatively increased causing the relative damping of
the combined system to decrease. It was demonstrated that reflexive feedback was
reduced when external damping became more negative. These reflex gain adjust-
ments are in accordance with the role of the CNS as being an optimal controller: de-
creasing the relative damping of the combined system reduces the stability margins
such that reflexive feedback must be tempered to prevent oscillations. In the afore
mentioned studies, stability was always a constraint to the adjustments of reflexes.
When the admittance of the environment decreases, thereby increasing the stability
margins, the question arises whether the CNS makes use of these favourable con-
ditions? More specifically: does an increase in damping of the environment result
in higher reflexive feedback? And, if so, is there still a constraint (when stability
is not anymore) like a control effort weighting to reflex gain adjustment for these
conditions?

The goal of this study is to demonstrate the modulation of reflexes of the arm
when external admittance decreases. For this purpose, experiments were performed
using a number of relative damping ratios and eigenfrequencies of the combined
system in order to investigate the effect on reflex gains. The experimental results
are compared with optimizations of a lumped linear model including control effort
weighting.
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H (s)arm

X(s)

H (s)e

D(s)

Figure 2.1: Schematic configuration of parallel coupling of arm admittance Harm(s)
and environmental admittance He(s) (m/N). The combined admittance is the dy-

namic relation between the force disturbance D(s) and endpoint (common position

of hand and environment) X(s), where X(s) represents the displacements between

the endpoint and the fixed world.

2.2 Materials and Methods

2.2.1 Subjects

Five normal healthy subjects (three men, two women, ranging in age from 20-
26 years) participated voluntarily in this study. They had no history of musculo-
skeletal or neurological disease. The experiments were carried out with the right
arm. All the subjects gave their informed consent to the experimental procedure.

2.2.2 Apparatus

A linear hydraulically driven manipulator was used to generate force perturba-
tions on the hand in horizontal directions. Between the handle and the piston of
the manipulator a load cell is mounted to measure the hand force applied by the
subject to the manipulator. This force is electronically translated into a movement
corresponding to a (virtual) environmental admittance consisting of a linear second
order mass-damper-spring combination. Its values can vary between 0.6−20 kg for
the mass me, 0.6−400 Ns/m for the damping be and 0.1−250 N/m for the stiffness
ke. The position of the hand results from the force input and the environmental ad-
mittance. This position is imposed on the subject by the position control loop of the
manipulator. Force perturbations are imposed by adding an external input signal
to the measured hand force.
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Figure 2.2: Left: 5 s. sample of the force perturbation d(t). Right: power spectrum

of d(t).

2.2.3 Force perturbation

The force perturbation was the same throughout all the experiments containing
frequencies between 0.05-20 Hz. The perturbation signal was generated off-line in
the frequency domain, such that within the bandwidth the power has a constant
value, whereas the phase is chosen as a random value with a uniform distribution
between 0 and 2π rad. The result is transformed to the time domain by Inverse
Fourier Transformation. The duration of each perturbation was limited to 40 sec-
onds, a sufficient observation time without causing significant fatigue. Figure 2.2
shows a 5 second sample of the time course of the force perturbation together with
its power spectrum. As a result of the random distribution of the phases, the signal
was stochastic and unpredictable for the subjects. The signal was passed through
a D/A converter with a reconstruction frequency of 125 Hz and applied as input
to the manipulator. By adjusting the power of the force perturbation, the hand dis-
placements were kept sufficiently small (± 1 cm amplitude in all cases) to justify
linear model approximation.

2.2.4 Recording

The following signals were measured via A/D conversion with 12-bit resolution at
500 Hz sample frequency and digitally stored: hand position xh(t), interaction force
fh(t), external force perturbation d(t) and four EMG signals. EMG was measured
using differential electrodes, pre-amplified, highpass filtered (20 Hz, third order
Butterworth), amplified, rectified and smoothed at 200 Hz (lowpass, third order
Butterworth).

Surface EMG was used to validate the estimated cocontraction level. Activation
of four relevant muscles around the shoulder were measured, being for the ante-
flexors: m. pectoralis major (pars clavicularis) and m. deltoideus anterior; and, for
the retroflexors: m. deltoideus posterior and m. latissimus dorsi.

Since only stationary behavior was of interest, initial transient effects were elim-
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Figure 2.3: Experimental setup showing the subject sitting upright on a chair with

back support, holding the handle mounted on the piston of a hydraulic actuator.

The interaction force generated by the subject on to the handle was measured by

a force transducer in between the handle and the piston. The actual and reference

handle position were displayed on a monitor in front of the subject.

inated by rejecting the first 3616 samples (≈ 7 sec.) from each time record, leaving
16384 (= 214) samples for further analysis.

2.2.5 Experimental procedures

The subject was seated in a chair (Fig. 2.3) and asked to take a firm grip on the han-
dle in order to minimize movements of the handle with respect to the hand. The
motion of the hand was constrained by the manipulator to move only in anterior-
posterior direction (shoulder and elbow rotations were dependent). The forearm
was horizontally aligned with the piston and the elbow was 90 degrees flexed such
that the upper arm was vertically aligned. This is referred to as the reference posi-
tion. In order to minimize movement of the shoulder rotation center, the subjects
were asked not to move their trunk. The task given to the subjects was ’minimize
displacements’ resulting from the the applied force perturbation. To prevent drift-
ing, the actual hand position was presented to the subject on a display together
with the reference position. The subjects were also motivated by the display, since
increased effort resulted in visibly smaller displacements.

Afferent feedback from muscle spindle activity was most likely to be inhibited
when wide bandwidth (0.05-20 Hz) force perturbations were applied in the case
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of a high admittant environment, with me = 0.6 kg, be = 0.6 Ns/m, ke = 0.1
N/m (Van der Helm et al. 2002). This result can be explained from the optimal con-
trol perspective: high feedback gains result in severe underdamped responses that
would violate performance. This experimental procedure is repeated in this study
to determine the intrinsic properties of the subject’s arm (lumped endpoint mass,
damping and stiffness) by fitting an intrinsic model to the estimated arm admit-
tance (Sect. 2.2.7) using a straight forward least squares method in the frequency
domain.

Based on the intrinsic properties of the arm, the damping of the environment
(manipulator) was adjusted such that the relative damping, β, of the combined in-
trinsic system, i.e. intrinsic arm plus environment, was assigned fixed values of 0.7
(critical), 1.0, 1.3, 1.6, and 1.9 (all overdamped).

Furthermore, three different values for the external mass me were taken, being
0.6, 5 and 10 kg. These values were the same for all subjects. The external stiffness
was not changed and remained always at a minimum (ke = 0.1 N/m). The eigen-
frequency of the combined (intrinsic) system, f0i

, then follows from the combined
mass and stiffness.

For each eigenfrequency all values for relative damping were applied, result-
ing in fifteen different environmental mass-damping (MB) combinations. Three ad-
ditional conditions were employed for each eigenfrequency in combination with
minimal external damping (be = 0.6 Ns/m). These conditions represent the low-
est attainable relative damping possible with the present equipment and will elicit
human control behavior under highly underdamped conditions. For each subject,
this makes a total of eighteen MB-combinations of relative damping and eigenfre-
quency applied. The order in which the combinations were applied to the subjects
was randomly distributed to avoid any anticipation. Each condition was repeated
four times to improve the estimates by time averaging. This made a total of 72 tri-
als. In between trials, subjects were free to rest as long as they liked. The complete
experiment lasted approximately three hours for each subject.

For each MB-combination reflexive length and velocity feedback gains were es-
timated according to a comparable procedure as used to obtain the intrinsic param-
eters. For this purpose, the intrinsic model was extended with a length and velocity
reflex loop. Together with the reflexive parameters, intrinsic stiffness and damping
were estimated by means of one value representing the amount of cocontraction
that scales the intrinsic stiffness and damping values estimated under the highest
admittance condition (see also Appendix A.1).

2.2.6 Spectral analyses

The combined system is perturbed by the independent external force perturbation
signal d(t). The measured hand reaction force fh(t) and hand position xh(t) are
dependent signals inside the closed loop. The admittance of arm and combined
system were non-parametrically estimated in the frequency domain, expressed as
frequency response functions (FRFs). The estimator for the admittance of the com-
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bined system is:

ĤDX(f) =
Ĝdx(f)

Ĝdd(f)
(2.3)

with ĤDX(f) the estimated admittance of the combined system (arm plus environ-

ment). Ĝdx(f) is the estimated cross spectral density between force perturbation,

d(t), and hand displacement, xh(t), and Ĝdd(f) the estimated auto spectral density
of d(t). The spectral densities were obtained using the Fast Fourier Transformation
(FFT) of the corresponding time signals (Van Lunteren 1979).

To verify the usage of linear models, the coherence function is estimated. This
function is a measure for the amount of linearity of the system in response to the
external force perturbation and is determined according to:

Γ̂DX(f) =

√

|Ĝdx(f)|2
Ĝdd(f)Ĝxx(f)

(2.4)

The coherence function Γ̂dx(f) equals one when there is no noise (linearization or
measurement noise), and zero in the worst case.

As the human controller is embedded in a closed-loop configuration, the esti-
mate for the arm admittance was obtained using the closed-loop estimator:

Ĥarm(f) =
Ĝdx(f)

Ĝdf (f)
(2.5)

with Ĥarm(f) the estimated arm admittance and Ĝdf (f) the estimated cross spec-
tral density between the external force perturbation, d(t), and reaction force fh(t).
In all estimators, (2.3), (2.4) and (2.5), the estimated of the auto and cross spectral
densities were averaged over eight frequency points to reduce the variance (Jenkins
and Watts 1969).

2.2.7 Parametric model

The intrinsic model includes arm and hand dynamics. The derivation of the intrin-
sic model is given in Appendix A.1. The intrinsic parameters to be estimated are:
arm mass, ma; arm damping, ba; arm stiffness, ka; hand grip viscosity, bh; and elas-
ticity, kh. Including the hand dynamics significantly improved the estimation of the
intrinsic arm parameters, especially arm mass. This is because hand stiffness and
viscosity appeared to be much larger than those of the arm (Sec. 2.3) such that hand
dynamics are present in the frequency range (about 10 Hz) where also the arm mass
is dominant. In the following, when referring to the arm dynamics, the combined
arm and hand dynamics are meant.

From the estimated intrinsic values, the MB-combinations for each subject were
determined as described in Sect. 2.2.5. Only for this purpose, hand dynamics were
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neglected such that the combined system can be described as a second order system
that facilitates the calculation of relative damping and eigenfrequencies.

The second order dynamics of the intrinsic combined admittance HDXi
(s) fol-

low from Eq. (2.2):

HDXi
(s) =

Harm(s)He(s)

Harm(s) + He(s)
=

1

H−1
arm(s) + H−1

e (s)

with

Harm(s) =
1

mas2 + bas + ka

He(s) =
1

mes2 + bes + ke

the combined intrinsic system becomes:

HDXi
(s) =

1

(ma + me)s2 + (ba + be)s + (ka + ke)

=
1/ktot

1
ω2

0

s2 + 2β
ω0

s + 1
(2.6)

where mtot = ma+me, btot = ba+be and ktot = ka+ke and with the eigenfrequency,
f0i

and β the relative damping according to:

f0i
=

1

2π

√

ktot

mtot

(2.7)

β =
btot

2
√

ktotmtot

(2.8)

Substituting btot in (2.8) and rewriting it gives:

be = 2β
√

ktotmtot − ba (2.9)

Using the controlled values for β and the external mass me, the external damping
be follows from (2.9).

To estimate the reflex gains and the amount of cocontraction, the intrinsic model
was extended with a reflex loop consisting of three elements: (1) reflexive length
and velocity feedback gains; (2) third order Pade approximation of neural trans-
portation delay; and (3) first order activation dynamics (see Appendix A.2). The

parameters to be estimated were: reflexive length feedback gain, k̂p, reflexive ve-

locity feedback gain, k̂v , and cocontraction level û0 (hat denotes the values derived
from the estimated FRFs).

For each set of estimated parameters {k̂p, k̂v, û0} the Variance Accounted For
(VAF) was calculated indicating the ’goodness of fit’ of the estimated combined
model (arm plus environment) to the recorded values:

V AF =

[

1 −
∑n

i=1 |xh(ti) − xh,sim(ti)|2
∑n

i=1 |xh(ti)|2
]

· 100% (2.10)
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with xh,sim(ti) the forward simulated hand position and xh(ti) the measured hand
position, where i indexes the time vector. The hand position, xh,sim(ti), is obtained
by simulations using the model of the combined system, HDX(s) (Appendix A.3,
Eq. A.9) including the estimated parameter values and the input force disturbance
d(t) identical as used in the experiments.

For each MB combination, the recorded smooth EMG signals were averaged
over four trials. Then, the root mean square (RMS) values were calculated. To com-
pare variations between EMG (in mVolts) and corresponding estimated cocontrac-
tion û0, the RMS values were scaled. This scaling was such that the mean of the
RMS values (for each muscle over all MB combinations and for each subject) equals
the corresponding mean value of the estimates. The goodness of the estimate was
represented as the difference between the scaled RMS and û0.

2.2.8 Model optimization

A model optimization was performed to asses the effect on the adjustments of re-
flexive feedback of: (1) the task variable (in this case the instruction to ’minimize
displacements’); (2) the mechanical properties of the environment; and (3) the force
perturbation. The task instruction was replaced by a performance criterion that
weights displacements of the hand from the reference point. Another criterion was
implemented to minimize control effort. The goal of the optimization is to mini-
mize the combined criterion functions. The parameters to be optimized were the
reflexive length and velocity feedback gains, k∗

p and k∗

v respectively (asterisks de-
note optimized values).

The performance criterion is formulated as:

Jx = E{xh
2(t)} (2.11)

where E{·} is the expectation operator. Because the model is expressed in the fre-
quency domain, Jx is rewritten into its corresponding frequency form (see Ap-
pendix A.4 for derivation):

Jx =

∫ fh

fl

|HDX(f)|2df (2.12)

with HDX(f) the closed loop transfer function of the combined system. Jx therefore
depends on the gain of the closed loop dynamics inside the input frequency range
fl ≤ f ≤ fh. The mean estimated intrinsic values of all subjects were averaged for
each MB-combination and used in HDX(s) (see Table 2.1). Control effort weighting
was added by a criterion function Ja and similar to the performance criterion is
written in its frequency form:

Ja = E{a2(t)} =

∫ fh

fl

|HDA(f)2|df (2.13)

with HDA(s) the closed loop transfer function from force perturbation d(t) to re-
flexive activation a(t) (Appendix A.3, Eq. A.11).
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From (2.12) and (2.13) it is clear that the optimal closed loop behavior is deter-
mined by the frequency range of the input perturbation. Due to the performance
criterion Jx, the reflex gains tend to increase, i.e. reducing the admittance HDX(f),
while the control effort criterion Ja(f) tends to limit the gains.

The parameters of the postural control model will be optimized by minimizing
the summed cost function:

J = Jx + pJa (2.14)

In addition to this cost function, the poles of the combined system HDX(s) were
constrained to be in the left half of the complex plane to ensure stability.

Evidently, increasing the weighting factor p worsens performance and reduces
control effort. One value for p was chosen for all conditions such that the optimized
reflex gains were comparable in a qualitative way to the estimated ones (see Re-
sults).

The optimization is performed in the frequency domain where Eqs (2.12) and
(2.13) were numerically integrated between fl and fh at each optimization step.

The optimization is also used to calculate the sensitivity of the estimated feed-
back gains to the differences between measured EMG (scaled RMS) and estimated
cocontraction levels. Therefore, the model was optimized using the estimated û0

plus and minus the standard deviation of these differences.
The optimization uses a multidimensional constrained non-linear minimiza-

tion method. All calculations for estimation and optimization are performed using
MATLAB (The MathWorks, Inc.).

An overview of the experimental and optimization procedures performed is
shown in Fig. 2.4 in the form of a flow chart.

2.3 Results

2.3.1 Experiments

The MB combinations derived from the intrinsic values for subject HB are plotted in
Fig. 2.5 as an example. Every open circle in this figure represents a single condition
applied. The mutually shifted square root curves indicate lines of constant relative
damping (β) according to Eq. (2.9). Vertical shifted points indicate conditions with
the same eigenfrequency (f0i

), i.e. where the mass of the environment is the same.
The additional three conditions are shown on the horizontal axis, indicating the
lowest relative damping applied being 0.50, 0.32 and 0.24 for this subject.

In Fig. 2.6 the estimated gain and phase of Harm(f) of four extreme conditions
for subject HB are shown, corresponding to the conditions indicated with large
circles in Fig. 2.5. The corresponding admittances of the combined system HDX(f)
are given in Fig. 2.7. Comparable responses were found for all other subjects.

For all conditions, the estimated mean reflex gains amongst all subjects (mean
and standard deviation) are given in Fig. 2.8 where the four conditions are indicated
by vertical arrows.
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Figure 2.4: Flowchart of the procedure followed in this study. The right path is

the experimental execution with the subject taken as an optimal controller to min-

imize hand displacements. Its input-output behaviour (admittance) is estimated as

a describing function from which lumped intrinsic and reflexive parameters were

obtained by model fitting, as described in the text. Left path represents the opti-

mization of the combined arm-environment model as to simulate the experimental

procedure where the criterion function mimics the task instruction given to the sub-

ject. Optimized reflex parameters were compared with the estimated ones.
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Figure 2.5: MB combinations of parameters of the environment admittance based

on intrinsic properties of subject HB, represented by open circles. Each combina-

tion is an applied experimental condition. Square root (interpolated) curves connect

conditions with constant relative damping β (controlled variable) of the combined

intrinsic system. Combinations on verticals have equal eigenfrequencies f0i (con-

trolled variable) of the combined intrinsic system. Circles on the horizontal axis

denote the three conditions with the lowest external damping be = 0.6 Ns/m. Large

circles denote four extreme conditions (see Text). The large circle at the left on the

horizontal axis denotes the condition where no reflexes were present, i.e. where the

intrinsic parameters were determined.

The left plot of Fig. 2.6 (dashed curves) shows Harm(s) in the case of the largest
environmental admittance He(s). From this condition the intrinsic parameters were
estimated because likely no reflexes were present, as can be seen from Fig. 2.8 (left-
most arrow). Table 2.1 gives the average estimated intrinsic values among all sub-
jects. The mean eigenfrequencies (Eq. 2.7) were f0i

= {2.8, 1.7, 1.3} Hz (see Ta-
ble 2.1).

For the highest eigenfrequency, f0i
= 2.8 Hz (me = 0.6 kg) the arm admittance

showed a significant oscillation peak when relative damping is largest (β = 1.9,
Fig. 2.6, left column, solid curves). This can be explained by an increased length
feedback gain of approximately 500 N/m, which is about 75% of the intrinsic stiff-
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Table 2.1: Estimated intrinsic arm parameters and eigenfrequencies of all subjects

(n = 5) and their standard deviation (SD).

Mean (SD) Unit Description

ma 1.88 (0.290) kg arm mass
ba 37.3 (6.30) Ns/m intrinsic arm damping
ka 733 (175) N/m intrinsic arm stiffness
bh 178 (45.5) Ns/m intrinsic hand damping
kh 14998 (50.5) N/m intrinsic hand stiffness

f0i 2.77 (0.191) Hz eigenfrequency combined
1.69 (0.157) intrinsic system
1.31 (0.129)

ness. Decreasing the eigenfrequency f0i
to 1.3 Hz (me = 10 kg) results in an even

more underdamped response of the arm admittance. In case of the smallest relative
damping (β = 0.24), there is already significant amplification at the eigenfrequency
that still further increases to extremely underdamped behavior for the largest rela-
tive damping (β = 1.9, Fig. 2.6, right column, solid curves). At these combinations of
small eigenfrequencies and large values for relative damping, the arm sometimes
became unstable. Note that arm instability never led to instable behavior of the
combined system HDX(f). The length feedback gains (Fig. 2.8, arrows in third col-
umn) were high and exceeded the intrinsic stiffness by approximately a factor 1.5.

Generally, k̂p increases with relative damping and its characteristics are shifted to
larger values with increasing eigenfrequency f0i

.

The velocity feedback gain k̂v showed opposite variations, decreasing moder-
ately with relative damping at all eigenfrequencies. Typically, the estimates became
negative with increasing relative damping.

In contrast to the arm admittance, the combined system was almost critically
damped for the lowest values of β and severely overdamped for the highest values
(Fig. 2.7). Comparison with the arm admittance, Harm(f) immediately reveals that
the low frequency gain of HDX(f) is determined by Harm(f), and that the unde-
sired oscillation peak of Harm(f) is suppressed by the environment. For the largest
values of β the arm compliance showed the highest oscillation peak whereas the
combined system was severely overdamped by the environment.

Since reflexive length feedback increases the stiffness of the arm and conse-
quently of the combined system, the eigenfrequencies based on the MB combi-
nations shift to higher frequencies. This is indicated by vertical lines in Fig. 2.7
and short vertical bars on the horizontal axis at f0i

. The largest increase in eigen-

frequency occurs at the largest values for β where k̂p is largest (right arrows in
first and third column of Fig. 2.8). For these conditions, the eigenfrequencies were
shifted from 2.8 to 3.8 Hz and from 1.3 to 2.1 Hz respectively.

In nearly all cases the estimated coherence Γ̂DX(f) was high (> 0.9) for all fre-
quencies which validates the linear model approximation and proves that measure-
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Figure 2.6: Estimated transfer functions of the arm Ĥarm(f) for subject HB (av-

erages of four trials). Top row: gain (m/N), bottom row: phase (deg.). Left column:

largest eigenfrequency f0i = 2.8 Hz (me = 0.6 kg) and two different values for

relative damping: β = 0.5 (dashed curves), at which the intrinsic parameters were

measured, and β = 1.9 (solid curves) of combined intrinsic system, right column:

f0i = 1.3 Hz (me = 10 kg) with β = 0.24 (dashed curves) and β = 1.9 (solid

curves).

ment noise was negligible. Comparable values were found for all other conditions
and subjects.

Except for the smallest relative damping β at the smallest eigenfrequency f0i
,

high VAF values (> 83%) were obtained (Fig. 2.8, bottom row) which can be con-
sidered very good. This means that the linear model structure with the estimated

parameter values k̂p, k̂v and û0, is an accurate approximation of the real system
dynamics (arm plus environment) under these experimental conditions.
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Figure 2.7: Estimated transfer functions of combined system (arm plus environ-

ment) ĤDX(f) for subject HB (averages of four trials). Top row: gain (m/N), middle

row: phase (deg.), bottom row: coherence function Γ̂DX(f). Left column: largest

eigenfrequency f0i = 2.8 Hz (me = 0.6 kg) and two different values for relative

damping: β = 0.5 (dashed curves) and β = 1.9 (solid curves) of the combined

intrinsic system, right column: f0i = 1.3 Hz (me = 10 kg) with β = 0.24 (dashed

curves) and β = 1.9 (solid curves). Short vertical bars on the horizontal axis indi-

cate the eigenfrequencies (f0i ) of the combined intrinsic system without reflexes.

Vertical lines indicate the corresponding eigenfrequencies as the result of increased

stiffness due to reflexes.
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Figure 2.8: Estimated mean reflex gains and standard deviation (errorbars) for

subject HB. Rows from top to bottom: length feedback gain k̂p, velocity feedback

gain k̂v, cocontraction level û0 and VAF values. Columns: left, f0i = 2.8 Hz; middle,
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FRFs of the combined system and the arm are shown in Figs 2.6 and 2.7 (i.e. the

large circles in Fig. 2.5).
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In Fig. 2.9 the difference between the scaled RMS of the EMG signals and corre-
sponding estimated cocontraction levels û0 are shown. Since the RMS values were
scaled such that their means coincide with the estimations, the mean of the dif-
ference is zero. For each muscle, the standard deviations amongst all subjects are
indicated by dotted lines. EMG of the m. deltoideus anterior showed the largest
differences (24% st. dev.) while the discrepancies of the other muscles were smaller
(≤ 18%). For subjects HV and JV the differences were small for m. deltoideus an-
terior, meaning that the variations of the estimated cocontraction levels approxi-
mated those of the EMG recordings very well. The same accounts for the m. pec-
toralis major (subjects HB, HV) and m. deltoideus posterior (subject HB). The mean
standard deviation of all muscles and subjects was ≈ 20%. The effect of these vari-
ations in cocontraction level on the estimated feedback gains is analyzed by opti-
mizations and described at the end of the next subsection.
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2.3.2 Optimization

Metabolic energy weighting was not incorporated in our model such that unreal-
istic high values of intrinsic stiffness and damping resulted when the amount of
cocontraction was taken as a free parameter to be optimized. Therefore, its value
(i.e. u0) was fixed to the corresponding estimated value for each condition.

In Fig. 2.10 the averaged estimated length and velocity feedback gains are shown
together with the optimized values for a number of different values of control ef-
fort weighting factor p. Both optimized reflex gains outranged the estimated values
by far (k∗

p > 8000N/m, k∗

v > 500N/m) for p = 0 (not shown). The optimized gains
decreased with increasing control effort weighting. Negative values for k∗

v were
also not found for very large p values. All values of the estimated length feedback
gains are within the range of the optimized values for different p. The predicted
velocity feedback gains were substantially lower in all cases. This indicates that
the estimated reflexive velocity feedback is suboptimal under these experimental
conditions.

To show the role of velocity feedback, Fig. 2.11 displays the optimized length
feedback gains again for the same p values but without velocity feedback, i.e. k∗

v

was set to zero as an approximation of the estimated values. The curvatures of k∗

p

are nearly similar except in case of the lowest relative damping β at the two largest
eigenfrequencies f0i

.

The impact of control effort weighting on performance and afferent feedback is
shown in Fig. 2.12 for three values of β (0.7, 1.3, 1.9) at each eigenfrequency. The per-
formance expectedly worsens with control effort weighing for all conditions, as can
be seen by the increase of the performance criterion function Jx (Fig. 2.12, top row).
For the highest eigenfrequency the performance without control effort weighting
(p = 0) was the worst and therefore the relative increase of Jx was smallest. Control
effort is effectively reduced for small weightings and saturated when weighting
was further increased (Fig. 2.12, middle row). Slightly weighting Ja with p also im-
proved converging of the parameters significantly. The contribution of Jx to J is
much higher than that of pJa, as can be seen by comparing Jx and J (Fig. 2.12,
bottom row and top row). One value for control effort weighting was chosen for all
conditions: p = 0.5 · 10−7, as indicated by the gray vertical lines in Fig. 2.12. With
this value the control effort Ja was substantially reduced (≈ 60−80%) while perfor-
mance Jx decreased to a far lesser extent (≤ 20%, see Fig. 2.12). The corresponding
optimized length reflex gains k∗

p are shown in Fig. 2.13 (k∗

v set to zero). Apart from
the two largest eigenfrequencies and smallest relative damping, the gains were pre-
dicted quite well and captured by the standard deviations of the corresponding
estimates.

In Fig. 2.14 the effect of variations in cocontraction level on the reflex gains were
simulated (p = 0.5 · 10−7). When estimated cocontraction levels were increased by
20% (i.e. a proportional increase of muscle stiffness and damping), both the reflex
gains decreased only slightly (≤ 10%) for all conditions and vice versa in case of
lower cocontraction.
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Figure 2.10: Optimized (dashed curves) and estimated (solid curves) reflex gains

(averaged over all subjects n = 5). Errorbars denote the standard deviation of the

estimated mean values. Each dotted line corresponds to one value of p ranging

from {0.1 − 2.0} · 10−7. Largest optimized gains occurred at the lowest values of p.

2.4 Discussion

Stability of the combined system was guaranteed for all conditions. Apart from the
smallest relative damping at each eigenfrequency, the combined system was suffi-
ciently damped (Fig. 2.7). This is because the external dynamics provided substan-
tial damping. Consequently, the human controller was indemnified from critically
controlling the stability margins of the total system by being only partly able to
change the admittance of the combined system. The adjustments of reflexive feed-
back gains under those current experimental conditions were therefore particularly
determined by performance and control effort criteria and not constrained by sta-
bility demands, as was the case in previous studies (De Vlugt et al. 2001; Schouten
et al. 2001).

To clarify the changes in reflex gains it must be repeated that performance Jx

is related to the combined system of arm plus environment (Eq. 2.12) and the only
way to improve performance is to modify the arm admittance. To what extent the
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Figure 2.11: Optimized (dashed curves) and estimated (solid curves) length reflex

gain, averaged over all subjects (n = 5). Velocity feedback is not optimized and

set to zero. Errorbars denote the standard deviation of the estimated mean values.

Each dotted line corresponds to one value of p ranging from {0.1 − 2.0} · 10−7.

Largest optimized gains occurred at the lowest values of p.

performance is determined by the arm also depended on the mechanical properties
of the environment. Because only damping and mass of the environment were in-
creased, the stiffness was always determined by the arm only, i.e. by intrinsic and
reflexive feedback. This is the reason why increasing arm stiffness by high length
feedback gains was effective in general for nearly all experimental conditions.

In the case of the highest eigenfrequency f0i
and the smallest relative damping β

(minimal mass and damping of the environment), the combined system was domi-
nated by the mechanical properties of the arm. For this condition, both reflex gains
were found to be very small (Fig. 2.10), as was also found in a comparable study by
Van der Helm at al. (2002) and in previous simulation studies (De Vlugt et al. 2001;
Schouten et al. 2001). The absence of reflexes for this condition can be explained
from the effect of kp on Jx, which is twofold. First, as already stated above, it in-
creases stiffness which is beneficial. Second, it directly decreases relative damping,
according to Eq. (2.8) and due to the neural time delay. Obviously, smaller rela-
tive damping increases the amplification at system’s eigenfrequency (oscillation)
that deteriorates performance. Apparently, a negative contribution of an oscillation
peak is larger than a profitable increase of stiffness for this condition. The absence
of feedback also validated the estimation of the intrinsic parameters which were
estimated at this condition.

When relative damping increases, the influence of an increased oscillation peak
of the arm dynamics has little effect on the combined system and consequently
worsens performance to a lesser extent. This is simply because the overall damping
is larger. Therefore, kp can be increased to improve performance in these cases.
Generally, the higher the total relative damping the larger the efficiency of length
feedback because amplification at the eigenfrequency of the arm is suppressed by
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Figure 2.12: Criterion functions for different values of control effort weighing p. Top

row: performance criterion Jx, bottom row: control effort criterion Ja. Dotted curves:

β = 0.7; Dashed dotted curves: β = 1.3; Solid curves: β = 1.9. Criterion values at

p = 0.5 · 10−7 are indicated by gray vertical lines.

the environment.

The velocity feedback gain k̂v was very small, decreased slightly and even be-
came negative for larger relative damping. Negative reflex gains were also found by
Van der Helm et al. (2002), were close to optimal under the experimental conditions
(De Vlugt et al. 2001) and were attributed to autogenic excitation (Schouten et al.
2003). On the contrary, the simulation results showed k∗

v was substantial and effec-
tively suppressed the resonance peak in particular for the smallest eigenfrequency
and smallest relative damping. This is shown in Fig. 2.15 (right upper plot, dashed-

dotted curves). The estimated k̂v therefore seems suboptimal and leaves the arm
and combined system underdamped, in particular for this condition (Fig. 2.15, right
upper plot, solid curves). When velocity feedback gain was fixed to zero, the lack
of damping is evidently predicted but now the optimized length feedback gains
were much smaller than estimated for these particular conditions, resulting in an
increase of the low frequency gain of HDX(f) (Fig. 2.15, right upper plot, dotted
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in cocontraction level on the reflex gains. Solid curves: optimed gains using the
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Figure 2.15: FRFs of modelled combined system HDX(f) for smallest relative

damping β ( top row), β = 1.0 (middle row) and β = 1.6 (bottom row) at all three

eigenfrequencies f0i . Solid curves are the combined model parametrized with the

estimated parameters k̂p, k̂v and û0 (mean of all subjects). Dashed dotted curves:

the optimized FRFs parametrized with optimal gains k∗

p and k∗

v for p = 0.5 · 10−7.

Dotted curves: the optimized FRFs parametrized with the optimal gain k∗

p and k∗

v

set to zero for the same weighting factor.

curves). Apart from this extreme condition, the length feedback appears to be close
to optimal and the estimated FRFs of the combined system HDX(f) were very sim-
ilar to the optimized ones.

Possibly, the length and velocity feedback gains are somehow restricted by a
mutual gain limiting relation which was not incorporated in our model (Schaafsma
et al. 1991). For instance, if muscle spindle output was dependent on the amplitude
of velocity such that at large velocities the sensitivity for lengthening was reduced
and vice versa, at low velocities length feedback would be more dominant. Appar-
ently, if such mechanisms somehow exist, the movements in our experiments were
slow enough to exhibit pronounced length feedback in nearly all cases. Omitting
the velocity feedback from the optimization was a means to mimic such a property.
Further research on spindle transferfunction identification is necessary to explain
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such input selectivity and to clarify the restricted velocity gains found under the
current experimental conditions.

Summarizing the findings it is stated that 1) length feedback effectively reduces
the admittance of the combined system and 2) the strength of length feedback is
the result of weighting of admittance reduction against the control effort needed
for this reduction.

We have also applied slower time constants (30-50 ms) for the activation pro-
cess and found that the estimated velocity feedback gains increased while length
feedback did not noticeably change (not shown). This is because activation acts as a
low pass filter (≈ 5 Hz) to afferent signals such that higher velocity gains would be
estimated to obtain the same behavior. This sensitivity of velocity feedback on acti-
vation time constant can account for the unexpected negative values. However the
same sensitivity also follows from the model optimization and so the discrepancy
with the estimated velocity gains still remains.

Mean EMG and estimated cocontraction levels were almost constant over the
conditions. Since increasing intrinsic stiffness and damping always improves per-
formance, cocontraction was apparently at maximum during all conditions. The
difference between recorded EMG and estimated cocontraction level had a stan-
dard deviation of ≈ 20% accounting for measurements noise and inaccuracy of the
estimation procedure. Higher cocontraction levels decreased the admittance of the
combined system due to larger intrinsic stiffness and damping of the arm. Con-
sequently, at the same weighting of control effort, the effectiveness of additional
reflexive feedback was less and the gains were smaller (Fig. 2.14). The opposite ef-
fect was shown for smaller cocontraction levels. However, the effect of fluctuations
in cocontraction did not affect the values of the feedback gains substantially and
therefore do not change the findings of this study. A 20% variation merely changed
the gains by less than 10%. This indicated the estimation procedure was accurate
enough to quantify intrinsic and reflexive properties which was confirmed by high
VAF values.

Subjects felt themselves to have the least control over the combined system at
the lowest eigenfrequencies f0i

. In these cases, both mass and damping of the envi-
ronment were large. This was reflected by increased variations in cocontraction (û0

and EMG) and larger standard deviations in estimated length reflex gains (Fig. 2.8).
This varying behavior is most likely the result of decreased relative contribution of
the arm damping to the damping of the combined system such that subjects possi-
bly varied slightly around their optimal adjustments without affecting performance
seriously.

Despite the rather good resemblance of estimated cocontraction level and mea-
sured EMG, it must be mentioned that EMG is not a direct measure for muscle force.
Since (non-linear) activation dynamics separate those quantities a direct compari-
son seems not possible. However, in a mean sense for almost constant cocontraction
levels, the activation dynamics can be neglected such that muscle force can be taken
as a scaled version of the corresponding EMG. Since EMG and u0 were both used
as normalized variables in this study a direct comparison was justified.
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2.5 Conclusions

Afferent length and velocity feedback gains were shown to adapt to different me-
chanical properties of the environment. In particular, length feedback gain increased
substantially with relative damping of the combined system. Increasing the eigen-
frequency by larger masses of the environment increased the length feedback gains
to a lesser extent. These gains modulations served the optimization of a perfor-
mance criterion concerning the combined system of arm plus environment, i.e. the
minimization of displacements of the hand during a continuous force perturbation.
It is likely the CNS controls the reflex gains within seconds after the perturbation
was applied. This specialized feedback behavior followed directly from optimal
control theory. Length feedback effectively improved performance because it en-
larges stiffness but only when its negative side-effect of increased resonance is sup-
pressed by the environment.

Model optimizations show strong similarities with the estimated length feed-
back gains indicating that: (1) the performance criterion is a realistic description
of the task instruction; (2) the control effort weighting is somehow apparent in the
feedback loop; and (3) because of the high VAF values, the model is an adequate
description of intrinsic and reflex mechanisms at endpoint level.

The results are valid for the system being perturbed with continuous random
forces while the subject is performing a position task. Because these conditions cor-
respond to real life posture maintenance, it is believed that these conditions are
necessary to explain neuromuscular functioning of human posture control in vivo.



Chapter 3

Quantifying reflexes with mechanical

admittance and reflexive impedance

Alfred Schouten, Erwin de Vlugt, J.J. (Bob) van Hilten, Frans C. T. van der Helm
submitted to Journal of NeuroScience Methods

This study aimed to analyze the dynamic properties of the muscle spindle feed-
back system of shoulder muscles during a posture task. External continuous force
disturbances were applied at the hand while subjects had to minimize their hand
displacements. The results were analyzed using two frequency response functions
(FRFs) from which the model parameters were derived, being a) the mechanical ad-
mittance and b) the reflexive impedance. These FRFs were analyzed by a neuromus-
culoskeletal model that implicitly separates the reflexive feedback properties (posi-
tion, velocity and acceleration feedback gains) from intrinsic muscle visco-elasticity.
The results show substantial changes in estimated reflex gains under conditions
of variable bandwidth of the applied force disturbance or variable degrees of ex-
ternal damping. Position and velocity feedback gains were relatively larger when
the force disturbance contained only low frequencies. With increasing damping of
the environment, acceleration feedback gain decreased, velocity feedback gain re-
mained almost constant and position feedback gain increased. It is concluded that
under the aforementioned circumstances, the reflex system increases its gains to
maximize the mechanical resistance to external force disturbances while preserv-
ing sufficient stability.
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3.1 Introduction

Studies addressing the role of spinal reflexes in the regulation of movement and
posture have been informative in understanding the impact of diseases with abnor-
mal muscle tone including spasticity, dystonia or Parkinson’s disease (Mirbagheri
et al., 2001; Schouten et al., 2003a; Lee and Tatton, 1975). Studies on the role of
spinal reflexes in the regulation of muscle tone have mainly applied qualitative ap-
proaches (Doemges and Rack, 1992a,b; Akazawa et al., 1983; Kanosue et al., 1983).
From these studies important features of the proprioceptive reflex system emerged
showing the influence of position and force tasks on proprioceptive reflex magni-
tude. However these studies have not provided insight into the functional contri-
bution of proprioceptive reflexes to the dynamic relation between force and posi-
tion (mechanical admittance), which is crucial in the understanding of how these
reflexes control stable movement and posture. Few studies have focused on quali-
tative characterization of proprioceptive reflex regulation (Zhang and Rymer, 1997;
Kearney et al., 1997; Van der Helm et al., 2002). These studies have used quan-
tification methods that basically rely on specific neuromuscular models and opti-
mization algorithms to minimize the difference between measured and predicted
variables. Hitherto, all studies have used an indirect approach by estimating reflex
parameters from the mechanical admittance. In the mechanical response, intrin-
sic muscle visco-elasticity and reflexive contributions coexist. Therefore assump-
tions on the reflexive component were necessary to separate the intrinsic and re-
flexive contributions. Such assumptions on reflex behavior may introduce a bias
in the model. Consequently, there is a need for methods that directly quantify re-
flex behavior. In a recent study (Schouten et al., 2003b) a method was introduced
to estimate the frequency response functions of the mechanical admittance and the
reflexive impedance, i.e. the dynamic relation between position and muscle activa-
tion. This study aims to quantify spinal reflexes directly by fitting a neuromuscu-
loskeletal (NMS) model of the arm on both the mechanical admittance and reflexive
impedance obtained simultaneously during posture tasks.

3.2 Methods

3.2.1 Subjects

Two experiments were carried out. In the main experiment ten healthy subjects
(4 women, 3 left handed) participated with a mean (SD) age of 25.8 (7.0) years.
In a second experiment, to estimate the muscle activation dynamics, five subjects
(2 women, 2 left handed) participated with a mean (SD) age of 25.4 (3.2) years.
All subjects gave informed consent prior to the experiment. All experiments were
conducted on the right arm.
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3.2.2 Apparatus

Force disturbances were applied to the hand by means of a linear manipulator. The
manipulator is extensively described in Chapter 2 and is introduced briefly. The
subjects sat in a chair and had to hold a handle with their right hand. Movement of
the handle resulted in ante-/retroflexion movements of the shoulder-joint. To the
subject the manipulator behaved like a mass-spring-damper system. The parame-
ters of the spring (ke), damper (be), and mass (me) are adjustable. In this study the
mass, me, was set to a fixed value of 1 kg. The damping, be, was varied between the
trials, see Section 3.2.3. No stiffness was used (ke = 0 N/m).

3.2.3 Procedures

Main experiment

In the main experiment subjects had to hold the handle and were instructed to
’minimize the displacements’ of the handle, while continuous random force distur-
bances were applied for 30 seconds (task stiff). The actual position of the handle
was shown on a display to assist the subjects and to prevent drift. Only a few trials
were necessary to get the subject acquainted with the task. The following experi-
mental conditions were applied:

• Wide bandwidth (WB) disturbance without external damping (WB stiff). The
WB disturbance signal had power between between 0.5 and 20 Hz. This con-
dition is referred to as the reference condition.

• WB disturbance without external damping and the task slack (WB slack). Here
the task instruction was different from the other: the subject was asked to
relax his/her arm muscles and not to react to the disturbance. This task was
only used to improve to estimate of the arm mass.

• WB disturbance with external damping. The damping was assigned values of
50, 100, 150, 200 Ns/m (B50, B100, B150, B200).

• Narrow bandwidth disturbance type 1 (NB1) without external damping. The
disturbance signals had a variable bandwidth; the lowest frequency was fixed
at 0.5 Hz and the highest frequency, fh, varied between 1.2 and 3.7 Hz (1.2,
1.5, 1.8, 2.4, 3.1, 3.7 Hz).

• Narrow bandwidth disturbance type 2 (NB2) without external damping. The
signals had a bandwidth of 0.3 Hz concentrated around a variable center fre-
quency, fc, of 1.3 up to 7 Hz (1.3, 1.8, 2.3, 3, 4, 5, 6, 7 Hz).

The twenty different conditions were repeated four times, resulting in eighty trials
of 30 seconds each. The trials were presented in a random order. In between the
trials the subject could rest as long as he/she wanted to prevent fatigue. All distur-
bance signals were designed in the frequency domain as so-called multisine signals
with optimized crest factor (Schoukens et al., 1993; Pintelon and Schoukens, 2001;
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Figure 3.1: Examples of disturbance signals; left: WB; middle: NB1 fh = 2.4 Hz;

right: NB2 fc = 2.3 Hz. Upper plots: 5 seconds fragment of the signals; lower

plots: power spectral densities of the signals. The signals are scaled to a root mean

square (RMS) value of one. Each peak in the power spectral densities represents

a cluster of 4 (WB, NB1) or 8 (NB2) adjacent frequencies.

Schouten et al., 2003b). Because multisine signals are deterministic, no bias or vari-
ance were introduced in the estimated spectral densities (Pintelon and Schoukens,
2001; De Vlugt et al., 2003a).

To improve the signal-to-noise ratio (SNR) of the EMG and to allow reliable
identification of the reflexive impedance, the power of the disturbance signal was
distributed over a limited number of frequencies within the bandwidth. For the
WB disturbance the signal power was uniformly distributed over 32 equidistantly
spaced clusters of 4 adjacent frequencies, i.e. 25% of the frequencies within the
bandwidth are excited (Schouten et al., 2003b). The data analysis required clus-
ters of 4 adjacent frequencies for averaging. For the NB1 disturbances 50% of the
frequencies within the bandwidth were excited, and consequently each NB1 signal
contained a different number of clusters (ranging from 3 clusters for fh = 1.2 Hz up
to 11 clusters for fh = 3.7 Hz). For the NB2 disturbances the power was distributed
in one cluster of 8 adjacent frequencies. Fig. 3.1 shows examples of the disturbance
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signals, the lower plots show the power spectral densities of the signals.
To justify the use of linear model approximations the position deviations must

be kept small within each condition. Prior to the trials each condition was tested
and the amplitude of the force disturbance was adjusted for each condition to ob-
tain a root-mean-square (RMS) value for the position of approximately 3 mm.

Since recorded EMG is an electric signal which is meaningless to the mechanical
properties, the EMG to force ratio was determined to obtain a relative measure
of the muscle force. Therefore, subjects were required to perform isometric push
and pull tasks, prior and after the main experiment. The subjects had to maintain
constant force levels for 10 seconds (-25, -20, -15, 0, 15, 20, 25 N) by pushing or
pulling against the handle, which was controlled to be in a fixed (rigid) position.
During these isometric trials the reference force together with the actual force at the
handle were shown on the display to assist the subject in performing the task. The
EMG to force ratio was determined by linear regression.

Activation dynamics

The EMG to force ratio provides the static relation between muscle activation and
muscle force. The dynamic relation between muscle activation and muscle force
was determined in a secondary isometric experiment. The secondary experiment
started and ended with the same push/pull tasks as the main experiment. The
experiment consists of 8 trials of 30 seconds. During these trials the subjects per-
formed isometric tasks and were asked to make block-shaped forces between ap-
proximately 25 N push and pull.

3.2.4 Data processing

Signal recording and processing

During a trial the force disturbance, d(t), the position of the handle, xh(t), the force
at the handle, fh(t), and the EMG of four relevant shoulder muscles (e1: m. pec-
toralis major, e2: m. deltoideus anterior, e3: m. deltoideus posterior, and e4: m. latis-
simus dorsi) were recorded at 2500 Hz sample frequency with a 16 bit resolution.
Before recording, the EMG signals were high pass filtered to remove DC compo-
nents and movement artifacts (20 Hz, 3th order Butterworth), and low pass filtered
to prevent aliasing (1 kHz, 3th order Butterworth). This study investigates station-
ary behavior and to remove any initial transient effect the first 9464 samples (≈ 4 s)
were eliminated, leaving 216 samples (≈ 26 s) for further processing.

The EMG signals were used (1) to estimate the amount of co-activation ex-
pressed by the mean EMG and (2) to construct the muscle activation, a(t). The pro-
cedure of EMG treatment is described previously in Schouten et al. (2003b) and will
be briefly summarized. To improve the quality of the EMG signals a prewhitening
filter is implemented, following the procedures as described in Clancy et al. (2002).
The power spectral densities of the EMGs during the maximum isometric push and
pull tasks (25 N) are used to obtain the parameters of the prewhitening filter (6th
order).
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For small variations in muscle co-activation it reasonable to assume that the
intrinsic muscle visco-elasticity linearly scale with the co-activation level (Agar-
wal and Gottlieb, 1977a). Therefore mean EMG, u0, was determined as a measure
for muscle co-activation. To calculate the mean EMG the integrated rectified EMG,
IEMG, of each muscle during a trial was calculated.

IEMGi =
1

n

n
∑

k=1

|ew,i(tk)| (3.1)

in which ew,i is the prewhitened EMG of muscle i, k indexes the time vector, and n
is the number of samples. The mean EMG was calculated, according to:

u0 =
1

4

4
∑

i=1

IEMGi

IEMGref,i

(3.2)

where IEMGref,i denotes the IEMG for muscle i of the reference disturbance aver-
aged over the four repetitions.

To calculate the muscle activation, a(t), the EMG signals are scaled and ex-
pressed into Newtons. The force to EMG ratio of each muscle, Ki, is estimated
from the push/pull tasks by linear regression. The (lumped) muscle activation is
obtained by combining the rectified prewhitened EMGs of the four recorded mus-
cles:

a(t) =
1

2
(K1 |ew,1(t)| + K2 |ew,2(t)|) +

1

2
(K3 |ew,3(t)| + K4 |ew,4(t)|) (3.3)

In this equation it is assumed that both ’push’ muscles (1 and 2) have equal rele-
vance and consequently the total push force is equal to the mean of both muscles.
The same holds for the ’pull’ muscles (3 and 4). Note that K1 and K2 are positive
and K3 and K4 are negative, as the muscles operate in opposite direction.

Nonparametric analysis

The time records (xh(t), fh(t), d(t), and a(t)) of the four repetitions for one condi-
tion are averaged to reduce the variance due to noise in the signals. The signals
are transformed to the frequency domain using the fast Fourier transform (FFT).
Because force disturbances are applied, interaction between the subject and ma-
nipulator existed, i.e. the position of the handle depends on both the dynamics of
the subject and the virtual environment imposed by the manipulator. Because of
this interaction closed loop identification algorithms are required to estimate the

frequency response functions (FRFs) of the mechanical admittance, Ĥfx(f), and re-

flexive impedance, Ĥxa(f) (Schouten et al., 2003b).

Ĥfx(f) =
Ĝdx(f)

Ĝdf (f)
(3.4)

Ĥxa(f) =
Ĝda(f)

Ĝdx(f)
(3.5)
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where Ĝdx(f) is the estimated cross spectral density between d and xh (hat denotes
estimate). The spectral densities are averaged over 4 adjacent frequencies to reduce
the variance of the estimations (Jenkins and Watts, 1968). As a measure for linearity
between the signals the coherence for the position, γ̂2

x(f), and muscle activation,
γ̂2

a(f), were estimated.

γ̂2
x(f) =

∣

∣

∣
Ĝdx(f)

∣

∣

∣

2

Ĝdd(f)Ĝxx(f)
(3.6)

γ̂2
a(f) =

∣

∣

∣
Ĝda(f)

∣

∣

∣

2

Ĝdd(f)Ĝaa(f)
(3.7)

The coherence varies between 0 and 1 and decreases due to external noise and
nonlinearities. The FRFs and coherences were only evaluated at the frequencies
where the perturbation signal had non-zero power.

Quantification of activation dynamics

During isometric experiments the relationship between the muscle activation, a(t),
and handle force, fh(t), depends on the activation dynamics only. As the muscle
activation was scaled to force the muscle dynamics have unity static gain. The acti-

vation dynamics, Ĥact(f), were estimated by dividing the appropriate spectral den-
sities with the aid of an independent instrument variable (Pintelon and Schoukens,
2001):

Ĥact(f) =
Ĝwf (f)

Ĝwa(f)
(3.8)

γ̂2
af (f) =

∣

∣

∣
Ĝaf (f)

∣

∣

∣

2

Ĝaa(f)Ĝff (f)
(3.9)

with w as the instrument variable for which a signal with power uniformly dis-
tributed between 0.1-20 Hz was used. To improve the estimations the spectral den-
sities are averaged over 4 adjacent frequencies.

The activation dynamics are described by with a second order model (Olney
and Winter, 1985; Bobet and Norman, 1990; Potvin et al., 1996):

Hact(s, pact) =
1

1
ω0

2 s2 + 2β
ω

s + 1
(3.10)

with

pact = [f0, β]

in which s the Laplace operator equals j2πf , f0 is the eigenfrequency (f0 = ω0

2π
), β

the relative damping of the activation dynamics model, and pact is the parameter
vector.
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The activation dynamics were obtained by fitting the model (Eq. 3.10) onto the
estimated activation dynamics (Eq. 3.8) by minimizing the criterion function:

Lact(pact) =
∑

k

γ̂2
af (fk)

1 + fk

∣

∣

∣
ln Ĥact(fk) − ln Hact(fk, pact)

∣

∣

∣

2

(3.11)

where k indexes the frequency vector. Only the frequencies to 10 Hz were used for
the criterion. For higher frequencies the force signal contained little power such that
the activation dynamics can not be estimated reliably. This is reflected by the low
coherence for these frequencies, see Results. Because of the large range of the FRF
gain a least squares criterion with logarithmic difference was used (Pintelon et al.,
1994). The criterion was weighted with the coherence to reduce emphasis on less

reliable frequencies in the FRF and with (1 + fk)
−1 to prevent excessive emphasis

on the higher frequencies. To obtain a better fit one set of parameters was used to
fit the model simultaneously on all 8 trials for each subject. Finally the activation
parameters were averaged over all subjects and used to quantify the intrinsic and
reflexive parameters.

Quantification of intrinsic and reflexive properties

The model used to quantify the proprioceptive reflexes along with the intrinsic
muscle visco-elasticity and limb mass is given in Fig. 3.2. Basically, the model is
a lumped description of the mechanical behavior at endpoint. The position of the
handle, Xh(s), results from (1) the external force disturbance, D(s), (2) human arm
admittance, Hfx(s), and (3) the admittance of the external environment, He(s).

He(s) =
1

mes2 + bes + ke

(3.12)

The parameters of the model are summarized in Table 3.1.
Hg(s) represents the grip dynamics of the hand.

Hg(s) = bgs + kg (3.13)

The intrinsic model, Hint(s), includes the arm mass and the visco-elasticity of the
co-contracting muscles. For small displacements the intrinsic visco-elastic proper-
ties of muscles can be described by a linear spring-damper system (Winters et al.,
1988).

Hint(s) =
1

ms2 + bs + k
(3.14)

The reflexive dynamics, Href (s), represents the muscle spindle sensory system as
modelled by an acceleration, ka, velocity, kv , and position, kp, term in series with a
neural time delay, τd.

Href (s) =
(

kas2 + kvs + kp

)

e−τds (3.15)
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Hfx(s)

Hg(s) He(s)

Hint(s)

Hact(s)Href(s)
A(s)

Xh(s)
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Fh(s)

X(s)
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+
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-
+

+

-

Figure 3.2: NMS model, Hfx(s), in conjunction with the environment, He(s). The

external force disturbance D(s), hand force Fh(s), position of the handle Xh(s), and

muscle activation A(s), are measured. Hg(s) represents grip dynamics, Hint(s)
intrinsic properties, Hact(s) activation dynamics, Href (s) reflexive feedback, and

X(s) position of the arm. The light grey box (Harm(s)) represents the arm model

without grip.

Table 3.1: Model parameters to be quantified.

m [kg] arm mass
b [Ns/m] muscle damping
k [N/m] muscle stiffness
bg [Ns/m] grip damping
kg [kN/m] grip stiffness
ka [Ns2/m] acceleration feedback gain
kv [Ns/m] velocity feedback gain
kp [N/m] position feedback gain
τd [ms] neural time delay
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From the equations (Eqs. 3.10-3.15) the arm dynamics, excluding grip dynamics,
can be derived:

Harm(s) =
X(s)

Fh(s)
=

Hint(s)

1 + Hint(s)Href (s)Hact(s)
(3.16)

=
1

ms2 + bs + k + (kas2 + kvs + kp) e−τdsHact(s)

where X(s) and Fh(s) are the Laplace transforms of the arm position and hand
force respectively. Finally the mechanical admittance and the reflexive impedance
are modelled by:

Hfx(s, p) =
Xh(s)

Fh(s)
= Harm(s) + H−1

g (s) (3.17)

Hxa(s, p) =
A(s)

Xh(s)
= Href (s)

Hg(s)

Hg(s) + H−1
arm(s)

(3.18)

in which p is the parameter vector:

p = [m, b, k, bg, kg, ka, kv, kp, τd]

Note that when the grip becomes very stiff, Hg
−1(s) approaches to zero, such that

the mechanical admittance, Hfx(s), will become equal to Harm(s) while the reflex-
ive impedance, Hxa(s), to Href (s).

The model parameters are quantified by fitting the models (Eqs. 3.17 and 3.18)
to the corresponding FRFs (Eqs. 3.4 and 3.5) simultaneously, by minimizing the
following criterion function:

L(p) =
∑

k

γ̂2
x(fk)

1 + fk

∣

∣

∣
ln Ĥfx(fk) − ln Hfx(fk, p)

∣

∣

∣

2

(3.19)

+q
∑

k

γ̂2
a(fk)

1 + fk

∣

∣

∣
ln Ĥxa(fk) − ln Hxa(fk, p)

∣

∣

∣

2

with q as a weighting factor. Only frequencies where the perturbation signal con-
tained power were included in the criterion. A weighting factor of 0.09 was chosen
such that both terms in Eq. (3.19) had approximately equal values in the optimal fit.

The parameters of the conditions with WB disturbances, i.e. with and without
damping and WB task slack, were estimated simultaneously (six conditions). Dur-
ing this simultaneous model fit one variable for the mass and one for the neural
time delay were used for all six conditions. Except for the WB condition task slack,
the damping and stiffness for the arm and the grip scaled between the conditions
simultaneously with the mean EMG, u0.

b = u0 · bref (3.20)

k = u0 · kref

bg = u0 · bg,ref

kg = u0 · kg,ref



Quantifying reflexes with mechanical admittance and reflexive impedance 61

in which ref denotes the parameter value in the reference condition. For the con-
dition with task slack only the admittance was fitted (q = 0) and the reflexive pa-
rameters were omitted. The only function of the slack condition was to get a better
estimate for the mass. Finally the number of parameters was reduced from 54 (6
condition with 9 parameters) to 25 (1 mass, 1 time delay, 4 muscle and grip pa-
rameters for the reference condition, 4 idem for task slack and 3 reflex gains for 5
conditions).

For the NB conditions the FRFs can only be estimated for the limited bandwidth
and therefore contain not enough information to estimate the nine model param-
eters. To overcome this, it was assumed that the intrinsic parameters (muscle and
grip) scaled with mean EMG using the intrinsic parameters estimated from the ref-
erence condition (WB stiff), see Eq. (3.20). Furthermore the mass and the neural time
delay were fixed to the values found with the WB conditions. consequently the pa-
rameter vector for the NB conditions was reduced to the reflexive parameters only:

p = [ka, kv, kp]

Model validation

The variance accounted for (VAF) is calculated to obtain a validity index for the
quantified parameters. A VAF of 100% indicates that the linear model fully predicts
the measurements. Noise, nonlinearities and other unmodelled behavior reduce
the VAF. Note that a low coherence (noise or nonlinearities) always results in a low
VAF values.

To calculate the VAF the model is simulated in time with the disturbance, d(t),
as input and the simulated position, x̂h(t), and simulated muscle activation, â(t),
as the outputs. Because both the hand position and muscle activation are available
from measurements, the VAF is calculated for both:

VAFx = 1 −
∑

n |xh(tn) − x̂h(tn)|2
∑

n |xh(tn)|2 (3.21)

VAFa = 1 −
∑

n |a(tn) − â(tn)|2
∑

n |a(tn)|2 (3.22)

in which n indexes the time sampled vector. All signals are high pass filtered to re-
move drift, before calculating the VAF (3th order Butterworth, 1 Hz). The lumped
muscle activation signal is reconstructed from rectified EMG signals and conse-
quently contains high frequency components. To remove these components the
lumped muscle activation is low pass filtered (3th order Butterworth, 10 Hz) be-
fore calculating the VAF.
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Figure 3.3: From top to bottom: gain and phase of the FRF of activation dynamics,

coherence, and a 10 seconds fragment of the recorded hand force. Black lines:

model/simulation; grey lines: estimation/measurement.
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Table 3.2: Estimated eigenfrequency, f0, and relative damping, β, of the activation

dynamics for all subjects.

subject fo [Hz] β [-]

1 1.88 0.80
2 2.58 0.77
3 2.03 0.74
4 2.00 0.74
5 2.37 0.64
mean (SD) 2.17 (0.29) 0.74 (0.06)

3.3 Results

3.3.1 Activation dynamics

Fig. 3.3 shows the estimated FRFs of the activation dynamics and the coherence for
a typical trial of one subject. For this trial the coherence was relatively high to 8
Hz, meaning that the estimate of the FRF is reliable to this frequency. For frequen-
cies beyond 8 Hz the coherence dropped, which was likely the result of low input
power at these frequencies. Similar figures were found for other trials and subjects.
Fig. 3.3 also shows the fitted model for the activation dynamics for this subject. The
lower plot of Fig. 3.3 shows the time course of the measured and predicted hand
force. The predicted force resembled the recorded force very well, only at the sharp
transits, i.e. higher frequencies, the force slightly deviated from the measurements.
However during the main experiment these higher frequencies were dominated by
the arm mass and the mismatch will be of little concern.

In Table 3.2 the estimated parameters are given for all subjects. The average val-
ues over the subjects were 2.17 Hz for the eigenfrequency and 0.74 for the relative
damping. These values were used for the estimation of the intrinsic and reflexive
parameters.

3.3.2 Nonparametric FRFs

In Table 3.3 the average RMS of the hand position over the subjects is given. The
RMS of the hand position was always approximately 3 mm, except for NB Type 2
disturbances with center frequencies higher than 5 Hz. These disturbances only
contained power above the eigenfrequency of the arm, which is approximately
3 Hz. The admittance at these frequencies was primarily determined by the arm
mass, which would require uncomfortably large forces to accelerate the arm. For
this reason the amplitude of the force disturbance was reduced explaining the
smaller amplitudes. The mean EMG varied slightly around one, indicating that the
co-activation of the muscles was almost equal for all stiff conditions (Table 3.3).

Figs. 3.4-3.6 show the FRFs and coherences for one and the same subject during
the WB, NB1, and NB2 conditions respectively. For all conditions the coherence of
the handle position was higher than 0.95. The coherence of the muscle activation
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Figure 3.4: The FRFs of a typical subject for the mechanical admittance (left) and

the reflexive impedance (right) together with corresponding coherences for WB dis-
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Figure 3.5: The FRFs of a typical subject for the mechanical admittance (left) and

the reflexive impedance (right) together with corresponding coherences for NB1
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Figure 3.6: The FRFs of a typical subject for the mechanical admittance (left) and

the reflexive impedance (right) together with corresponding coherences for NB2

disturbances. Upper row: gain; middle row: phase; bottom row: coherences. The
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reference condition for a typical subject. Grey lines: estimates; black lines: model

fits. Bottom: a 3 second time fragment of the handle position, xh(t), and the muscle
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Table 3.3: Root-mean-square (RMS) value of the hand position and muscle activity

for all conditions. Mean (SD) over all subjects.

condition RMS [mm] u0 [-]

WB 3.3 (0.4) 1 (-)
B50 50 Ns/m 3.1 (0.6) 1.02 (0.05)
B100 100 Ns/m 3.1 (0.4) 0.95 (0.05)
B150 150 Ns/m 3.2 (0.5) 0.96 (0.09)
B200 200 Ns/m 3.2 (0.5) 0.93 (0.10)
NB1 1.2 Hz 3.1 (0.8) 0.95 (0.11)
NB1 1.5 Hz 3.2 (0.8) 0.94 (0.11)
NB1 1.8 Hz 3.2 (0.7) 0.95 (0.12)
NB1 2.4 Hz 3.5 (0.9) 1.01 (0.11)
NB1 3.1 Hz 3.7 (0.6) 1.01 (0.09)
NB1 3.7 Hz 3.3 (0.6) 0.99 (0.12)
NB2 1.3 Hz 3.0 (0.5) 0.98 (0.12)
NB2 1.8 Hz 2.9 (0.7) 1.05 (0.11)
NB2 2.3 Hz 3.0 (0.8) 0.99 (0.10)
NB2 3.0 Hz 2.7 (0.5) 1.03 (0.13)
NB2 4.0 Hz 3.0 (0.7) 1.06 (0.16)
NB2 5.0 Hz 2.5 (0.4) 0.95 (0.11)
NB2 6.0 Hz 2.1 (0.4) 0.97 (0.16)
NB2 7.0 Hz 1.8 (0.3) 0.98 (0.16)

was relatively high for the frequencies between 1 and 10 Hz. With external damp-
ing the admittance decreased at low frequencies compared to the WB condition
(i.e. the arm became stiffer), and the peak at the eigenfrequency around 3 Hz in-
creased. Note that the combined arm-environment system remained well damped
due to the external damping. The gain of the reflexive impedance increased with
damping (upper-right plot in Figure 3.4). The phase of the reflexive impedance is
primarily determined by velocity feedback (differential action introducing 90 de-
grees phase advance at all frequencies), position feedback (zero degrees for all fre-
quencies) and a time delay (zero phase lag at 0 Hz and increasing lag with higher
frequencies). With the reference condition (WB stiff) the phase advance at 0.5 Hz
was approximately 70 degrees, indicating that at these frequencies velocity feed-
back was substantial. With the increase of the external damping the phase advance
at 0.5 Hz decreased, indicating that position feedback was more pronounced.

Figure 3.5 shows that for the NB1 condition the admittance decreased with de-
creasing bandwidth. The peak around the eigenfrequency was not visible since the
eigenfrequency was not excited by the NB1 disturbances. The reflexive impedance
increased for smaller disturbance bandwidth and was almost 3 times larger for the
smallest bandwidth compared to the reference condition.

For all NB2 conditions the gain of the admittance was lower compared to the
reference condition (Fig. 3.6). However the reflexive impedance was increased for
center frequencies up to 3 Hz, and smaller for higher center frequencies. The phase
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Table 3.4: Estimated parameters for the reference condition and the condition with

task slack. Mean (SD) over the subjects.

reference (WB stiff) WB slack

m [kg] 2.02 (0.39) ⇐⇒ 2.02 (0.39)
b [Ns/m] 32.5 (10.1) 14.4 (4.2)
k [N/m] 382 (181) 169 (45)
bg [Ns/m] 228 (94) 44 (32)
kg [kN/m] 11.7 (6.0) 2.6 (1.9)
ka [Ns2/m] 2.3 (0.5) zero
kv [Ns/m] 37.4 (16.3) zero
kp [N/m] 91 (145) zero
τd [ms] 28.4 (4.9) -

lead of the reflexive impedance was larger compared to the reference condition at
nearly all frequencies.

3.3.3 Intrinsic and reflexive parameters

In Fig. 3.7 the model fit is shown for a typical subject during the reference condi-
tion. In Table 3.4 the estimated parameters for the reference condition are given,
together with the parameters for the condition with task slack. Fig. 3.8 shows the
quantified parameters averaged over all subjects for all conditions together with
the VAF values for position and muscle activation. The values for VAFx (solid lines
in Fig. 3.8) were generally high, i.e. higher than 90%. Only for the NB1 conditions
with fh smaller than 2 Hz the VAFx was slightly smaller. The values for VAFa varied
around 50% for most conditions. Both the coherence and the VAF for the muscle ac-
tivation were smaller than one, most likely due to the presence of noise in the EMG
recordings. To severely reduce the noise in the signals all irrelevant frequencies,
i.e. not excited by the force disturbance, were removed from the measured position
and muscle activation. Noise reduction was performed by applying FFT, setting
power to zero at all irrelevant frequencies, and then inverse transformation to time
domain (by inverse FFT). The VAF values for these noise-reduced signals are indi-
cated with gray lines in Fig. 3.8. The usage of the noise-reduced signals increased
the VAFa to values around 60% for the damping conditions and even to 90% for the
NB2 conditions. The VAFx increased to values above 90% for all conditions.

The acceleration feedback decreased with damping from around 2 Ns2/m for
the reference condition to 1 Ns2/m for the highest external damping. As expected
from the FRFs of the reference condition, the reflexive impedance was dominated
by velocity feedback, which was approximately equal to the intrinsic damping. The
position feedback gain increased with external damping, while velocity feedback
remained almost constant. For the condition with the highest external damping the
position feedback was in the same size as the intrinsic stiffness. This implicates that
for this condition approximately 50% of the overall stiffness is of reflexive origin.

For the NB1 conditions both position and velocity feedback increased with de-
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creasing bandwidth. For the largest bandwidth the reflex gains approached to the
values corresponding to the reference condition. The mean values for the acceler-
ation feedback gains did not show a clear trend with external damping. For the
smallest bandwidth the standard deviations was relatively high, most likely as ac-
celeration feedback has minor effect on low frequencies.

For the NB2 conditions both the acceleration and velocity feedback increased
with decreasing center frequency. The standard deviation of the position feedback
is high and no trend is seen over the conditions. The high standard deviation in-
dicates that the position feedback gain can not be quantified accurately for these
conditions and has minor effect for these disturbances.

3.4 Discussion

3.4.1 Methodology

In this study a method is developed to quantify the dynamic properties of proprio-
ceptive reflexes in vivo. This method is an important tool to evaluate the regulation
of spinal reflexes during posture tasks. The use of force disturbances appeared nat-
ural to the subjects, facilitating the application of an unambiguous position task. Re-
flex gains were quantified by fitting linear models onto estimated input-output be-
havior. Both the mechanical admittance and reflexive impedance were estimated on
which a linear NMS model was fitted. The incorporation of the reflexive impedance
into the quantification method is new and gives direct insight into the contribution
of the underlying reflexive feedback system to the overall mechanical behavior of
the arm. The method has the advantage that intrinsic and reflexive parameters, in-
cluding the neural time delay, can be estimated simultaneously.

The estimated coherences were high, justifying the usage of linear models. Be-
low 1 Hz and above 10 Hz the coherence of the muscle activation was relatively low,
which is likely is the result of uncorrelated corrective muscle contractions to pre-
vent drifting of the hand position and noise inherent to EMG. The estimated FRFs
of the arm admittance showed that reflexes are effective in increasing the mechani-
cal resistance to external force disturbances, as indicated by smaller mechanical ad-
mittance and higher reflexive impedance (Figs. 3.4-3.6). The quantified parameters
resulted in accurate model predictions of both hand position and muscle activa-
tion, as proved by the high VAF values for almost all experimental conditions. The
small standard deviation of the estimated time delay indicates that this parameter
is obtained with high accuracy. A mean value of ± 29 ms means that the identified
reflexive feedback system is mediated via monosynaptic neural connections, i.e. the
short latency spinal pathways. Clear trends in the estimated reflex gains were seen
which indicate that the reflex system adapts to the external conditions applied. This
study shows that for some condition half of the joint stiffness is of reflexive origin.
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3.4.2 Functionality of reflexes

The findings of this study add to understanding of the functionality of propriocep-
tive reflexes. The feedback controller is the series conjunction of muscle activation
dynamics, muscle spindle dynamics and a time delay. The effect of the feedback
controller is explained graphically from the feedback model shown in Fig. 3.9, us-
ing two different estimated parameter sets corresponding to the reference condition
(black lines) and to the NB1 (fh=1.2 Hz) condition (gray lines). The muscle spindles
tend to increase the feedback gain with frequency (left column) while activation
dynamics causes attenuation with increasing frequency (middle column). As a re-
sult, length and velocity feedback are most effective because these properties are
manifest within the bandwidth of the activation dynamics (± 2 Hz). Beyond this
bandwidth, high frequency gain from acceleration feedback (102 amplification per
frequency decade) is canceled due to the same amount of attenuation from the ac-
tivation dynamics. Hence, the feedback system acts as a proportional-differential-
proportional (PDP) controller in series with a time delay, as can be seen from Fig-
ure 3.9 (right column). The effectiveness of the reflexive controller is strongly lim-
ited by substantial phase lag at higher frequencies due to the neural time delay.
Attenuation of the gain at higher frequencies by the activation dynamics is there-
fore advantageous to facilitate position and velocity feedback, which are effective
at low and intermediate frequencies. Without such an attenuation, position and ve-
locity feedback gains would be severely limited to avoid unstable behavior.

Besides stability as an ultimate bound, the feedback gains are determined by
performance demands. High position and velocity feedback gains decrease the ad-
mittances at frequencies below the eigenfrequency of the arm (± 3 Hz), i.e. decrease
the sensitivity to external force disturbance (De Vlugt et al., 2001; Schouten et al.,
2001). However, due to the presence of phase lags from neural time delays and ac-
tivation dynamics, high feedback gains also result in oscillatory behavior around
the eigenfrequency which worsen performance. In the case of the NB1 condition
containing only low frequencies, the eigenfrequency is not excited and oscillations
will not occur. Therefore large feedback gains are beneficial to the performance for
NB1 conditions (Fig. 3.9, gray lines). Furthermore, external damping suppresses the
oscillation of the arm such that large feedback gains are also beneficial for these con-
ditions (see Fig. 3.4). Taken together, high feedback gains improve performance at
low frequencies but tend to destabilize the arm around the eigenfrequency. Appar-
ently, the CNS modulates the feedback gains by trading off performance against
stability. Future model optimization studies could determine to what extent the
quantified feedback gains found in this study are optimal.

3.4.3 Comparison with previous work

The experimental conditions applied in the present study were similar to those
used in previous studies by our group (De Vlugt et al., 2002; Van der Helm et al.,
2002). The main trends in the quantified position and velocity feedback gains are
comparable, albeit that in the previous studies the velocity feedback gains were
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Figure 3.9: Gain (upper row) and phase plots (bottom row) of the reflexive feed-

back Href (f) (left column), the activation dynamics Hact(f) (middle column) and

the combined feedback controller as the cascade of both models Hact(f)∗Href (f)
(right column). Parameter sets corresponding to the estimated values for the refer-

ence condition (black lines) and the NB1 (fh = 1.2Hz) condition (grey lines).

underestimated. The explanation is twofold. The first is presence of reflexive feed-
back during the reference condition and the second is the smaller bandwidth of the
muscle activation dynamics. In the previous studies the reflexive feedback could
not be identified directly and therefore it was assumed that the reflexes were neg-
ligible for wide bandwidth disturbances (reference condition) in order to separate
the intrinsic and reflexive contributions. This study showed that velocity feedback
was indeed present during the reference, hence velocity feedback was underesti-
mated in the previous studies. In this study the activation dynamics were quan-
tified, where in the previous studies a general model was adopted a-priori from
literature, having a bandwidth of 5 Hz. This study proves that such a bandwidth
is too high, and therefore the previously estimated velocity feedback gains were
lower as a compensation.

In this study muscle activation dynamics was modelled as a second order sys-
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tem. The quantified cut off frequency is 2.17 Hz and the relative damping is 0.75.
These values are comparable to those found in the literature. Potvin et al. (1996)
found a rather wide range for trunk extensor muscles (2.0-3.3 Hz) while Bobet and
Norman (1990) identified the elbow flexor and extensor muscles and found values
of 1.9-2.8 Hz. Olney and Winter (1985) estimated values of 1.0-2.8 Hz for lower limb
muscles during walking.

In this study, an acceleration term was included in the reflexive feedback to
describe the reflexive impedance at higher frequencies. Kukreja et al. (2003) showed
that linearization of an unidirectional velocity sensitivity results in higher order
terms including a pronounced acceleration term. In a recent study, the reflexive
impedance was estimated from a nonlinear NMS model including unidirectional
velocity sensitivity (Stienen et al., 2003). The gain and phase characteristics were
comparable to those found in this study (Figs. 3.4-3.6) showing a clear second order
(acceleration) response. This suggests that acceleration feedback is an artifact of
muscle spindle unidirectionality rather than a distinct sensory function.



Chapter 4

The effect of position and force tasks on

human arm admittance

David Abbink, Erwin de Vlugt, Alfred C. Schouten, Frans C. T. van der Helm
to be submitted to Biological Cybernetics

The goal of this study is to determine the effect of position and force tasks on human
arm dynamics. Endpoint arm dynamical properties are described by the mechan-
ical admittance which determines the hand position as a dynamic function of an
external force imposed at the hand. Endpoint admittance incorporates the effects
of underlying neuromuscular properties and is gives direct insight into the distur-
bance rejection of the human limb. It is known that humans are able to modify their
admittance by adaptation of three mechanisms: a) intrinsic muscle visco-elasticity,
b) muscle spindle stretch and stretch velocity feedback, and c) muscle force feed-
back from golgi tendon organs (GTOs). The effect of different posture tasks on these
three mechanisms are qualified from a functional perspective. These qualifications
are judged on the basis of two hypotheses. The first is that during position tasks,
the mechanical resistance to external forces increases (admittance decreases) due
to intrinsic muscle visco-elasticity and reflexive properties from muscle spindles.
The second is that during complementary force tasks, the mechanical resistance de-
creases from reduced intrinsic and reflexive spindle contributions and additionally
from a pronounced force feedback of the GTOs.

Experiments were performed to estimate the arm admittance by frequency re-
sponse functions (FRFs). Continuous force and position perturbations were applied
at the hand alternately, while subjects (n = 10) were instructed to minimize either
their hand displacements or hand reaction force. Inspection of the estimated admit-
tance and comparison with model simulations confirmed the hypotheses qualita-
tively. All estimated admittances roughly resemble that of a second-order system,
with 4 subjects showing a distinct local increase in the FRF gain and phase around
10 Hz for all experimental conditions. From the model it was found that there is
strong interdependence between reflexive feedback and intrinsic properties in their
potential contribution to endpoint arm admittance. Particularly between GTO and
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muscle spindle feedback. The local increase is explained by a subject dependent
relatively large GTO feedback gain.

It is concluded that position tasks entail considerably lower admittances and
more co-contraction than force tasks. GTO activity was most likely present for 4
subjects irrespective they performed a position or force task and probably was in-
variant for each subject. Muscle spindle feedback appeared to be reduced during
the force tasks and therefore seems not functional to control endpoint force.

4.1 Introduction

The neuromusculoskeletal system is equipped with different mechanisms that are
potentially effective in compensating for external disturbances. This study focuses
on the peripheral mechanisms that control the motion and forces of the human
arm, being: 1) intrinsic visco-elasticity from activated muscles and 2) monosynap-
tic reflexive feedback from muscle spindles and golgi tendon organs (GTO). The
effectiveness of these mechanisms - especially reflexive feedback - and their com-
bined effect on the mechanical properties of the human arm are largely unknown.
In this study the contributions of those mechanisms are analyzed for two different
tasks: posture maintenance and force maintenance. In daily life, both tasks occur
frequently and are characterized by small variations around a working point.

For the maintenance of posture, intrinsic stiffness and damping from cocon-
tracting muscles is effective though energy-consuming. Muscle stiffness and damp-
ing vary simultaneously with muscle activation that is determined by supra-spinal
commands. Muscle spindles provide reflexive information on muscle stretch and
stretch velocity, and excite the alpha motor neuron, increasing overall stiffness and
damping. Reflexive muscle activity only occurs in response to perturbations, and
is therefore energy-efficient. However, the effectiveness of the feedback loop is lim-
ited by its inherent time delay. Experimental studies have shown that muscle spin-
dle activity depends on task instruction (Doemges and Rack 1992a; 1992b), the level
of muscle contraction (e.g. Jaeger et al. 1982), the displacement amplitude (Cathers
et al. 1999), the bandwidth of the perturbation signal (Van der Helm et al., 2002) and
the mechanical properties of the environment the subject interacts with (De Vlugt
et al. 2002).

The influence of the task instruction is very difficult to determine from the lit-
erature. Doemges and Rack (1992a; 1992b) used transient perturbations to study
the influence of position and force tasks. They found that position tasks entailed
more reflexive activity than force tasks. Cathers et al. (1999) applied continuous po-
sition perturbations to the wrist while the subjects had to maintain a background
force. They estimated frequency response functions (FRFs) between the wrist dis-
placement and muscle activation from electro-myography (EMG) and attributed
the results to muscle spindle feedback. In general, they showed that feedback gains
increase with decreasing perturbation amplitude and increase with the level of
background torque. Agarwal and Gottlieb (1977a) applied continuous force per-
turbations to the ankle joint where the subjects had to maintain a constant torque.
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Table 4.1: Four hypotheses to be tested in the present study.

Position Task Force Task

1) Admittance low high
2) Co-contraction high low
3) Muscle spindle high low

feedback gain
4) GTO low high

feedback gain

Based on the estimated FRFs, they concluded that there was no indication of reflex
contributions. Another study by Jaeger et al. (1982) used transient torque pertur-
bations to the wrist and found that the fastest (monosynaptic) response in EMG
was not modified when the subjects had to change their tasks from ’do not inter-
vene’ to ’maximally resist’. Comparisons and results between the different studies
are difficult to interpret due to the abundance of different experimental conditions:
the type of perturbation (force or position, transient or continuous) and the task
required by the subject (position or force tasks, minimal or maximal level of inter-
vention). Additionally, very scarce information of the GTO functionality exists. It
is known that GTOs provide force feedback and have an inhibitory effect onto al-
pha motor neurons. Whether the amount of force feedback can be modified is not
known. In this study it is expected that this inhibitory effect reduces the overall
mechanical resistance of the joints to external force disturbances.

When studying the effect of task instruction on motion control, it is important
to understand the functional difference between position tasks and force tasks. Po-
sition tasks are present in many daily situations like driving a car or riding a bike,
in which cases the limb is disturbed by force perturbations (position perturbations
render the task impossible). High stiffness and damping (i.e. small endpoint ad-
mittance) are functional to suppress the effect of force perturbations. It is there-
fore hypothesized that during position tasks intrinsic muscle visco-elasticity (by
co-contraction) dominate over GTO feedback.

Force tasks (implying position perturbations) require a constant force to be ex-
erted on an object, and occur less frequently in daily life, e.g. maintaining the pres-
sure on a pen when writing in a train. Force tasks are best accomplished when
the subject is compliant (i.e. large endpoint admittance) and moves along perfectly
with the imposed displacements, whereas a high resistance to movements results
in undesired high reaction forces. Intrinsic muscle visco-elasticity and muscle spin-
dle feedback are therefore counterproductive. It is hypothesized that during force
tasks GTO feedback is pronounced and that muscle spindle feedback and intrinsic
visco-elasticity is reduced.

Both hypotheses are summarized in Table 4.1. The contribution to endpoint be-
havior of visco-elastic muscle properties, spindle and GTO feedback were deter-
mined by analysis of the estimated admittance FRFs and by qualitative comparison
with a linear neuromusculoskeletal (NMS) model.
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The results indicated that the estimated endpoint admittance is lower for posi-
tion tasks primarily due to large levels of co-contraction compared to force tasks.
A sensitivity analysis made clear that severe interchange existed between muscle
spindle and GTO feedback parameters due to the complementary effect of both
to the overall endpoint admittance. As a result, the contribution of GTO feedback
could not be clearly derived from the estimated FRFs. In 4 subjects and irrespective
the task, a local change in the admittance was clearly visible. A systematic model
analysis indicated that this effect is the result of a substantial and invariant GTO
feedback, which is different amongst subjects. Muscle spindle feedback was found
to be reduced during force tasks and therefore seems not functional to control end-
point force.

4.2 Methods

4.2.1 Subjects

Ten subjects (5 females) between the age of 20 to 25 participated in the experiment.
All subjects were right-handed, and had no medical record of neurological disease
or arm injuries and were not familiar with the purpose of this study. Subjects gave
informed consent to the experimental procedure.

4.2.2 Apparatus and signals

A hydraulic manipulator is used that generates either force or position pertur-
bations in one direction. The subjects interacted with the manipulator through a
handle, which they were instructed to hold firmly with their right hand (see Fig.
4.1). On a computer monitor in front of the subject, position (or force) was plot-
ted against a reference line that represented the target position (or force). The hand
force on the manipulator handle fh(t) and its position xh(t) were measured.

Two types of perturbation signals were used: force perturbations and position
perturbations. During force perturbations the manipulator acts as an impedance
controller with negligible stiffness and viscosity, and a minimum virtual mass of
0.6 kg. The force perturbation enters the system by adding it to the measured hand
force. In the case of position perturbations, the handle was controlled by a strong
position servo that simply dictates the motion, irrespective of the applied hand
reaction force.

Force perturbations were generated off-line in the frequency domain. Four rect-
angular spectra were used containing power at frequencies from 0.5 Hz to 1.5 Hz,
2.5 Hz, 3.5 Hz or 20 Hz. Within each bandwidth, the power was equal for all fre-
quencies present in the signal. The mutual phase shift between all sinusoidal com-
ponents had random values with a uniform distribution between 0 and 2π rad.
Inverse fourier transform resulted in unpredictable time signals with a duration
of 40 seconds. Intrinsic visco-elastic properties (co-contraction level) and reflexive
properties that are of interest in this study, can be taken as time invariant in re-
sponse to these disturbances (Van der Helm et al. 2002). The magnitude of the force
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Figure 4.1: The experimental setup, showing a subject seated in front of the the monitor,

holding the handle of the manipulator. The forearm is horizontally aligned and the elbow is

90 degrees flexed. Four EMG electrodes were placed to record activation signals of rele-

vant shoulder muscles. The hand motion xh(t) and the force of the hand on the stick fh(t)
are measured. Hand motion is constrained by the manipulator, so that only movements in

anterior-posterior direction are possible.

perturbations was determined for each bandwidth during test trials, so that the re-
sulting average absolute displacements were comparable (6-8 mm). The recorded
displacements during the force perturbations were stored and applied as position
perturbations, when required. Such a strategy guarantees that displacements have
approximately the same magnitude for each combination of task and perturbation,
so that non-linear effects due to amplitude dependencies are avoided.

EMG signals of four muscles were measured by differential surface electrodes.
Latissimus dorsi and deltoid posterior muscles cause a backward arm motion (pull,
antagonists) from the target position, while deltoid anterior and pectoralis ma-
jor muscles cause a forward motion (push, agonists). All EMG signals were pre-
amplified, high-pass filtered (20 Hz, third-order Butterworth), amplified, rectified
and smoothed (100 Hz low pass, third order Butterworth). Position, force and EMG
signals were measured via analogous to digital conversion with 16-bit resolution at
250 Hz sample frequency and digitally stored for further analysis.

4.2.3 Experimental Procedure

The experiment consists of two parts, each with a different task. In the first part
subjects were instructed to maintain a constant position (position task, PT), in the
face of different bias forces (constant over a trial). In the second part they were
required to maintain constant force levels (force task, FT). All non-zero force lev-
els required the subject to push forward. Without informing the subject, position
perturbations (PP) and force perturbations (FP) were randomly applied for each of
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Table 4.2: Structure of the experiment. Each combination of task and position was

applied eight times (four different bandwidths, two repetitions). During the functional

tasks (PT-FP and FT-PP) three additional force levels were investigated. Illogical

tasks (PT-PP and FT-FP) were only investigated for one level of (bias) force. A

single trial lasted 40 seconds.

Perturbation type
Task Position Force

Position
(Part 1) Notation PT-PP PT-FP

Bias Force 0 %MVC 0, 15, 25 %MVC
#trials 8 3×8 = 24

Functionality Illogical task, Logical combination
any effort is useless

Force
(Part 2) Notation FT-PP FT-FP

Force Level 0, 15, 25 %MVC 25 %MVC
#trials 3×8 = 24 8

Functionality Logical combination Illogical task,
considerable drift expected

these two tasks. Note that PT-FP and FT-PP are logical combinations of task and
perturbation. The other two combinations are illogical: for PT-PP it is impossible
to minimize the hand displacements, while for FT-FP the hand position is not de-
termined (neither by the task, nor by the perturbation) and is therefore liable to
drift. The illogical combinations are only used to investigate the influence of the
perturbation type on the admittance.

Subjects were trained for the logical combinations only and during 15 minutes
prior to the start of the actual experiment. A 15 minute break separated both halves
of the experiment. Each trial is defined by a combination of a) task, b) perturbation
type, c) mean generated force (called bias force for PT, and force level for FT) and
d) signal bandwidth. Each trial was presented twice, for averaging purposes.

Before the main experiment, subjects were asked to alternately push and pull
as hard as they could for three seconds. Maximal pushing and pulling forces were
measured by an AMTI force transducer (type MC3-6-500). Startup effects were ex-
cluded by rejecting the first second. Subsequently, force and EMG signals were av-
eraged over the trial time, and these averages were again averaged over three re-
peating trials, yielding the MVC force and a value EMGmax for each muscle. Mean
EMG signals measured during the main experiment were scaled with EMGmax of
the corresponding muscles. This method yields a normalized EMG signal nEMG
(= EMG

EMGmax
) for each of the four muscles, which is used for comparison between

subjects.
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Position task

In the first part subjects were instructed to minimize deviations during 32 trials.
During PT-FP trials an additional bias force was added to the force perturbation,
equaling 0%, 15% or 25% of the subjects’ maximal voluntary contraction (MVC).
This bias force was compensated for when subjects succeeded in maintaining their
position. Note that a bias force is impossible to apply during PT-PP trials. The total
number of force perturbation trials (FP) is 24 (three bias forces, four bandwidths,
two repetitions), while the total number of position perturbation trials (PP) is 8
(four bandwidths, two repetitions).

The top row of Table 4.2 summarizes the trials presented during position tasks.
The trials were presented in random order with a 40 second rest period between
each trial to prevent fatigue.

Force task

In the second part, subjects were instructed to maintain a steady force during 32
trials. During FT-PP trials the force levels were 0%, 15% and 25% of the MVC. Dur-
ing FT-FP only the maximal force level was used (25%), since the inherent position
drift appeared to be smaller for larger force levels. The applied force perturbations
were scaled down so that approximately the same displacements occurred as dur-
ing PT-FP. The total number of PP trials is 24 (three force levels, four bandwidths,
two repetitions), while the total number of FP trials is 8 (four bandwidths, two rep-
etitions).
The bottom row of Table 4.2 summarizes the trials presented during force tasks. The
trials were presented in random order with a rest period of 15 seconds in between,
because force tasks are less fatiguing than position tasks.

4.2.4 System identification

The first 8 seconds of the signal were not used for identification, to eliminate the
effects of initial adaptation after the perturbation onset. The measured position and
force signals were transformed to the frequency domain using the fast fourier trans-
form (FFT). Non-parametric estimations of the human arm FRF were calculated
using cross-spectral densities.

Application of position perturbations excludes any interaction between the sub-
ject and the manipulator. Therefore, an open-loop identification procedure is used
for PT-PP and FT-PP trials with the position perturbation as the input and the hand
reaction force as the output. The transfer function, or impedance, is estimated by:

ĤXF (f) =
Ĝxf (f)

Ĝxx(f)
(4.1)

where Ĥ denotes the estimated FRF. Ĝxf is the cross-spectral density of xh(t) and

fh(t), while Ĝxx is the auto-spectral density of xh(t).



82 CHAPTER 4

Figure 4.2: Linear blockscheme comprising the human arm, hand and the environment (s

is the laplace operator). The reflexive and intrinsic parameters are lumped. All parameters

are discussed in the text. U(s) represents the variations of a lumped supraspinal signal

representing neural projections on the alpha motoneuron. These variations are assumed to

be zero during the experiments. A(s) is the muscle activation signal; Fmus(s): lumped muscle

force; Fh(s): (measured) hand reaction force; Xh(s): (measured) hand position; Xarm(s):
arm position; D(s) external force perturbation. In case position perturbations are applied,

there is no interaction between the human arm and the environment: the dotted connection

(vertical arrow) is void (see text).

For force perturbations (PT-FP, FT-FP) a closed-loop identification procedure is
required (De Vlugt et al., 2002; Van der Helm et al., 2002). The closed loop config-
uration emerges because interaction exists between the manipulator (me = 0.6 kg)
and the human arm. To separately estimate the FRF of the human arm, an external
signal is needed from outside the closed loop for which the external force perturba-
tion d(t) is used. The relationship between the hand reaction force (input) and the
hand position (output), i.e. the arm admittance, is estimated by:

ĤFX(f) =
Ĝdx(f)

Ĝdf (f)
(4.2)

The term Ĝdx is the cross-spectral density of d(t) and xh(t), whereas Ĝdf is the the
cross-spectral density of d(t) and fh(t). All spectral densities were averaged over
eight adjacent frequencies to reduce the variance.
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To verify the appropriate usage of linear models, the coherence function is esti-
mated. For Eqs 4.1-4.2 the coherence is determined according to:

Γ̂XF (f) =

√

|Ĝxf (f)|2
Ĝxx(f)Ĝff (f)

(4.3)

Γ̂FX(f) =

√

|Ĝdx(f)|2
Ĝdd(f)Ĝxx(f)

(4.4)

This function is an indication of the amount of linearity of the system in response
to the external perturbation. The coherence varies between 0 and 1 and decreases
due to external noise and nonlinearities.

4.2.5 Linear arm model

A linear model comprising arm and hand dynamics is given in Figure 4.2. The
model contains: the environment; intrinsic muscle stiffness and damping; handgrip
visco-elasticity; muscle activation dynamics; position and velocity feedback from
muscle spindles; and force feedback from GTOs. The model is represented in the
frequency domain where s denotes the laplace operator.

The motion of the arm inertia is defined by

Xarm(s) = Hi(s) [Fh(s) − Fmus(s)] (4.5)

where

Hi(s) =
1

mas2

with ma the lumped endpoint inertia of the arm. The total force acting upon the
arm is the sum of the hand reaction force Fh(s) and the opposed force exerted by
the muscles Fmus(s).

Fmus(s) = Hact(s)A(s) + Hve(s)Xarm(s) (4.6)

Equation (4.6) defines the muscle force, which exists of an intrinsic and an activa-
tion component. Intrinsic muscle stiffness and damping is described by

Hve(s) = ka + bas

with ka the lumped muscle stiffness and ba the lumped muscle damping at end-
point level. The stiffness and damping are increased by activating the muscles.
Muscle activation describes the process of active muscle force build-up following a
neural activation signal A(s), and is approximated by a first order process having a
time constant τa of 30 ms (Winters and Stark, 1985)

Hact(s) =
1

τas + 1
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The activation signal A(s) is the result of muscle spindle and GTO feedback, ac-
cording to

A(s) = Hms(s)Xarm(s) − Hgto(s)Fmus(s) + U(s) (4.7)

with

Hms(s) = (kp + kvs) e−s τms

the muscle spindle dynamics. The parameters kp and kv represent the gains of the
monosynaptic stretch and stretch velocity feedback. U(s) represents the variations
in the supraspinal signal, which are thought to be zero. A time delay of τms=30
ms is taken that approximates the time elapse of the neural signal traveling from
the spindles to the spinal cord and back to the muscle (De Vlugt et al. 2002). GTO
dynamics are described by a force feedback gain kf and a time delay equal to that
used for spindle feedback (τgto= 30 ms).

Hgto(s) = kf e−s τgto

Compared to muscle spindle afferents that excite the alpha motoneuron (i.e. acti-
vate the muscle), GTO feedback has an inhibitory effect. Hence the minus sign in
Eq. (4.7).

Displacements of the handle within the handgrip, due to skin displacement and
movement of the fingers, is represented by a first order system

Fh(s) = Hh(s) [Xh(s) − Xarm(s)] (4.8)

with

Hh(s) = kh + bhs

Hand elasticity and viscosity are represented by kh and bh respectively.
Because the FRF of the arm is always estimated separately, the environment is

excluded from the model analysis (indicated by the dotted horizontal line in Fig-
ure 4.2). The complete lumped model of the arm at endpoint level follows from
(4.5)-(4.8). By default, the arm model is expressed as an admittance, i.e. from Fh(s)
to Xh(s). The following model equation is the result:

Xh

Fh

=

[

H−1
h +

Hi [1 + HactHgto]

1 + HactHgto + Hi [HactHms + Hve]

]

(4.9)

Substituting the parameters and structuring the terms in Eq. (4.9) results in a well-
organized model equation

Xh

Fh

=
1

bhs + kh

+
1

mas2 + Bs + Ks
(4.10)
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with B and K the compound damping and stiffness, respectively

B =
ba + kvHact e−τms

1 + kfHact e−τgto

K =
ka + kpHact e−τms

1 + kfHact e−τgto

The blockscheme (Fig. 4.2) is a proper representation in case force perturbations
are applied. However, the model can also be used for position perturbations. In that
case, interaction between the human arm and the manipulator is absent, which
is represented by the dotted vertical arrow in the blockscheme (Fig. 4.2). Conse-
quently, the hand position is only determined by the external force perturbation
D(s), according to

Xh(s) =
1

mes2
D(s) (4.11)

When the perturbation signal is amplified (multiplied) by mes
2, than (4.11) changes

into

Xh(s) =
1

mes2
mes

2D(s) = D(s) (4.12)

The force perturbation signal actually has become the position perturbation signal,
assuming the attached payload of the human arm has negligible effect on the im-
posed position. For this condition, Xh(s) can be considered as the input and Fh(s)
as the output of the system.

4.3 Results

4.3.1 Experimental results

All estimated FRFs are shown as admittances to facilitate comparison. The admit-

tance - denoted by Hest - represents Ĥ−1
XF in case of position perturbations, and

ĤFX in case of force perturbations. Admittance can be thought of as a measure
of the displacement magnitude due to a force. A large admittance represents low
stiffness and damping, entailing large displacements. Functional force tasks (FT-PP)
with force levels of 0%, 15% and 25% of MVC are denoted as FT-0, FT-15 and FT-25.
Functional position tasks (PT-FP) with force levels are denoted as: PT-0, PT-15 and
PT-25. The most important results are summarized in Table 4.3.

Influence of task on admittance

Figure 4.3 shows the admittance gain, phase and coherence for a typical subject,
during perturbations with a 20 Hz bandwidth for both PT-0 and FT-0. Coherence
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Table 4.3: Summarized results for all four combinations of task and type of pertur-

bation. Different (bias) force levels and perturbation bandwidths are only applied

for the two functional combinations (PT-FP and FT-PP). An increase is indicated by

upward arrows (↑); a decrease is indicated by downward arrows (↓).

Perturbation type
Task Position Force

Position
(Part 1) Notation PT-PP PT-FP

Functionality - low admittance,
high co-contraction

Bias Force ↑ - admittance: similar
EMG: agonist ↑

Bandwidth ↓ - admittance: ↓
EMG: constant

Comment Strongly resembles PT-FP
any effort is useless
Force (EMG)
not determined

Force
(Part 2) Notation FT-PP FT-FP

Functionality high admittance, -
little co-contraction

Force Level ↑ admittance: ↓ -
EMG: agonist ↑

Bandwidth ↓ admittance: similar -
EMG: constant

Comment Strongly resembles FT-PP
Position
not determined

was generally high (>0.9) for all subjects and for all trials, indicating that the esti-
mated (linear) FRFs almost completely describe the input-output behavior. Lower
coherence values (≈ 0.6) were found during FT-0, only at very low frequencies.

Three important differences were seen between behavior during position tasks
and during force tasks. First, at low frequencies, force tasks cause a larger admit-
tance than position tasks. The top-right figure in Fig. 4.3 shows the relative ad-
mittance for eight subjects (two are excluded since they could not perform a force
task well). The relative admittance is the FT-0 admittance normalized by the PT-0
admittance. Values above one signify an increase in admittance during FT-0 com-
pared to PT-0, which was found to be statistically significant up to 2.5 Hz (Student’s
two-tailed T-test, p <0.05).

Second, force tasks cause a larger admittance than position tasks at higher fre-
quencies also. During FT-0 tasks the increase was especially strong for four subjects,
as can be seen in the relative admittance (Fig. 4.3, top-right).
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Figure 4.3: Gain, phase and coherence of the estimated admittance Hest of a typical subject

(DW), for position tasks during force perturbations (solid), and force tasks during position

perturbations (dashed). The force level was 0% MVC for both tasks. The top right figure

shows the relative admittance (for n=8), which is the admittance during FT-0 divided by the

admittance during PT-0.

Third, during PT the admittance shows a slight oscillation peak around 3 Hz,
which is accompanied by a more apparent sharper phase descent (Fig. 4.3, left).
FT admittances display a more damped nature, with an accompanying moderate
phase descent. This effect was seen for most subjects (n=8).

Influence of perturbation type on admittance

All subjects indicated they did not notice that two different perturbation types were
applied during a single task.

The top row of Fig. 4.4 shows the admittance during position tasks for both
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Figure 4.4: Gain of the estimated admittance Hest of a typical subject (LK) shown for position

tasks (top row) and force tasks (bottom row), with position perturbations (left column) and

force perturbations (right column). The bias force level during position tasks was 0, and

during force tasks 25% MVC.

position and force perturbations. The admittances are similar, even though most
subjects showed considerable and abrupt fluctuations in force during the illogical
task PT-PP. The fluctuations were uncorrelated to the perturbations, and were also
encountered in EMG measurements.

The bottom row of Fig. 4.4 shows the admittances during force tasks: FT-PP
(left) and FT-FP (right). Both admittances are larger than during the PT admittances.
During FT-FP, most subjects showed considerable (low-frequency) drift of the hand
position, as was expected. Despite these fluctuations, it was still possible to estimate
the admittance properly, although the coherence was slightly lower. The applied
perturbation type does not substantially affect the admittance.
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Figure 4.5: Gain of the estimated admittance Hest of a typical subject (AS), for the functional

tasks FT-PP (left) and PT-FP (right). For trials with a 20 Hz bandwidth, all force levels (or bias

forces) are shown: 0% MVC (dash-dotted line), 15% MVC (dashed line) and 25% MVC (solid

line).

Influence of bandwidth on admittance

For all bandwidths, the admittance during PT-0 is shown in Fig. 4.4 (top row). For
lower bandwidths the admittance was found to be smaller. This phenomenon was
also found previously by (Van der Helm et al., 2002) for PT-FP trials. The present
study adds the observation that the effect is independent of perturbation type (top
row), and of bias force level (not shown here).

During force tasks the admittance did not change unambiguously with band-
width. For most subjects the admittance did not change at all. Some difference be-
tween the four bandwidths was seen for three subjects. A clear trend, as during
position tasks, could not be discerned (Fig. 4.4).

Influence of force level on admittance

During force tasks the admittance decreases at low frequencies for increasing force
level, which is clearly visible in Fig. 4.5 (left). FT-0 yields the largest admittances
and FT-25 the smallest, which was expected since larger muscle activation was re-
quired that simultaneously increase muscle stiffness. Most subjects (n=8) showed
the decrease in admittance, which can be seen upon comparison of the top row of
Fig. 4.6 with the top right figure in Fig. 4.3. The admittances during FT-15 and FT-
25 are both larger than during PT-0 (statistically significant up to 2.5 Hz, p <0.05).
During FT-0 the admittance is larger than during FT-15 and FT-25 (statistically sig-
nificant up to 2 Hz, Student’s two-tailed T-test, p <0.05, not shown).

During position tasks, admittance did not vary significantly with the bias force,
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Figure 4.6: Relative admittance for eight subjects, for the logical combinations PT-FP and

FT-PP. The top row shows the relative admittances during FT-15 (left) and FT-25 (right). The

bottom row shows the relative admittances during PT-15 and PT-25. A relative admittance of

one means that the admittance is the same as during PT-0.

which is illustrated for a typical subject in Fig. 4.5 (right) and for all subjects in the
bottom row of Fig. 4.6.

The local increase around 10 Hz

Four out of ten subjects, all female, showed a distinct local increase in the gain
and phase of their admittance around 10 Hz. This group of subjects is called group
A. Fig. 4.7 shows a typical group A subject. The local increase is apparent during
each combination of task and perturbation (logical or illogical), as can be seen in
the admittance of another group A subject (Fig. 4.4). Shape and size of the local
increase did not vary substantially with task, perturbation or (bias) force level, and
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Figure 4.7: Gain and phase of the estimated admittance Hest of a typical group A subject

(SP), for FT-PP (left) and PT-FP (right). Notice the local increase in gain and phase around

10 Hz. For trials with a 20 Hz bandwidth, all force levels (or bias forces) are shown: 0% MVC

(dash-dotted line), 15% MVC (dashed line) and 25% MVC (solid line).

was approximately the same for the entire group A. The other six subjects (Group
B) did not show this local increase, not for any task or perturbation (Fig. 4.8).

EMG results

During position task trials, nEMG was highest for all muscles, usually 20-30%
MVC for agonists and 10-20% mVC for antagonists. It is known that higher forces
can be generated in a short burst (3 seconds) compared to when longer activity (40
seconds) is required, hence the ’low’ percentages. nEMG of each muscle was con-
stant for different bandwidths of the signal, which agrees with previous studies in
our group (van der Helm et al. 2002; De Vlugt et al. 2002). When a bias force was
required, most subjects generated the extra force through increased agonist activity.
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Figure 4.8: Gain and phase of the estimated admittance Hest of a typical group B subject

[PG], for FT-PP (left) and PT-FP (right). For trials with a 20 Hz bandwidth, all force levels (or

bias forces) are shown: 0% MVC (dash-dotted line), 15% MVC (dashed line) and 25% MVC

(solid line). The large values for the gains below 2 Hz (upper left) and above 5 Hz were the

result of a slack handgrip, that occurred often for the FT-PP at 0% MVC.

Two subjects showed an accompanying decrease in antagonist nEMG.

During FT-PP trials where subjects had to maintain a force level of zero (FT-0),
nEMG of both agonists and antagonists was very small (0-3%), indicating that ac-
tive intrinsic feedback was almost absent. When the force level increased in magni-
tude (FT-15, FT-25), agonist activity increased considerably (to 10-20%). Antagonist
activity usually remained smaller than 5%, indicating little co-contraction. For all
FT trials, nEMG signals did not change substantially with different bandwidths.

In short: nEMG did not change with bandwidth of the perturbation signals;
increased with bias force, and was higher during position tasks compared to force
tasks.
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Figure 4.9: Influence of decreasing handgrip parameters bh and kh on the model admittance

gain and phase. The dotted line represents a simple MBK model (infinitely stiff handgrip), with

ma = 2, ba = 40 and ka = 800. The solid line represents the standardized handgrip (bh=200,

kh=15000). The dashed line represents a slack handgrip (bh=200, kh=6000), whereas the

dash-dotted line depicts a very loose handgrip (bh=100, kh=3000).

4.3.2 Sensitivity analysis

The linear model (Eq. 4.10) is used to investigate the effect of lumped model pa-
rameters on endpoint arm admittance. The purpose of the model study is twofold:
to search for characteristics of reflexive feedback in the arm admittance, and to ex-
plain experimental results such as: the presence of the local increase around 10 Hz;
the slight oscillation peak (3-4 Hz); and the difference at high frequencies between
position and force tasks.

Intrinsic parameters

The general dynamics of all estimated admittances roughly resemble that of a sim-
ple second order mass-spring-damper (MBK) system. When reflexive contributions
are absent and the handgrip is infinitely stiff, all dynamics of the system can be
described by a simple MBK system, as can be derived from (4.10) by setting all re-
flex gains to zero. The inertia ma decreases high-frequency admittance, viscosity
ba increases damping and decreases medium-frequency admittance, and stiffness
ka decreases low-frequency admittance. Parameter values were chosen such that
the modelled admittance resembles the estimated admittance for the PT-0 (20 Hz)
condition. The parameter values are: ma = 2 [kg], ba = 40 [Ns/m] and ka = 800
[N/m]) and are comparable with previous findings from our group (De Vlugt et al.
2002; Van der Helm et al. 2002).
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Figure 4.10: Influence of increasing muscle spindle feedback gains kp and kv on the model

admittance gain and phase. The dotted line represents the standard MBK model with the

standardized handgrip. Dash-dotted line: kp=400 and kv=0. Dashed line: kp=0 and kv=40.

Solid line: kp=400 and kv=40.

Handgrip parameters

The model simulation in Figure 4.9 shows deviations due to decreasing grip vis-
cosity bh and grip stiffness kh. The model admittance resembles PT admittances
more closely for handgrip parameters bh=200 and kh=15000 (solid line), hereafter
referred to as the standardized handgrip. For lower values of the handgrip parame-
ters (dashed and dash-dotted lines) the high frequency admittance increase is more
pronounced and approximates the estimated admittance (above 5 Hz) during force
tasks (especially FT-0). Apparently, subjects did not maintain a constant grip over
all trials, as some indicated after the experiment. Handgrip parameters are not the
cause of an oscillatory peak around 3-4 Hz or the local increase around 10 Hz. Such
deviations from an MBK system are most likely the effect of reflexive activity.

Muscle spindle parameters

As can be seen in Fig. 4.10, a high length feedback gain kp decreases the admittance
considerably at lower frequencies. An additional effect of high values of kp can be
seen in an oscillation peak around 3-4 Hz, with an accompanying sharp phase de-
scent around that frequency. These effects strongly resemble those found from the
estimated admittances during the PT conditions. Increasing the velocity feedback
gain kv also decreases the admittance (at lower and medium frequencies) and at-
tenuates the oscillatory peak around 3 Hz. A combination of the two can result in a
small admittance over a relatively large bandwidth.
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Figure 4.11: Influence of increasing GTO feedback gains kf on the model admittance gain

and phase. The dotted line represents the standard MBK model with the standardized hand-

grip. Dash-dotted line: kf =1. Solid line: kf =1.5.

GTO parameter

Figure 4.11 shows the effect of the GTO force feedback gain: when kf is increased,
the admittance will be larger at low and medium frequencies, counteracting the
admittance-decreasing effect of muscle spindles and intrinsic feedback. For kf gains
higher than approximately 1, a local increase around 10 Hz arises, in the gain as well
as in the phase. The local increase strongly resembles the local increase observed in
estimated group A admittances.

Compensatory effect of reflexive parameters

Model results show that muscle spindles and GTO have an opposite effect on ad-
mittance, as was hypothesized. The extent to which muscle spindle activity can
compensate for GTO activity can be seen in Fig. 4.12, where all lines are shown
with the same force feedback gain (kf =1.5). At low frequencies, length feedback kp

can compensate for the admittance-increasing effect of kf , but at medium frequen-
cies an accompanying oscillation peak at 3-4 Hz arises. Increasing velocity feedback
gain kv attenuates the oscillation peak, and also reduces the local increase at high
frequencies (due to kf ). Theoretically muscle spindle feedback can totally compen-
sate for GTO activity, which is illustrated by the solid line. Appendix B shows the
remarkable (theoretical) interplay between both feedback contributions from mus-
cle spindles and golgi tendon organs, given certain fixed values of intrinsic visco-
elasticity. The simulations show that large reflex gains (solid line) result in the same
admittance as a simple MBK system without any reflexes (dotted line). Due to the
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Figure 4.12: Compensation of GTO gain kf =1.5 by muscle spindle feedback gains kp and

kv. The dotted line represents the standard MBK model without reflexes, with standardized

handgrip dynamics(bh=200, kh=15000). Dashed-dotted line: kf =1.5, kp=400 and kv = 40.

Dashed line: kf =1.5, kp=1200 and kv = 0. Solid line: kf =1.5, kp=1200 and kv = 60.

interplay between the model parameters, it is very difficult to identify intrinsic and
reflexive contributions to the estimated endpoint admittance. Clues to the presence
of reflexive activity can only be found in the deviations from an MBK model: a large
local increase around 10 Hz indicates relatively high GTO activity, and a large peak
around 3-4 Hz indicates relatively high muscle spindle activity. Unfortunately, such
clues are not consistently found in all subjects.

4.4 Discussion

4.4.1 Experimental results

The experimental results (Table 4.3) support the hypothesis that subjects exhibit a
smaller endpoint admittance during PT-FP than during FT-PP. Apparently, humans
modify their arm admittance to optimally perform a task. All subjects indicated
that position tasks were easier to learn and perform than force tasks. Two subjects
even reported considerable difficulty in performing the force task. Inspection of the
nEMG showed that these subjects used relatively higher levels of co-contraction
(higher antagonist activity) during force tasks compared to other subjects. This
likely reflects the difficulty these subjects had in relaxing their antagonist muscles
and generating an unilateral contraction, that would be optimal to the force task.

At frequencies below 1 Hz the estimated coherence function was relatively low
for all subjects and conditions. This is probably due to corrective muscle contrac-
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tions to prevent drifting of the hand position. Visual and tactile mechanisms in-
volve long neural delays and are therefore considered unlikely to contribute to rel-
atively fast changes in endpoint position or force above 1 Hz during the present
experiment (De Vlugt et al., 2002). High values of the coherence above 1 Hz proves
that the input output behavior at endpoint can be described accurately by a linear
model. Non-linear properties, like e.g. the unidirectional sensitivity of muscle spin-
dles, apparently had no effect on the endpoint behavior for the conditions applied.

Influence of perturbation type

During both position and force tasks, position and force perturbations were ran-
domly applied to the subjects. During each task the estimated admittance was sim-
ilar irrespective the type of perturbation, confirming the dominance of the subject’s
task perception. During the illogical conditions (PT-PP, FT-FP), all subjects were
apparently fooled into functional behavior. The only differences with logical condi-
tions were fluctuations of the hand force and position respectively. These fluctua-
tions exist at very low frequencies only and were uncorrelated to the perturbation.

Influence of bandwidth

With decreasing bandwidth of the perturbation signal, the admittance decreases
during PT. Since intrinsic feedback is independent of the bandwidth (nEMG was
constant), any changes in admittance are most likely due to reflexive activity (De
Vlugt et al., 2002; Van der Helm et al., 2002). Results during FT show no consistent
change with bandwidth, suggesting that GTO and muscle spindle feedback gains
were not modified.

The results during PT are similar to those found by a previous PT study from
our laboratory (Van der Helm et al., 2002). In that study, a similar model without
GTO feedback was used to quantify the parameters by a model fitting procedure.
On the assumption that GTO feedback was absent, reflexive and intrinsic param-
eters were quantified. It was also found that muscle spindle gains were higher for
smaller perturbation bandwidths. The local increase around 10 Hz as simulated by
our model and measured in the admittance, suggests the presence of GTO feedback
even during PT trials. Theoretically, the decrease in admittance for lower band-
widths could also be the result of decreased GTO activity. However, the idea of
modifying arm stiffness and damping properties by adjusting the gain of GTOs
seems less appealing than gain regulation by muscle spindles. Moreover, there were
no indications that subjects changed GTO feedback gain substantially, as discussed
in Sec. 4.4.2). Therefore, it is likely that muscle spindles are responsible for the ad-
mittance decrease at lower bandwidths.

Influence of force level

During force tasks (FT), endpoint admittance decreased substantially with increas-
ing force levels. However, during position tasks (PT), endpoint admittance did not
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decrease for increasing bias force levels, in spite of higher agonist nEMG. Appar-
ently, additional agonist activation does not further increase endpoint visco-elastic
properties at high levels of co-contraction.

4.4.2 Simulation results

The model analysis gives much insight in how different feedback mechanisms con-
tribute to the endpoint arm admittance. Two clues to the presence of substantial
GTO and muscle spindle feedback were revealed: the local increase around 10 Hz
and the oscillation peak around 3-4 Hz, respectively. Both effects were unfortu-
nately not distinctive enough to provide the information necessary to further quan-
tify the experiments: too much interplay between the parameters complicates accu-
rate parametrization of individual feedback mechanisms.

At low frequencies (< 3 Hz) the admittance is decreased by ka (intrinsic stiff-
ness) and by kp and kv (length and velocity feedback), while it is increased by kf

(force feedback). At medium frequencies (3-7 Hz) the admittance is decreased by
ba (intrinsic damping) and kv . An oscillation peak arises for high values of kp, yet
it can be reduced by ba, kv and kf . At high frequencies (>7 Hz) the admittance is
decreased by kh and bh (handgrip) and by ma (inertia). The local increase around
10 Hz (encountered in subjects A) is caused by a high kf , yet it can be reduced
by kv and also by ba (not shown). The fact that handgrip was not constant for dif-
ferent tasks complicated the interpretation of other parameters that influence high-
frequency admittance. A more slack handgrip will result in lower mass estimations,
and complicated comparisons between PT and FT. Therefore it is recommended for
future studies that a constant, stiff grip is assured (possibly by using a cast), and
that a separate estimation of endpoint inertia is used. This reduces the number of
variable parameters substantially.

Although the reported interplay between intrinsic and reflexive feedback is un-
deniably present, the actual freedom in combinations of muscle co-contraction and
afferent reflex gains is probably not as large as the model suggests. Reflex gains
cannot be increased indefinitely, and might not be modified with full independence
from intrinsic feedback. It is likely that an optimum is found between performance
on one hand, and energy consumption and control effort on the other (Schouten
et al. 2001). Intrinsic feedback is characterized by energy consumption, reflexive
feedback by control effort.

Because position (and velocity) and force feedback are interdependent and even
cancel eachother’s effect in the case the arm admittance resembles a second order
transfer function (Appendix B), quantitative measures of the reflexive system were
not possible from the current analysis. The challenge remains to identify the rela-
tionship between reflexive and intrinsic activity for different tasks.

Muscle spindle activity

Muscle spindle activity is likely to be large during PT, and small or absent during
FT, which is supported by two observations. First, an oscillation peak and a sharp
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phase descent around 3-4 Hz. These characteristics were more prominent during PT
than during FT for all subjects. The model study showed that these characteristics
were the explicit results of muscle spindle feedback. The model study further con-
firms the hypothesis that muscle spindle activity decreases admittance (functional
for PT, counterproductive for FT: Hypothesis 3 from Table 4.1).

Second, the bandwidth dependency encountered during PT is absent during FT.
This effect is attributed to muscle spindle feedback: higher muscle spindle gains
can increase the performance during PT for lower bandwidths. Muscle spindles
are presumably not modified during FT, and are probably as low as possible. The
second observations implies that muscle spindle gains are indeed much smaller for
FT than for PT.

GTO activity

The local increase around 10 Hz is a clear indication of high GTO activity (kf >1).
Experimental results suggest that - when present - GTO activity is constant, be-
cause: 1) the local increase is of approximately constant shape and size for all com-
binations of task, perturbation and force levels, 2) the local increase is even present
during PT, where less GTO activity would result in a better performance, 3) the
bandwidth dependency encountered during PT is absent during FT, suggesting
that reflexive behavior was not modulated during FT, where extra GTO activity
would result in a better performance. Apparently, subjects did not modify GTO
feedback during the experimental conditions, either because it was not functional
for the task, or because GTO activity can not be modified at all.

The question remains by what experimental condition GTO activity is provoked:
under exactly the same experimental conditions 6 out of 10 subjects did not display
the local increase, while the others did. Position and force tasks are not successful
in isolating GTO feedback: the goal to be reached by the subjects can apparently be
accomplished with different settings of the feedback mechanisms.

Comparing group A and group B subjects

The presence of the local increase did not relate to other subject characteristics like
subject size, sportive activities, MVC, nEMG level, magnitude of oscillation peak
around 3-4 Hz, or the magnitude of their arm admittance. In other words: subjects
from group A were not better or worse in their tasks, nor did they have anything in
common that subjects from group B lacked. All four group A subjects were female,
but group B also contained one female subject. Furthermore, upon inspection of PT-
FP results from previous research in our group, some male group A subjects were
found as well.

Intrinsic behavior is likely to be of comparable magnitude between both groups:
group A subjects did not show higher values for nEMG and Fmax than group
B subjects. We can only speculate on the difference in reflexive behavior between
group A and B. A large local increase (group A) indicates a relatively large force
feedback gain kf , compared to group B subjects. More GTO activity should result
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in a higher admittance, if all other feedback mechanism are constant. However,
apart from the local increase there was no distinct difference in the magnitude of
the admittance. Apparently the admittance-increasing effect of high GTO gains was
somehow compensated for by a combination of intrinsic feedback and muscle spin-
dle activity. Since intrinsic feedback is presumably comparable between group A
and B and since it is highly energy consuming, it is not likely to have a large part
in such compensation. Muscle spindle activity is more likely to compensate for the
effects of GTO activity. After all, the absence of the local increase does not have
to say that there is no GTO feedback, because muscle spindle feedback can cancel
GTO feedback (Appendix B).

The length feedback gain kp has been shown to compensate for most of the
lower frequency effects but with an accompanying oscillation peak at 3-4 Hz. The
velocity feedback gain kv reduces the size of both the local increase and the oscil-
lation peak. All group A subjects display a pronounced local increase, but not a
particularly large oscillation peak (especially not during force tasks). Therefore it
is considered likely that predominantly muscle stretch feedback (kp) is present for
Group A subjects, while enough kv is present to attenuate the oscillation peak with-
out diminishing the local increase. Unfortunately, such a speculation could not be
proved by the current study.

4.5 Conclusions

From the estimated endpoint admittance of the human arm, it can be concluded
that:

• Position tasks produce a smaller endpoint admittance than force tasks

• Position tasks result in higher levels of co-contraction than force tasks

• Task interpretation influences admittance substantially, while perturbation
type does not. Subjects were fooled into displaying ’functional’ behavior in
an environment where their strategies were useless.

A linear model study was used to investigate the effect of reflexive feedback and
intrinsic visco-elasticity on the endpoint arm admittance. The modelled admittance
was compared to the experimental ones, bringing forward the following qualitative
results:

• Substantial interplay was found between feedback mechanisms (muscle spin-
dle and GTO) and intrinsic muscle visco-elasticity, facilitating many combina-
tions of to obtain the same endpoint admittance.

• There was no indication of muscle spindle feedback during force tasks. The
conclusion is based on the absence of a sharp phase descent an an oscillation
peak of the endpoint admittance around 3-4 Hz. Force tasks are therefore con-
sidered not logical when the functionality of muscle spindle reflexes is to be
investigated.
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• There is strong indication that GTO feedback is present during both force
tasks as well as position tasks. GTO feedback increases the endpoint admit-
tance and is therefore functional to force tasks only. For large values of the
GTO loop gain a local increase emerged in our model simulations around
10 Hz. Such an increase was also seen in 4 out of 10 subjects which is most
likely the result of GTO feedback. For the conditions where GTO was dis-
cernibly present in the measurements, its feedback gain was rather constant
even during position tasks where the admittance-increasing effect is counter-
productive.
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Chapter 5

Closed-loop multivariable system

identification using force disturbances

Erwin de Vlugt, Frans C. T. van der Helm, Alfred C. Schouten
Journal of NeuroScience Methods 2003; 122: 123-140

This study presents a multivariable closed loop identification technique for estimat-
ing the dynamic compliance of the multijoint human arm during posture mainte-
nance. The method is suited for the application of continuous force disturbances
that facilitate interaction of the limb with the environment. The dynamic compli-
ance of the arm arises from different physiological mechanisms and is important
for maintaining stable postures and to suppress disturbances. Estimates can be
useful to analyze the ability of the nervous system to adapt the arm compliance
to different types of disturbances and environments. The technique is linear and
requires no a priori knowledge of the system. Linear system behavior is justified

for posture tasks where the hand position deviates slightly from a reference po-
sition. Interaction results in a closed-loop configuration of arm and environment.
The problem with previous methods is the restriction to open-loop systems. With
the current technique, the dynamic arm compliance is separately estimated from
the closed-loop. The accuracy of the identification technique is tested by simula-
tions for different values of the dynamic compliance of the arm and environment
and for different methodological parameters. It is concluded that the identification
technique is accurate, even for short observation periods and severe noise.
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5.1 Introduction

Human arm posture maintenance is the result of coordinated forces around the
joints at particular joint angles. The goal of posture control is to maintain a certain
mean position and to minimize deviations in the presence of force disturbances.
With respect to the displacements, the restoring forces result from elastic, viscous
and inertial properties. Elastic and viscous properties of a limb can be adapted and
originate from intrinsic muscle stiffness and damping and additionally from reflex-
ive feedback from muscle spindles (Doemges and Rack, 1992a; Kearney et al., 1997;
Kirsch et al., 1993; Toft et al., 1991). Both intrinsic and reflexive contributions de-
pend on (a) the task instruction given to the subjects (Doemges and Rack, 1992b;
Gomi and Osu, 1998; Smeets and Erkelens, 1991), (b) the properties and type of the
disturbance signal (Cathers et al., 1999; Stein and Kearney, 1995; Van der Helm et
al., 2002), (c) the configuration of the arm (Mussa-Ivaldi et al., 1985; Dolan et al.,
1993) and (d) the mechanical properties of the environment (De Vlugt et al., 2002;
Milner and Cloutier, 1993).
Most of these studies used transient position disturbances to identify only the stiff-
ness of single joints and some have retrieved stiffness ellipses for the two-joint case
(Mussa-Ivaldi et al., 1985; Dolan et al., 1993; Gomi and Kawato, 1996). Since posi-
tion is imposed, the reaction force was taken as the free output variable. The task
instruction is mostly formulated so as to maintain a certain force level in certain
directions. Other studies analyzed the transient response in EMG signals to sepa-
rate the reflexive contributions by isolating the delayed response from the instan-
taneous. Only the first hundreds of milliseconds were analyzed where voluntary
reactions are likely not to take place (Stein and Kearney, 1995; Toft et al., 1991).
A few studies applied continuous stochastic position disturbances to determine the
mechanical properties of the limb (Cathers et al., 1999; Kirsch et al., 1993; Kearney
et al., 1997; Perreault et al., 2001; Zhang and Rymer, 1997). Compared to transient
disturbances, this method allows a faster and more accurate quantification of limb
stiffness, damping and mass because a richer frequency range is applied.
However, since position is simply imposed by a manipulator that is assigned a
stiffness much larger than that of the concerned limb, the ’responding’ forces can
by no means change the limb position or muscle lengths. For (ideal) position dis-
turbances, position and force are fully decoupled and there is no matter of active
stabilization, i.e. the position servo provides inherent stability. Because of the de-
coupling, the system can be regarded as an open-loop, facilitating straight forward
open loop identification techniques (Bendat and Piersol, 1986; Ljung, 1999).

In contrast to position disturbances, force disturbances facilitates a functional
dynamic analysis of the limb compliance during natural interaction with the envi-
ronment. Deviations of the endpoint position, as a result of the force disturbance,
are determined by the dynamic compliance of both the arm and environment. Ef-
forts of the central nervous system (CNS) to preserve stability by adjusting both
intrinsic and reflexive properties have a direct effect on the responding limb posi-
tion. The interacting behavior results in a closed-loop control configuration of limb
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and environment together. The problem with previous estimation techniques is the
restriction to open-loop systems.

The goal of this study is to develop a closed-loop identification technique which
is appropriate for application of continuous force disturbances and interaction with
environments during posture control. The technique is non-parametric, meaning
that no a priori knowledge of the system is needed. An important requirement is

that the system to be estimated is stationary. This means that its properties re-
main constant over the observed time period. In fact, the interest is in the system
response to the continuous force disturbance. Therefore, anticipatory muscle acti-
vation which changes the arm compliance (and acts as an additional force input)
should be avoided. This is achieved by using random force disturbances such that
prediction is likely excluded. If the system is indeed stationary for these types of
force disturbances, the arm compliance can only be the result of constant intrinsic
muscle properties and peripheral feedback mechanisms.

Kearney and Hunter (1990) already indicated the great usefulness of closed-
loop responses since they characterize joint behavior under natural behavioral con-
ditions. They described the basics for the application of closed-loop estimators
for single-joint dynamics. In a recent study from our laboratory, this experimen-
tal paradigm is applied to quantify the compliance of the shoulder joint (De Vlugt
et al., 2002; Van der Helm et al., 2002).
The present study extends the estimation method for single-joint dynamics to a
two-input two-output planar case for estimating arm compliance at the point of in-
teraction or endpoint. In this case the hand reaction force acts as the input and the
hand position as the output. The application is also suitable for larger input-output
systems. The estimated dynamic compliance is expressed in the frequency domain
by means of a matrix frequency response function (MFRF).
In addition to the closed-loop estimator, a signal design method is used for the gen-
eration of the force disturbance signals. This method produces unpredictable deter-
ministic signals having exact power at specific frequencies. The main advantage of
deterministic signals is that their periodicity prevents bias in the estimates, which
would otherwise emerge in the case of application of stochastic signals (Schoukens
et al., 1993).
The goodness of the estimation method is verified by simulations for different prop-
erties of arm and environmental compliance. Various experimental and method-
ological conditions are simulated and discussed. The results indicate that the end-
point compliance is estimated very accurately, having negligible bias and variance
at rather erroneous conditions, reflected by high values of the multiple coherence
functions.

5.2 Closed-loop system description

Any (bio)mechanical system in its complete dimension and normal functioning, is
properly described when a driving force is taken at the input and a movement (po-
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sition or velocity) as the output. Only in this way the system states follow from inte-
gration of inputs, and the output is determined as a (linear) combination of the sys-
tem states. To understand the underlying mechanisms subserving the mechanical
response, the system therefore should be analyzed in its causal dynamic structures
wherein it is defined, i.e. as a dynamic compliance (Hogan, 1985b). The compliance
comprises stiffness, damping and inertia properties, together with feedback loops,
and is expressed in meters per Newton (m/N), i.e. the inverse of the mechanical
impedance.
Figure 5.1 shows schematically a manipulator to realize an environment. The Carte-
sian components of the signals are defined in the subjects frame having its origin in
the right shoulder. To analyze human arm posture control effectively, the influence
of the environment should be kept small compared to the arm. This means that the
inertia, damping and stiffness of the environment should be as low as possible. De-
spite lightweight designs and advanced control strategies to increase the apparent
(virtual) endpoint compliance, the additional contribution cannot be neglected in
practice. Figure 5.2 shows the nonlinear blockscheme representing the mechanical
interaction of the arm with the environment. The total force acting upon the envi-
ronment is the summation of an independent external force disturbance D(t) and
the opposing hand reaction force F(t). The hand force is an internal variable and the
hand position X(t) is the output of the total system. It is assumed that the force dis-
turbance, hand reaction force and hand position are available from measurements.

Figure 5.2 can also be interpreted in terms of classical control theory. In that case,
the environment represents a mechanical system of which the compliance can be
modified by an additional compliance of the human arm, which acts as the dynamic
compliance controller.

5.2.1 Linear closed-loop system description

Most system identification techniques are designed for linear systems, whereas bi-
ological systems are highly nonlinear in nature (Winters and Stark, 1985; Kirsch et
al., 1994; Stein and Kearney, 1995). To use linear techniques, a nonlinear system
should be excited such that it behaves almost linearly. This means that only small
variations of system states around a working point are allowed. For human pos-
ture maintenance, this requirement is easily met because it is the primary goal of
posture control to keep the position deviations small with respect to a reference po-
sition. The approximation around a specific reference point will never be perfect.
The imperfection of the linearized system with respect to the original nonlinear
system is accounted for by an additional residual signal or model remnant R(f)
at the output which is uncorrelated with the input D(f), see Fig. 5.3A. The linear
dynamic compliance of the human arm is indicated by the MFRF Hxf (f). Note that
the arm is expressed as the anticausal MFRF H−1

xf (f) to preserve the causal defi-
nition of the dynamic compliance. The (virtual) compliance of the environment is
indicated by the MFRF Exz(f). Any nonlinearities in the virtual compliance are also
accounted for by the model remnant R(f). Volitional force contribution, which is
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Figure 5.1: Schematical configuration of a typical experimental setup to measure

the planar dynamic compliance of the human arm. The hand is physically attached

to the manipulator. Forces and motions are constrained to a horizontal plane and

decomposed in cartesian (x − y) coordinates in the subjects frame. The origin of

the frame is usually located in the subject’s shoulder rotation centre. F is the (2 ×
1) vector of the hand reaction force and X is the vector of the endpoint or hand

position.

Environment
D( )t X( )t

Arm

+

-

F( )t

Figure 5.2: Basic (nonlinear) closed-loop configuration of the mechanical interac-

tion between the human arm and the manipulator acting as the environment. The

total system is excited by a force disturbance D(t). The force applied by the human

arm F(t) acts in addition, and opposite, to the external force. The system output is

the common endpoint or hand position X(t).
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Figure 5.3: A, Linear system approximation of the nonlinear system (dotted box)

between input force disturbance D(t) and output (hand) position X(t), expressed

in the frequency domain. R(f) is the model remnant, N(f) system input noise

and M(f) measurement noise. All noise signals are unknown and assumed un-

correlated with D(t). The dynamic compliance of the arm Hxf (f) is configured in

a closed loop with the environmental compliance Exz(f). The arm compliance is

presented as its inverse to preserve its causal definition. F(f) is the hand reaction

force, applied via the hand of the subject to the manipulator. B, redrawn of A into

a disturbance control scheme where the goal is to reduce deviations around a ref-

erence position. The posture task is represented by the reference position to be

maintained (Xref ≡ 0) which means that the effect of the force disturbance is to be

minimized. The output noise M(f) also includes the model remnant R(f).

not correlated with the imposed force disturbance D(t), is represented by the in-
put noise signal N(t). Finally, measurement noise is indicated by M(t) and is also
assumed uncorrelated with D(t). Since the control of posture is a disturbance task,
the blockscheme of Fig. 5.3A is redrawn into a disturbance blockscheme (Fig. 5.3B)
with a reference position at the input which has to be maintained. Since model
remnant and measurement noise cannot be separated from each other, both noise
sources are taken together in one noise source M(f).

As a result of the closed-loop configuration, the input noise N(f) also appears in
the hand reaction force F(f) and consequently is correlated with it. It is therefore
impossible to separate that part in the measured hand position X(f) that comes
from the hand reaction force only. Identification of the arm compliance Hxf (f) from
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F(f) and X(f) is therefore inadequate. An external signal from outside the loop is
needed to eliminate the contribution of the noise source N(t). The only requirement
is that the external signal is uncorrelated with the noise inside the loop. The force
disturbance signal D(t) is taken as the most obvious choice.

The closed-loop estimator of the arm compliance is derived from the system
equations in which F(t) and X(t) are to be expressed in terms of all the inputs
to the closed loop system, being D(t), N(t) and M(t). First define the frequency
transforms of the signals into their x-y components:

F(n∆f) = [Fx(n∆f) Fy(n∆f)]T

X(n∆f) = [Xx(n∆f) Xy(n∆f)]T

D(n∆f) = [Dx(n∆f) Dy(n∆f)]T

N(n∆f) = [Nx(n∆f) Ny(n∆f)]T

M(n∆f) = [Mx(n∆f) My(n∆f)]T

where T denotes the vector transposed and n∆f the discrete frequencies. Hereby,
n ∈ [0, 1, 2, ...N

2 ], N = fsT , fs the sample frequency and T the observation time
period. The signals are transformed by the standard Fast Fourier Transform (FFT)
algorithm. The system MFRFs Hxf (n∆f) and Exz(n∆f) are defined as two-by-two
matrices according to:

Hxf (n∆f) =

[

Hxxfx
(n∆f) Hxxfy

(n∆f)
Hxyfx

(n∆f) Hxyfy
(n∆f)

]

(5.1)

Exz(n∆f) =

[

Exxzx
(n∆f) Exxzy

(n∆f)
Exyzx

(n∆f) Exyzy
(n∆f)

]

(5.2)

with zx = fx − dx and zy = fy − dy . Then the system equations are:

F = [I + H−1
xf Exz]

−1H−1
xf Exz D + [I + H−1

xf Exz]
−1N (5.3)

X = [I + ExzH
−1
xf ]−1Exz D + [I + ExzH

−1
xf ]−1Exz N + M (5.4)

where I is the unit matrix. In Eqs (5.3) and (5.4) the arguments are omitted for
readability. Making use of the following algebraic rule:

[I + H−1
xf Exz]

−1H−1
xf = H−1

xf [I + ExzH
−1
xf ]−1

and substituting:

LT = [I + ExzH
−1
xf ]−1

into the transposed Eqs (5.3) and (5.4), results in:

FT = DT ET
xzL

T H−1T

xf + NT H
T

xfLT H−1T

xf (5.5)

XT = DT ET
xzL

T + NT ET
xzL

T + MT (5.6)

The cancellation of noise can be established by the use of spectral densities. The
spectral densities are obtained by premultiplication of the loop signals (Eqs (5.5)
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and (5.6)) with the complex conjugate of the external signal D(n∆f) and then tak-
ing the expectation value of the products according to:

Gdifj
= E{D∗

i F
T
j } (5.7)

Gdixj
= E{D∗

i X
T
j } i, j ∈ [x, y] (5.8)

where ∗ denotes the complex conjugate, G the spectral density matrix and E{·}
the expectation operator. Application of spectral densities to the system equations
(Eqs (5.5) and (5.6)) gives:

Gdf = GddE
T
xzL

T H−1T

xf + GdnH
T

xfLT H−1T

xf (5.9)

Gdx = GddE
T
xzL

T + GdnET
xzL

T + Gdm (5.10)

with

Gdf =

[

Gdxfx
Gdxfy

Gdyfx
Gdyfy

]

, Gdx =

[

Gdxxx
Gdxxy

Gdyxx
Gdyxy

]

, Gdd =

[

Gdxdx
Gdxdy

Gdydx
Gdydy

]

The external force disturbance is assumed uncorrelated with both noise signals
such that Gdm and Gdn equal the nulmatrix. As a result, the corresponding cross-
spectra vanish from Eqs (5.9) and (5.10). The arm compliance follows from multi-
plication of both cross spectral densities, according to:

G−1
df Gdx = HT

xfL−1T

E−1T

xz G−1
dd GddE

T
xzL

T

= HT
xf (5.11)

A sufficient requirement for the external force disturbance signals is that the matrix
Gdd is invertible (Eq. (5.11)), which means that both signals may not be fully cou-
pled to avoid matrix singularity. This still allows the signals in both directions to
be correlated with each other. The closed-loop estimator is therefore indifferent to
input coupling, which follows directly from Eq. (5.11) where the product G−1

dd Gdd

vanishes.
The purpose of the closed-loop estimator is to obtain an accurate estimate of the

arm compliance Hxf .

5.2.2 Closed loop system estimation

The derivation of the arm compliance (Eq. (5.11)) is a theoretical one, based on
expectation values in the definition of the spectral densities (Eqs (5.7) and (5.8)). In
fact, these definitions only hold for infinitely long observations. A practical approx-
imation of spectral densities, based on finite time records, is obtained by multipli-
cation of the FFT-transformed signals according to:

Ĝdifj
= DiF

∗

j ≈ E{DiFj} = Gdifj
i, j ∈ [x, y] (5.12)
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where Ĝ denotes the estimate of the true spectral density G (Bendat and Piersol,
1986). Applying the approximation also to Gdx in Eq. (5.11) gives the final closed-
loop estimator:

Ĥxf = ĜT
dxĜ−1T

df (5.13)

with Ĥxf the estimated MFRF of the dynamic arm compliance. Dividing the above
equation into the matrix components gives:

Ĥxxfx
=

Ĝdxxx

[

1 − Ĝdyxx Ĝdxfy

Ĝdxxx Ĝdyfy

]

Ĝdxfx

[

1 − Ĝdyfx Ĝdxfy

Ĝdxfx Ĝdyfy

] Ĥxxfy
=

Ĝdyxx

[

1 − Ĝdxxx Ĝdyfx

Ĝdyxx Ĝdxfx

]

Ĝdyfy

[

1 − Ĝdyfx Ĝdxfy

Ĝdyfy Ĝdxfx

]

Ĥxyfx
=

Ĝdxxy

[

1 − Ĝdyxy Ĝdxfy

Ĝdxxy Ĝdyfy

]

Ĝdxfx

[

1 − Ĝdyfx Ĝdxfy

Ĝdxfx Ĝdyfy

] Ĥxyfy
=

Ĝdyxy

[

1 − Ĝdxxy Ĝdyfx

Ĝdyxy Ĝdxfx

]

Ĝdyfy

[

1 − Ĝdyfx Ĝdxfy

Ĝdyfy Ĝdxfx

]

The left terms in both numerator and denominator corresponds to the case of no
cross coupling between the x and y components in the closed-loop system, i.e.
of two decoupled single-input single-output (SISO) systems. The fractions within
brackets are corrections for the case of nonzero coupling, i.e. the existence of off-
diagonal terms in the MFRFs, which is normally the case in human arm endpoint
compliance.

A common indicator of the amount of noise entering the system, are the multi-
ple coherence functions (Bendat and Piersol, 1986):

γ̂2
xxdxy

=
P̂xxdx

Ĝdxxx
+ P̂xxdy

Ĝdyxx

Ĝxxxx

γ̂2
xydxy

=
P̂xydx

Ĝdxxy
+ P̂xydy

Ĝdyxy

Ĝxyxy

(5.14)

with γ̂2
xxdxy

the multiple coherence function from both inputs (Dx and Dy) to the

output in x-direction (Xx) and γ̂2
xydxy

from both inputs to the output in y-direction

(Xy). When both the multiple coherence functions are close to one, the power of
any noise is small and the output X is almost linearly related to the input D. In the
case where the multiple coherence functions are close to zero, the power of noise
entering the system is large. The multiple coherence functions (Eq. (5.14)) make

use of P̂xidj
(i, j ∈ [x, y]), which is the open-loop estimated MFRF of the complete

system from force disturbance to hand position, according to:

P̂xd = ĜT
dxĜ−1T

dd (5.15)
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and specified into its components gives:

P̂xidx
=

Ĝdxxi

[

1 − Ĝdxdy Ĝdyxi

Ĝdydy Ĝdxxi

]

Ĝdxdx

[

1 − γ̂2
dxdy

] P̂xidy
=

Ĝdyxi

[

1 − Ĝdydx Ĝdxxi

Ĝdxdx Ĝdyxi

]

Ĝdydy

[

1 − γ̂2
dxdy

] i ∈ [x, y]

(5.16)

where γ̂2
dxdy

is the estimated coherence function between both disturbance signals

and defined as:

γ̂2
dxdy

=
| Ĝdxdy

|2

Ĝdxdx
Ĝdydy

(5.17)

Partial coherence functions provide estimates of the linear relationships between
one input (Dx or Dy) and one output (Xx or Xy) and is given by (Bendat and Pier-
sol, 1986):

γ̂2
dixj ·dk

=
| Ĝdixj ·dk

|2

Ĝdidj ·dk
Ĝxixj ·dk

i, j, k ∈ [1, 2], i 6= k (5.18)

where the residual spectra Ĝdixj ·dk
are defined as:

Ĝdixj ·dk
= Ĝdixj

[

1 − Ĝdidk
Ĝdkxj

Ĝdkdk
Ĝdixj

]

(5.19)

Working out the substitution of Eq. (5.19) into Eq. (5.18) gives:

γ̂2
dixj ·dk

=
| Ĝdixj

Ĝdkdk
− Ĝdkxj

Ĝdidk
|2

Ĝ2
dkdk

Ĝdidi
Ĝxjxj

(1 − γ̂2
dkdi

)(1 − γ̂2
dkxj

)
(5.20)

with γ̂dkdi
the ordinary coherence function between both inputs (Eq. (5.17)) and

γ̂dkxj
the ordinary coherence function between one input and one output and de-

fined as:

γ̂2
dkxj

=
| Ĝdkxj

|2

Ĝdkdk
Ĝxjxj

(5.21)

Partial coherence functions are equivalent to ordinary coherence functions after the
effects of all other inputs have been removed from both input and output of interest
(Bendat and Piersol, 1986). Because the input coherence (Eq. (5.17)) is part of their
expressions, multiple and partial coherence functions compensate for coupling be-
tween the input signals.
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5.2.3 A particular case: the open-loop estimator

Normally, the arm is interacting with an environment and it was argued that a
closed-loop estimator was necessary to obtain an estimate of the arm compliance.
A typical application of open-loop estimators accounts in the case position distur-
bances are applied using a strong servo controlled manipulator that simply imposes
(or dictates) a prespecified movement irrespective of the generated hand force. The
corresponding open-loop estimator, as used by Perreault et al. (1999), can be de-
rived from the closed-loop estimator in the following way.
Let the environment be dominant over the arm, i.e. Exz ≪ Hxf or Exz → 0, then
L → I . Additionally, let the external force disturbance increase proportionally such
that D ≫ F. Now, Eqs (5.5) and (5.6) become:

FT = DT ET
xzH

−1T

xf + NT

XT = DT ET
xz + MT

The product DT ET
xz actually describes the imposed position disturbance. Taking

DT ET
xz = Xdist

T as the position disturbance, and substituting it into the above
equations gives:

FT = Xdist
T H−1T

xf + NT

XT = Xdist
T + MT

Effectively, Xdist has become the exciting input of the arm and this is true as long
as X = Xdist (assuming M ≪ Xdist). Evidently, the hand reaction force F must be
taken as the responding output. Assuming that both noise sources are uncorrelated
with the input Xdist, the open-loop estimator becomes:

Ĝ−1
xx Ĝxf = Ĥxf

−1T

For correctness of terms, in the above equation the arm impedance (inverse of com-
pliance) is given because the force is assumed as an output. Accordingly, the coher-
ences functions need to be expressed between X and F.
The other situation for which an open-loop estimator can be derived is the ideal
case that the manipulator has no dynamics. This means that Exz → ∞ and sim-
ilar steps can easily be followed to arrive at an open-loop estimator for the arm
compliance. In that case, F is the exciting input and is equal to D.

5.2.4 Variance and bias of spectral density estimators

The goodness of the estimation is judged by the bias and variance of the applied
estimator. Variance is the result of random parts in the signals and is reduced by

averaging the raw spectra (Ĝdf and Ĝdx) over m adjacent frequencies (Jenkins and
Watts, 1968). As the result, the frequency resolution decreases to m∆f such that the
estimated compliance is defined at the following frequencies:

Ĥxf (n∆f)
aver.→ Ĥxf (∆f1 + p m∆f) p ∈

[

1, 2, ...,
N − m

m

]
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with ∆f1 the lowest frequency after averaging according to:

∆f1 =
1

m

n=2m
∑

n=m+1

n∆f

From the above equation it can be seen that the zeroth frequency is removed from
the spectral densities (related to the mean values of the signals) by omitting the first
averaging window.

To preserve a certain minimal frequency resolution in order not to average out
peaks in the (M)FRFs, m should be limited. Alternatively, the record time can be
increased, albeit restrictively to avoid fatigue effects during experiments with hu-
mans in vivo.

Bias is the result of structural differences between the estimated value and the
real value. The largest bias contribution is caused by the finiteness of the time
records (Bendat and Piersol, 1986; Perreault et al., 1999). In the case of long ob-
servations and a large number of averaging frequencies, the bias of the spectral
densities approaches zero (Jenkins and Watts, 1968).

Variance of the estimated MFRFs is also reflected by variance of the multiple
coherence functions and bias results in a decrease of the multiple coherence (Bendat
and Piersol, 1986; Perreault et al., 1999). Therefore, multiple coherence functions
will be taken as the explicit indicators for the robustness of the estimator.

In addition to noise, the disturbance signal also enters the system. In many stud-
ies this signal has been taken to be stochastic too (Kirsch et al., 1993; Cathers et al.,
1999; Perreault et al., 1999, 2001), leading to a further increment of bias and variance
(Schoukens et al., 1993). This is because the spectral properties of stochastic signals
are captured only from infinitely long observations and defined on a continuous
frequency scale, while for a finite observation time the system can only be defined
at discrete frequencies n∆f . To exclude this negative effect, a specific signal design
method has been adopted which is described in the following section.

5.2.5 Disturbance signal design

The disturbance signal will be designed in the frequency domain such that the sig-
nal is completely determined within T seconds in order to avoid bias. Any spec-
trum can be realized, resulting in a sum of sine waves with different frequencies.
Using these multisine signals (Schoukens et al., 1993), the system is identified at
those frequencies (n∆f) constituting the disturbance signal. To make the signal
unpredictable for subjects, the phases between all frequency components are ran-
domized.

The structure of the Fourier transform Ψ(n∆f), of the time signal ψ(l∆t) to be
constructed, is determined as follows:

Ψ(n∆f) =

N
2

∑

n=1

Λ(n∆f)ejΘ(n∆f)

= λ1(cos θ1 + j sin θ1) + . . . + λN
2
(cos θN

2
+ j sin θN

2
) (5.22)
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with Θ(n∆f) a sequence of randomly generated phases in the range [0 . . . 2π]:

Θ(n∆f) =
[

θ1 . . . θN
2

]

(5.23)

and Λ(n∆f) a sequence of vector magnitudes:

Λ(n∆f) =
[

λ1 . . . λN
2

]

The amplitude of each sine wave λn is adjusted to obtain the appropriate spec-
tral power distribution. For the random generation of the phases, any type of dis-
tribution will suffice. In this case, a uniform distribution is applied. Application
of the Inverse Fast Fourier Transform (IFFT) to the N -point frequency vector, i.e.
[Ψ(−n∆f) Ψ(0) Ψ(n∆f)] directly gives the corresponding time signal ψ(l∆t), with
l = 1 . . . N .

5.3 Simulations

The accuracy of the estimator of the dynamic arm compliance (Eq. (5.13)) is ana-
lyzed for different controlled conditions. For this purpose, computer simulations
are performed for varying properties of:

• the compliance of the arm

• the compliance of the environment

• input and output noise

• the number of averaging frequencies

• the length of the observation time

5.3.1 Arm-environment model

If both arm and environment were coupled mass-damper-spring systems, the hand
reaction force F(t) would not be observable, i.e. could not be a system output. This
is because force is also a function of the second derivative while only the zeroth
(positions) and first derivatives (velocities) are part of the state space. To obtain the
hand reaction force, handgrip visco-elasticity is incorporated into the model which
represents the dynamics between the arm and the environment. In fact, the hand-
grip visco-elasticity decouples the mass of both arm and environment such that the
hand reaction force is determined by the difference in velocity and position between
both masses. A representation of the complete system of arm and environmental
compliance is given in Fig. 5.4. The representation is simplified to one degree-of-
freedom (for the drawing only) and taken to be linear. A linear approximation of
the planar endpoint dynamics is justified for small amplitude displacements (Dolan
et al., 1993; Acosta et al., 2000).
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Me

Ke Be Ma

Bh

Ba

Kh

Ka
Y

D

X

F

N

Figure 5.4: Model representation of the mechanical compliance of the arm and the

environment as used for simulation. The representation is merely to illustrate the

model equations and is simply reduced here to one degree of freedom. Me, Be, Ke

represent the mass-damper-spring system of the environment. Bh, Kh represent

the visco-elasticity of the handgrip and Ma, Ba, Ka represent the mass-damper-

spring system of the arm. D is the external force disturbance acting upon the whole

system. Y is the arm position and X the position of the endpoint or hand. F is the

hand reaction force and N is the input noise from uncorrelated activation of the

muscles. Note that both masses are decoupled by the handgrip visco-elasticity.

The model is described in state-space form (see Appendix C). The state vector
is:

X = [Ẋ X Ẏ Y ]T

with X and Y the position and Ẋ and Ẏ the velocity of the hand and arm respec-
tively. The inputs are D(t) and N(t), and the outputs are X(t) and F(t). The output
noise M(t) is added to the model output X(t). Figure 5.5 shows an example of an
input signal that is used for simulation. The lowest frequency in this signal was ap-
proximately 0.03 Hz (= 1/T for T = 32.768) and the highest approximately 20 Hz,
which is a sufficient bandwidth to capture all arm dynamics (Perreault et al., 2001).
The signals are scaled such that the standard deviation is 1 N.

Model simulations were performed in Matlab/Simulink (The MathWorks, Inc.)
using a variable time step Runge-Kutta (Dormand-Prince) solver. The resulting
signals were linearly interpolated to obtain equidistant time samples at 125 Hz
(N = 212 samples for T = 32.768 s) reconstruction frequency (zero order hold).
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Figure 5.5: Realization of an input disturbance signal. Left: power spectral density.

Right: corresponding time signal (only the first 4 seconds). Standard deviation: 1 N.

Table 5.1: Parameters of the dynamic compliance of the arm (set one and two), adopted from
Tsuji et al. (1995) (their Table 4, subject A, position 1 and 2 respectively). Ma: mass matrix;
Ba: damping matrix and Ka: stiffness matrix. The third parameter set contains a value for
damping which is 25% of that of the first parameter set while the mass and stiffness were
taken as equal. Asterisk indicates the default parameter set.

Ma [kg] Ba [Ns/m] Ka [N/m]

1∗
1.22 −0.31
−0.28 0.57

12.2 −9.68
−10.1 16.9

131 −123
−141 283

2
0.96 −0.57
−0.55 0.98

5.03 −4.13
−3.99 30.0

58.3 −45.6
−54.0 506

3
1.22 −0.31
−0.28 0.57

3.05 −2.42
−2.53 4.23

131 −123
−141 283

5.3.2 Model parameters

Two typical sets of arm-model parameters were taken from the experiments of Tsuji
et al. (1995), given in Table 5.1. To evaluate the effect in the case where the arm
compliance contains a high resonance peak, a third parameter set is used containing
a reduced arm damping of 25% of the default value (see Table 5.1). The default
parameter set is indicated with an asterisk.

The visco-elastic handgrip parameters were taken from recent experiments from
our group (De Vlugt et al., 2002):

Bh =

[

200 0
0 200

]

[Ns/m], Kh =

[

15000 0
0 15000

]

[N/m]
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Table 5.2: Parameters of the environment used for simulation, with Me: mass matrix; Be:
damping matrix and Ke: stiffness matrix. The first combination represents a high environ-
mental compliance and is used for the application of force disturbances. The second com-
bination represents a low compliance having a flat bandwidth of 10 Hz, typically used for
position disturbances. Asterisk indicates the default parameter set.

Me [kg] Be [Ns/m] Ke [N/m]

1∗
1 0
0 1

0 0
0 0

0 0
0 0

2
2.53 0
0 2.53

223 0
0 223

10000 0
0 10000

with Bh the grip viscosity and Kh the grip elasticity matrix. These parameter values
were taken the same for all simulations.

Table 5.2 gives the parameter sets of two extreme environments. The first set
(default) corresponds to a high compliance, appropriate for the application of force
disturbances. A symmetric endpoint mass of 1 kg is taken which, to our experience,
is a minimum for a typical two-linkage manipulator. The second parameter set rep-
resents a very low compliance, typically that of a position controlled (stiff) manip-
ulator and appropriate for the application of position disturbances. This parameter
set was chosen such that the MFRF is flat (critically damped) having a bandwidth
of 10 Hz.

The power of the noise contribution is expressed as the signal-to-noise ratio
(SNR) in decibels [dB]:

SNR = 10 10log

(

Gnn

Gdd

)

[dB] (5.24)

With Gnn the power spectrum of the input noise, and Gdd the power spectrum of
the disturbance signal. In case of output noise: Gnn is replaced by Gmm and Gdd by
Gxx.

5.3.3 Methodological parameters

The accuracy of the estimator is judged for different values of noise levels, obser-
vation time period and width of the frequency window used for averaging. The
values are given in Table 5.3 where the defaults are indicated with an asterisk. The
most meaningful combinations of these different parameter values are evaluated
and the results are described in following section.
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Table 5.3: Estimator and simulation parameters. SNRf and SNRx: signal to noise ratios
for input and output noise respectively; T : observation time length; m number of averaging
frequencies. Asterisk indicates the default parameter set.

SNRf , SNRx [dB] T [s] m [-]
−20∗

−10
0

32.768∗

16.384
8.192

4∗

8
16

5.4 Results

5.4.1 Arm compliance

Figure 5.6 shows the estimated dynamic compliance Hxf (n∆f) for parameter sets
one and two of Table 5.1. All other parameters were set at their default values.
For almost all frequencies, the estimated MFRFs are very good approximations of
the modelled MFRFs (dotted lines). Any deviation from the modelled compliance
is the result of noise and the application of frequency averaging that increase the
variance and bias. For the off-diagonal elements, the estimates deviate the most.
Especially for parameter set two where the off-diagonal elements of the compli-
ance were smallest (less contribution to the output) such that the SNR was highest.
The accuracy of the compliance estimates is reflected by the coherence functions
shown in Fig. 5.7. For the diagonal elements, the output is almost linearly related
to the input for all frequencies as indicated by high values of the corresponding
partial coherence functions. The deviations of the estimated compliance for the off-
diagonal elements are reflected by smaller values of the partial coherence functions.
The multiple coherence functions are high for all frequencies, indicating a predom-
inant linear behavior between force disturbance and hand position.

Hereafter, only the multiple coherence functions will be shown for convenience
of comparison.

5.4.2 Environmental compliance

For high compliance of the environment, the multiple coherence is mainly deter-
mined by the arm compliance. In the case where the compliance of the environment
is severely lowered (second parameter set, Table 5.2) the overall system MFRF will
mainly be determined by the compliance of the environment. Consequently, any
bias around the resonance frequency of the arm, due to averaging out it’s reso-
nance peak, will vanish. For a clear illustration of this effect, the highly resonant
arm compliance (third parameter set in Table 5.1) is used for both types of environ-
ments. The increase of the multiple coherence functions is clearly demonstrated as
being due to the dominance of the environment (Fig. 5.8, from solid lines to dotted
lines).
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Figure 5.6: Estimated dynamic compliance Hxf of the arm for parameter sets one

and two (set one labeled by 1’s). Solid lines: estimations; dotted lines: model. All

other parameters are set at the default values.
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Figure 5.7: Estimated coherence functions corresponding to the complete system

from force disturbance D to end point position X corresponding to the estimates

shown in Fig. 5.6 (parameter set one labeled by 1’s). Upper two rows: partial coher-

ence functions; bottom row: multiple coherence functions.
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Figure 5.8: Multiple coherence estimates in the case of different admittances of the

environment. Arm damping Ba is set to 25% of its default value. Solid lines: large

(default) compliance of the environment. Dashed dotted lines: low compliance of

the environment. Note the lowest value on the ordinate is 0.75.

5.4.3 Input and output noise

Both noise signals are generated as a stochastic sequence of time samples and fil-
tered at 20 Hz (fourth order Butterworth) to avoid aliasing. With increasing power
level of both input and output noise, the estimated multiple coherence functions
decrease, as was expected (Fig. 5.9). The coherence functions are still very high
(> 0.8) for SNRs of -10 dB. When the power of the noise is as large as that of the
signal itself (SNR=0 dB), the estimated multiple coherence functions remain mostly
above 0.4.

5.4.4 Frequency averaging and observation time length

The smoothing effect of averaging is largest in the case of severe noise. For large
stochastic noise power (SNR=0 dB) at both input and output in combination with
only four averaging frequencies (m = 4), variance and bias of the estimated coher-
ence functions are large (Fig. 5.10). For m = 16, the variance is smaller resulting in
smoother estimates of the coherences.

The effect of the observation time length is analyzed for the default conditions,
except that no noise is applied. Then the only cause for bias is the width of the
frequency window used for averaging, which is directly dependent on the number
of averaging frequencies (m) and reciprocally on the observation time length (T ).
Figure 5.11 shows the estimated multiple coherence functions for 32.768, 16.384 and
8.192 s (m = 4). The multiple coherence functions decrease to a minimum for the
shortest record length at the eigenfrequency of the arm where the variation of the
MFRFs is largest. For this short observation, the width of the frequency window
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Figure 5.9: Estimated multiple coherence functions for different signal-to-noise ra-

tios at the input (upper row) and output (bottom row): -20 dB (solid lines); -10 dB

(dashed-dotted lines) and 0 dB (dotted lines).

was largest, i.e. m
T

= 4
8.192 ≈ 0.5 Hz. The multiple coherence was still very high (>

0.8, Fig. 5.11, upper row). For comparison, the same exercise is performed but now
with different window widths to preserve the same frequency resolution. Therefore
m = 16, 8 and 4 for T = 32.768, 16.384 and 8.192 s respectively. Figure 5.11 (bottom
row) now shows that all estimated multiple coherence functions exhibit a minimum
which is more or less the same.

5.5 Discussion

This article presents a new multivariable closed loop identification method to es-
timate the compliance of the arm during excitation with continuous force distur-
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Figure 5.10: Estimated multiple coherence functions for two different numbers of

averaging frequencies (m) in case of large noise power at both input and output

(SNR=0 dB). m = 4 (dotted lines), m = 16 (solid lines).

bances. The method is applicable to posture tasks where interaction with an en-
vironment takes place which always results from the application of force distur-
bances. The accuracy of the estimator is tested for different parameters of the dy-
namic compliance of the arm and several methodological conditions.

In the following, the performance and limitations of the estimator, the validity
of the arm model, the properties of the disturbance signals and the relevance of
applying force disturbances are discussed.

5.5.1 Estimator performance

Estimates are always contaminated with bias (structural errors) and variance (ran-
dom errors). Both are primarily the result of noise. Input noise comes from addi-
tional inputs that are uncorrelated with the force disturbance signal, like uncorre-
lated muscle activation, and can be minimized by preventing anticipatory behav-
ior of the subject. To rule out anticipation, unpredictable (random) disturbances are
necessary. Output noise is mainly caused by system nonlinearities and time vari-
ant behavior of the limb and environment. Nonlinearities can be minimized using
small amplitude disturbances and application of high performance (linear) manip-
ulators. Time variant behavior is likely to be minimal with clear and natural task
instructions that are translated by the CNS into unambiguous motion control ac-
tions.

For modelling purposes, noise at the input can easily be replaced by noise at the
output, accounting for the difference of the MFRF of the combined system. The in-
put noise power was almost constant over frequency while the power of the output
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Figure 5.11: Estimated multiple coherence functions for different observation time

lengths (upper row) without noise. T = 32.768 s (solid lines); T = 16.384 s (dashed-

dotted lines) and T = 8.192 s (dotted line). Bottom row: T = 32.768 s with m = 16
(solid lines); T = 16.384 s with m = 8 (dashed-dotted lines) and T = 8.192 s with

m = 4 (dotted line). Note the lowest value on the ordinate is 0.75.

noise was taken as a scaled version of the output itself, according to the expression
of the SNR (Eq. (5.24)). Hence, the difference between the input and output noise
power is determined (approximately) by the gain of the MFRF of the combined
system such that their net effects are the same at the output (Fig. 5.9). Despite this
rather simplistic combination of input and output noise power, it clearly demon-
strates that high frequency input noise deteriorates the estimates to a lesser extent
than high frequency output noise. This is due to the filtering effect of the system
compliance.

Averaging of the raw spectra over adjacent frequencies is applied, which ef-
fectively reduces the variance (Fig. 5.10). Another positive effect of averaging is
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that bias in the estimates of the partial and multiple coherence functions decreases
(Jenkins and Watts, 1968). This is also clear from Fig. 5.10 where the estimates are
apparently too high for m = 4 compared to those for m = 16. The disadvantage
of frequency averaging is the increase of bias due to the decrease of the frequency
resolution. Bias is particularly large at frequencies where the MFRF of the system
to be identified contains abrupt changes, e.g. from oscillatory behavior (Fig. 5.8).
The trade-off between the positive and negative effects of frequency averaging can
primarily be solved with increasing the observation time length (Fig. 5.11).
Another source of bias and variance originate from the application of stochastic dis-
turbance signals (Schoukens et al., 1993). The bias can be reduced by substantially
increasing the observation time length, as mentioned before. However, to avoid
time variant behavior due to fatigue in the case of in-vivo experiments, long obser-
vations are undesirable. Application of deterministic disturbances, like the multi-
sine signals in this study, instead of stochastic noise has been proved to reduce bias
in the estimates (Peeters et al., 2001).

An important property of the estimator is the accurateness for short observa-
tions. For instance, a 8.192 s observation time length and only four averaging fre-
quencies still results in high multiple coherence functions (> 0.8, Fig. 5.11), at a
frequency resolution of ∆f = 4/8.192 ≈ 0.5 Hz.

An alternative averaging method, as used in the study by Perreault et al. (1999),
is the periodogram approach or Welch method (Welch, 1967). This method relies on
segmentation in the time domain of the measured signals and performing spectral
estimates on each segment. The raw estimates of each periodogram are averaged
and used to calculate the final estimate of the arm compliance, using the same esti-
mator as used in this study. The Welch method is therefore less suitable to determin-
istic signals as used in this study because the requirement was that the observation
time length should be the same as the period of the disturbance signal in order to
achieve the exclusion of bias. Because segmentation introduces bias, a determinis-
tic disturbance is not preferred anymore to a stochastic one for application of the
Welch method. Hence, the advantage of deterministic signals does not apply to the
Welch method.
For the same model parameters and noise power, Perreault et al. (1999) showed val-
ues of the estimated multiple coherences of about 0.7 with a 2.56 s (Welch)window
(∆f = 1/2.56 ≈ 0.4 Hz). Our results showed somewhat higher values (> 0.8,
Fig. 5.11) for a comparable frequency resolution (T = 8.192,m = 4,∆f ≈ 0.5). Sim-
ilarly, for higher frequency resolutions, i.e. T = 16.384 and T = 32.768 s in our case
(with a constant number of averaging frequencies of m = 4) against Welch-window
sizes of 5.12 and 10.24 s respectively, the estimates of the multiple coherences are
comparable. However, their results required a total observation time length of 60
s, which is more than seven times longer than in our case for T = 8.192, and four
times and two times longer in the case of T = 16.384 and T = 32.768 s respec-
tively. Generally, the identification method presented here requires relatively short
observations and moderate averaging to preserve sufficient frequency resolution
with reasonably high values of the multiple coherence functions. It is proved by
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this study that the current identification method together with the application of
the deterministic disturbances offers accurate estimations, within observation times
that are substantially shorter than required by the Welch method. Evidently, exper-
iments should be conducted to verify high multiple coherences during such a short
observation times in practice.

Perreault et al. (1999) used a sampling frequency of 50 Hz against 125 Hz in
this study. However, sampling frequency has no influence on the frequency resolu-
tion and therefore does not change the results. The advantage of a higher sampling
rate is that low-pass anti-aliasing filters can be applied with cut-off frequencies suf-
ficiently above the frequency range of interest, which is approximately 20 Hz for
mechanical properties of the arm.

Coherence functions apply to independent inputs and the outputs of the com-
bined closed loop system. In the case where the compliance of the environment is
substantially lower than that of the arm, the estimated multiple coherence func-
tion is largely determined by the (linear) environment instead of the arm (Fig. 5.8).
An open-loop estimator should be used in these cases to circumvent this problem.
However, in the case of force disturbances, a high environmental compliance is pri-
marily desired resulting in an input-output behavior that is mainly determined by
the arm compliance. In these cases, coherence functions therefore are largely deter-
mined by the arm compliance.

5.5.2 Frequency vs time domain identification

An alternative to the frequency domain is identification in the time domain. The
corresponding nonparametric time domain identification then provides estimates
of the system’s matrix impulse response function (MIRF). For linear open-loop
systems, both time and frequency domain identification obtain comparable esti-
mates (Perreault et al., 1999). Besides numerical differences, there is a preference
for MFRFs to MIRFs with respect to visual presentation. Where MIRFs are poor in-
dicators of the system dynamics and give only insight in the time extent or memory
of the system, MFRFs show important global properties of dynamic systems such
as the order of the system, relative damping and regions of oscillatory behavior.

Apart from these general differences, a detailed comparison cannot be made
because nonparametric identification in the time domain has not been studied pre-
viously for closed loop systems. Usually, parametric estimators in the time domain
are applied using a fixed model structure of the system to be estimated. Paramet-
ric identification is less attractive in the first stage when detailed knowledge of the
system structure is not at hand. A proofed method to quantify the parameters of a
single-joint arm model is the application of a non-parametric estimator in the first
stage, followed by (least squares) fitting of a parametric model onto the estimates
as the second stage (Van der Helm et al., 2002).
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5.5.3 Validity of the arm model

The arm model used is very simple, only consisting of a linear mass-damper-spring
system. This model is frequently used to describe the input-output behavior of
limbs at endpoint (mostly the hand) for small continuous displacements around a
reference point under different experimental conditions (Dolan et al., 1993; Tsuji et
al., 1995; Gomi and Kawato, 1996; Gomi and Osu, 1998; Perreault et al., 2000, 2001).
Despite its limited descriptive ability, since it is only a lumped representation of
intrinsic and reflexive dynamics together, these studies showed that this model is
quite accurate for the conditions studied. In previous studies from our group, we
extended the mass-damper-spring system with linear position and velocity feed-
back to separately identify the gains of muscle spindles (De Vlugt et al., 2002; Van
der Helm et al., 2002). For the experimental conditions applied, we found that both
gains depend on the frequency content of the force disturbance and damping of
the environment. Despite the highly non-linear behavior of the muscle spindles,
mainly due to their unidirectional sensitivity to stretch (Kirsch et al., 1994; Stein
and Kearney, 1995; Kearney et al., 1997; Zhang and Rymer, 1997; Mirbagheri et al.,
2000), high values for the variance accounted for (VAF) were found with the linear
endpoint model.

Other nonlinearities on the muscle level are the different calcium activation-
deactivation rates, and mechanical properties of the contractile elements like the
force-length and force-velocity characteristics (Winters and Stark, 1985). Appar-
ently, in multiple muscle systems these nonlinearities cancel out at endpoint level
under specific conditions. Application of the linear identification method as de-
veloped in this study seems therefore justified. Summarized: 1) the application of
small amplitude disturbances simply do not excite appreciable nonlinearities; 2)
unidirectional presumably turns into bidirectional behavior in case of muscles act-
ing as antagonistic pairs and 3) from a functional anatomical point of view, different
muscles likely act at different lengths hence distributing their characteristics over a
wider range of motion which smoothes out the nonlinearities.

5.5.4 Relevance of force disturbances

Application of force disturbances while performing a position task offers insight
into the disturbance rejecting behavior of the human controller, i.e. the proper-
ties of the arm compliance. This experimental condition equates to natural posture
tasks that aim to minimize deviations around a fixed desired position. Examples
are holding a steering wheel or positioning a drilling machine (in the lateral direc-
tion). The magnitude of positional deviations is dependent on the total compliance
at the endpoint (hand) and evidently from the power of the disturbance. The total
compliance is the sum of the compliance of the arm and the environment, i.e. the
dynamic compliance of the steering wheel in this example. Because there is mutual
interaction, the endpoint compliance can be adapted through changing the compli-
ance of the human arm.

The advantage of continuous disturbances is that subjects have the opportunity
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to adapt to the disturbance, in contrast to transient disturbances. In particular for
unpredictable continuous disturbances, the arm compliance can only be changed
by different (constant) levels of intrinsic and reflexive contributions. In general,
high (co)contraction and large feedback from muscle spindles can potentially de-
crease the arm compliance and hence improve the disturbance rejection.

Simulation studies have shown that intrinsic and reflexive mechanisms were
effective for continuous unpredictable force disturbances where the task was to
minimize hand displacements. In particular, high afferent position feedback was
predicted for small bandwidth force disturbances (De Vlugt et al., 2001; Schouten
et al., 2001). These results were very similar to a comparable experimental study by
Van der Helm et al. (2002), and were explained from an optimal controller perspec-
tive, i.e. adjustment of the dynamic arm compliance to minimize displacements of
the hand. Such an explanations are only possible if the system is being perturbed
by force disturbances such that all compliance mediating mechanisms have direct
effect on the task performance (or hand displacement)

In the case of continuous position disturbances a force task seems logical (com-
pared to force disturbances and a position task) and one is likely interested in mech-
anisms that are suited to control force, probably by Golgi tendon organs. Studies
based on such an approach are not known to us. The challenge remains to clar-
ify the role of different mechanisms, in particular reflexes, that contribute to whole
limb compliance for different tasks and during continuous disturbances. The de-
gree of interaction and the type of disturbance signals are important aspects in
1) understanding the adaptability of the arm compliance by the CNS and 2) the
choice (open or closed loop) of the identification method. Unfortunately, these as-
pects were not fully recognized in the literature.

5.6 Conclusions

Closed-loop identification is necessary to estimate the mechanical properties of the
arm using force disturbances where interaction with the environment always ex-
ists. This study proposes a new frequency-domain estimator that estimates the arm
compliance from the closed loop. The major advantages of the estimator are sum-
marized below.

• The estimator is nonparametric such that no a priori system knowledge is re-

quired.

• The estimator is very accurate and requires only short observations periods.

• The application of deterministic multisine disturbance signals do not intro-
duce bias and variance, and facilitates full control of the input spectra.

To understand the functionality of mechanisms controlling the dynamic compli-
ance of the arm during posture tasks, the application of force disturbances and ma-
nipulable environments is important because it establishes a natural experimental
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condition. In order to estimate the arm compliance under such conditions, a closed-
loop identification method as described in this study is indispensable.
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A planar haptic device for movement control

analysis of the human arm

Erwin de Vlugt, Alfred C. Schouten, Frans C. T. van der Helm, Piet C. Teerhuis,
Guido G. Brouwn

Journal of NeuroScience Methods 2003; 129: 151-168

This paper describes the design and application of a haptic device to study the me-
chanical properties of the human arm during interaction with compliant environ-
ments. Estimates of the human endpoint admittance can be obtained by recording
position deviations as a result of force perturbations. Previous studies attempted
to estimate the impedance by recording force as a result of position perturbations,
but these experiments do not require a feasible task of human beings. A general
problem of force-controlled haptic devices is the occurrence of contact instability,
especially where a small virtual mass is required. This negative effect is reduced by
the use of a lightweight but stiff manipulator and a robust servo-based admittance
controller. The virtual admittance is accurate to at least 13 Hz, attaining a minimum
virtual mass of 1.7 kg (isotropic, without damping and stiffness). The properties of
known test loads were estimated with an accuracy higher than 98 %, up to 20 Hz.
The application of the manipulator is evaluated by an experiment with a subject
performing a position maintenance task. With this device it is possible to study the
adaptability of the neuromuscular system to a variety of environments, enabling a
new and functional approach to human motion research.
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6.1 Introduction

Many daily life human arm motion tasks imply physical interaction with objects,
hereafter referred to as the environment, of which the mechanical properties can
be diverse. Most environments are well manipulable, meaning that humans are
able to control their hand position by generating the appropriate muscle forces. By
changing the arm admittance the combined admittance of arm plus environment
can be modified. From the combined admittance, important dynamic properties
can be derived such as mechanical stability margins and the resistance to external
force perturbations (De Vlugt et al. 2002; Van der Helm et al. 2002). The admit-
tance is defined as the dynamic ratio of position to force (m/N), and equal to the
inverse of the mechanical impedance. A low admittance (∼ high impedance) is de-
sirable, which means small position deviations for a given magnitude of force per-
turbations. The arm admittance comprises inertial, viscous and elastic properties
from intrinsic structures (muscles, connective tissues, bones) and reflexive feedback
properties through muscle spindles, golgi tendon organs and the central nervous
system.

In previous studies that have aimed to characterize the admittance of human
limbs, a manipulator was used to impose a mechanical perturbation while the hu-
man reaction did not have an effect on the position of the manipulator (Acosta et
al. 2000; Cathers et al. 1999; Dolan et al. 1993; Gomi an Osu 1998; McIntyre et al.
1996; Mussa-Ivaldi et al. 1985; Perreault et al. 2001, 2002; Tsuji et al. 1995; Won and
Hogan 1995; Zhang and Rymer 1997). In those studies, the subjects were required to
exert a constant force while the hand was displaced by the use of different position
perturbations, which is considered not to be a very natural task. Resulting visco-
elastic properties from intrinsic and reflexive origin were often explained in terms
of contributions to movement stability. However, there is no functional relevance
to actively preserve stability because the movement is simply imposed by an inher-
ently stable, position-controlled manipulator having an extremely low admittance.

Force-controlled manipulators, on the contrary, facilitate interaction with com-
pliant environments such as presented in this study. With these manipulators, force
perturbations can be applied in combination with position related tasks which com-
ply to natural movement conditions. The effect of the combination of perturbation
type and task instruction on the neuromuscular response has been previously stud-
ied (Akazawa et al. 1983; Kanosue et al. 1983; Doemges and Rack 1992; Mirbagheri
et al. 2000). These studies showed that muscle spindle responses to force perturba-
tions during a position-holding task where significantly larger than in the case of
position perturbations while maintaining a constant force.

In this report, a force-controlled two-degree-of-freedom (2DOF) haptic device
is described consisting of a two-linkage anthropomorphic arm having a force sen-
sor at the tip. The manipulator is driven by two powerful hydraulic actuators. A
position-servo-based haptic controller is used to increase the endpoint admittance,
i.e. decrease the real mass of the linkages to a virtual mass experienced by the sub-
ject. The bandwidth is sufficient to capture all the dynamic properties of the human
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arm, which can be identified using a multivariable system identification method
(De Vlugt et al. 2003). With the use of this device, the adaptability of the admittance
of the human arm to different environments and types of force perturbations can
be analyzed in the horizontal plane, which has never been done before.

Existing, comparable haptic devices are the MIT-MANUS (Colgate 1988) and the
Hopkins manipulandum (Shadmehr and Brashers-Krug 1997). These manipulators
have been designed to study slow, human induced motions and have never been
used for the identification of the arm admittance. Another manipulator, which is
rather strong and compliant at the endpoint, is the PFM manipulandum (Gomi and
Kawato 1996). The PFM has been used to measure the planar stiffness and viscosity
properties of the human arm using force pulses (Gomi and Kawato 1996; Gomi and
Osu 1998). However, the design and constructional aspects of the present manipu-
lators have never been formulated from the perspective of functional control of the
human arm during continuous interaction with (virtual) environments. Also, previ-
ous applications were directed at relatively low frequency properties only (stiffness
and damping), while the purpose of the present manipulator is to identify the arm
admittance over a broad frequency range.

A fundamental problem in haptic control is the occurrence of contact instabil-
ity when the subject firmly grips the handle (Carignan and Cleary 2000; Hogan
and Colgate 1989; Van der Linden 1997). Since the haptic device actively generates
mechanical energy, contact instability can pose a direct physical threat to the hu-
man subject and needs to be avoided at all times. Contact instability is the result of
limited controller bandwidth, which in turn is the result of mechanical resonances
of the linkage system. Consequently, the manipulator admittance can only be ’re-
placed’ adequately over a limited frequency range. Outside this range, stability can-
not be guaranteed. Within the current design, we maximized the bandwidth of the
haptic device by the choice of strong and lightweight materials and the optimal ad-
justment of a servo-based controller. The result is the realization of a compliant and
stable environment for worst case loading conditions. The accuracy of the load esti-
mates is tested by comparing the estimated values with the true values of different
technical mass-spring systems. Its final application is demonstrated by showing the
estimated arm admittance of a subject performing a posture maintenance task.

6.2 Haptic device

6.2.1 Manipulator-actuator chain

A diagram of the two-linkage manipulator is shown in Figure 6.1A. Both linkages
(l = 0.60 m) are constructed as hollow cages and made of 3 mm thick aluminum
alloy having a high stiffness to mass ratio. Each linkage rotates on a vertical axis,
indicated by the angles θ1 (around the main axis) and θ2 (the secondary axis). The
motion is constrained to the horizontal plane. Torques are generated by two identi-
cal direct drive hydraulic motors around each axis (supply pressure 120 bar; max.
torque 480 Nm; max. angular velocity 15 rad/s). The actuators are vertically aligned
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on the main axis. One actuates the (inner) first linkage and the other the (outer) sec-
ond linkage by means of two parallel bars. The mass of the inner linkage is 5.4 kg
(including the pull bars) and that of the outer linkage is 3.6 kg. Angular rotation is
measured by optical encoders (Heidenhain ROC417, 17 bits per 360 deg.). Angular
velocities are derived analogously. Oil flow is controlled by critical four way valves
(Moog D760-2817A) with valve position feedback (300 Hz bandwidth from input
voltage to valve position). Pressure difference between both sides of the rotor vane
is measured (Paine transducers). Each motor is equipped with a pressure controller
(150 Hz bandwidth) to compensate for pressure fluctuations due to movements,
leakage and oil compressibility (Heintze et al. 1995). Strain gauges are mounted in
the handle to measure the hand reaction force (range -300 to 300 N) in two orthog-
onal directions.
Interaction of the human arm with the environment, as simulated by the manipu-
lator, is clarified in the control scheme of Figure 6.1B. The total force acting upon
the environment is the summation of the hand reaction force F and an indepen-
dently generated external force perturbation signal Fext. The hand position X is
the output of the total system.

6.2.2 Safety system

To prevent the subject from entering the area of motion of the manipulator, the
body is securely strapped to the chair back by two shoulder belts (see Fig. 6.1A).
The shoulder rotation center is horizontally aligned with the hand grip by adjusting
the height of the chair.
The manipulator is equipped with an autonomous safety system which is approved
by the local board on human experiments. The absolute endpoint velocity is limited
to 1.0 ms−1, to guarantee a safe range of operation. The absolute hand reaction force
is limited to 100 N. In addition, the power (dot product of endpoint velocity and
hand reaction force) transferred by the manipulator to the subject’s hand is limited
to 40 Watts. At all times, the subject is able to stop the manipulator immediately by
pressing an emergency button with his or her free hand. To prevent the manipulator
from swaying when the subject loosens contact, the manipulator is stopped when
the absolute hand reaction force is below 0.1 N for 10 ms.

6.2.3 Haptic controller

The haptic controller is optimized using linear analysis tools. This implies that op-
timal controller settings are determined for movements of the manipulator around
different positions that are small enough to approximately describe the system be-
havior by linear transfer functions. Linear transfer functions facilitate direct access
to important system properties in the frequency domain, like resonance frequen-
cies, phase lags and system bandwidth. In accordance with notations used in pre-
vious studies, the endpoint admittance, force and position are defined in the Carte-
sian frame having its origin in the subject shoulder rotation center.
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Figure 6.1: A: Schematic configuration of the experimental setup. The inner link

rotates around the main axis (A1) and the outer link rotates around the secondary

axis (A2); θ1: rotation angle of the innerlink, θ2: the rotation angle of the outer link

relative to the inner link. The subject is physically attached to the manipulator by

taking a firm grip on the handle (C). Hand reaction forces F and hand position X

are constrained to the horizontal plane and decomposed into Cartesian coordinates

in the subject’s frame (xxs , xys). The origin of this frame is located in the rotation

center of the shoulder. The manipulator kinematics are defined in the manipulator’s

frame (xxm , xym) having its origin at the main rotation axis. B: General (nonlinear)

disturbance block scheme of the mechanical interaction between the human (arm)

and the haptic device, acting as the environment. The manipulator position is be-

ing calculated from the hand force (F) recorded at the handle. The external force

perturbation Fext is added to the hand force. The system output is the common

endpoint or hand position X. Xref ≡ 0 indicates the posture task, i.e. a reference

position to be maintained.
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The admittance controller configuration is shown in Figure 6.2. The desired tra-
jectory is given by:

Xdes(s) = V (s)(Fext(s) − F(s)) (6.1)

with s = j2πf the Laplace operator (f the frequency in Hz). In Eq. (6.1), Xdes(s) =
[xdes,x(s) xdes,ys(s)]

T is the desired endpoint position (T indicates the transposed),
F(s) = [fx(s) fy(s)]T the hand reaction force, Fext(s) = [fext,x(s) fext,y(s)]T the
external force perturbation, and V (s) the multivariable transfer function (MTF) of
the virtual endpoint admittance according to:

V (s) =

( [

mxx mxy

myx myy

]

s2 +

[

bxx bxy

byx byy

]

s +

[

kxx kxy

kyx kyy

] )

−1

(6.2)

with mij the virtual mass, bij virtual damping and kij the virtual stiffness compo-
nents (i, j ∈ [x, y]).

The servo is angular based such that kinematic transformations to, and from, the
Cartesian frame are required. The servo is the closed-loop subsystem from Θdes(s)
to Θ(s) (Fig. 6.2), with Θ(s) = [θ1(s) θ2(s)]

T the vector of rotation angles. For small
deviations around a mean (not necessarily fixed) reference position, the variation
of the reference angles are obtained by inverse transformations from the Cartesian
frame:

∂Θ(s) = J−1∂X(s)

with J the Jacobian (Craig 1989):

J =

[

−l1 sin θ̄1 − l2 sin (θ̄1 + θ̄2) −l2 sin (θ̄1 + θ̄2)
l1 cos θ̄1 + l2 cos (θ̄1 + θ̄2) l2 cos (θ̄1 + θ̄2)

]

and θ̄1 and θ̄2 the means of θ1 and θ2 respectively.
The stability of the haptic device is determined by the loop MTF. Since the ad-

mittance control configuration consists of a servo (inner) loop and a force (outer)
loop (see Fig. 6.2), the dynamic properties of both loop MTFs are important to the
overall behavior of the haptic device.
The open loop servo MTF from ǫθ(s) to Θ(s) equals:

←֓

Hservo (s) = Θ(s)ǫ−1
θ (s) = G(s)K(s) (6.3)

with K(s) the servo controller to be designed. G(s) is the combined admittance of
the manipulator P (s) (in joint coordinates) loaded with the human arm H(s) (in
Cartesian coordinates), i.e. from Tact(s) to Θ(s), according to:

G(s) =
[

I + P (s)J−1H−1(s)J
]

−1
P (s) (6.4)

where H−1(s) is the impedance of the human load and I the 2 × 2 identity matrix.

For the force loop (from ǫf (s) to F(s)), the open loop MTF
←֓

Hforce (s) equals:

F(s)ǫf (s)−1 =
←֓

Hforce (s) = H−1(s)JHservo(s)J
−1V (s) (6.5)
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Figure 6.2: Linear block scheme of the admittance controller for the multivariable

two-linkage manipulator. The controller consists of two loops: the servo loop having

high loop gain to track the desired angles (Θdes) and the force loop to include the

measured interaction force. Both force sensors and angular encoders are assumed

to be ideal. The desired angles are obtained from the virtual dynamics (V (s)).
Based on the difference between desired and measured angles (ǫθ), an actuat-

ing torque Tact is obtained from the servo controller K(s). The load comprises that

of the manipulator P (s) and the subject’s arm H(s). The actual position (X) is im-

posed to the subject’s arm, which therefore appears as an impedance (H−1(s)).
The cascade of the virtual dynamics and the servo offers the virtual admittance the

subject experiences (from F to X). The external force perturbation signal (Fext) is

added to the subject’s hand reaction force. The difference (ǫf ) is the input to the

virtual admittance. Transformation from small angular deviations (around a working

point) to Cartesian coordinates is indicated by the Jacobian J .

where Hservo(s) is the closed loop servo MTF according to:

Hservo(s) = Θ(s)Θ−1
des(s)

=
[

I+
←֓

Hservo (s)
]−1

←֓

Hservo (s) (6.6)

The constraint to the servo controller, K(s), is that both the servo loop (Eq. 6.3) and
force loop (Eq. 6.5) must be unconditionally stable.

The performance of the haptic device becomes clear when considering the MTF
from Fext(s) to X(s), which is derived as follows. From Eq. (6.5) it follows that:

←֓

Hforce (s)ǫf (s) = F(s)
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Substituting, F(s) = H−1(s)X(s) gives:

ǫf (s) =
←֓

H
−1

force (s)H−1(s)X(s) (6.7)

Substituting ǫf (s) in Eq. (6.7) by:

ǫf (s) = Fext(s) − F(s) = Fext(s) − H−1(s)X(s)

gives:

Fext(s) =

[

I+
←֓

H
−1

force

]

H−1(s)X(s)

and finally the combined admittance at endpoint is:

X(s)Fext(s)
−1 = H(s)

[

I+
←֓

H
−1

force

]

−1

(6.8)

The general purpose of the controller K(s) is to obtain high loop gains such that the

gains of
←֓

Hservo (s) are high and consequently Hservo(s) → 1 and Θ(s) → Θdes(s).
Also, the force loop (Eq. 6.5) will converge to H−1(s)V (s) such that the combined
admittance at endpoint (Eq. 6.8) becomes:

X(s)Fext(s)
−1 ≈ H(s)

[

I + V −1(s)H(s)
]

−1

≈
[

V −1(s) + H−1(s)
]

−1
(6.9)

Eq. (6.9) describes the ideal input-output behavior from external force to endpoint
position that is formed by the parallel configuration of the human arm (H(s)) and
the virtual environment (V (s)), i.e. the manipulator admittance (P (s)) is perfectly
masked.

The virtual filter and the position servo are designed in Simulink and imple-
mented in a 16 bit DSP signal processor (DS1003 60 MHz, DSpace GmBh) at 1 kHz
sample frequency.

6.3 Method

6.3.1 Servo controller optimization

The servo controller K(s) is optimized to realize a maximum bandwidth of the
closed loop servo (Eq. 6.6). The servo controller is implemented as a proportional-
differential (PD) controller for each axis:

τact,n = kp,n(θn,des − θn) + kd,n(θ̇n,des − θ̇n) (6.10)
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with τact,n the actuator torque and kp,n and kd,n the gains of proportional and dif-
ferential action respectively (n denotes the actuator, i.e. n ∈ [1, 2]).

Because the dynamics of the manipulator and the human arm change with con-
figuration, the servo controller is optimized at five different endpoint positions of
the manipulator, being: central [0, 0.45] [m], left [−0.2, 0.35] [m], right [0.2, 0.35] [m],
proximal [0, 0.35] [m] and distal [0, 0.55] [m] (numbers adopted from Gomi et al.
1998). These coordinates are defined in the subject’s frame and cover a sufficiently
wide range of human arm positions. To obtain a stable servo for many different
loading conditions, the worst case load is taken, being the subject generating maxi-
mum resistance to the force perturbations. Stability is the constraint to the optimiza-
tions for which different margins are taken, ranging from wide to rather narrow
(Sec. 6.3.3). Optimizations for all positions are performed simultaneously, resulting
in one set of optimal controller gains for each size of the servo stability margin. The
optimization is performed independently from the force loop.

6.3.2 Force loop optimization

Given the optimized servo, the force loop (Eq. 6.5) is optimized to find the max-
imum attainable stable virtual admittance. Apart from the servo, the force loop
also comprises the human arm impedance and the virtual admittance. Similar to
the optimization of the servo, the worst case loading condition occurs when the
human arm generates maximum resistance resulting in a high impedance and con-
sequently in potentially destabilizing high loop gains. The worst contribution of
the virtual admittance is when it only has mass terms which at the same time are
small, causing high loop gains at low frequencies and 180 degrees phase lag at all
frequencies. Also, five different stability margins are taken as constraints to the op-
timization of the force loop (Sec. 6.3.3).

6.3.3 Identification

To determine the effect of the controller K(s) on both force and servo loop, the
MTFs of the manipulator (P (s)) and that of the human arm (H(s)) are estimated

to calculate
←֓

Hforce (s) and
←֓

Hservo (s) (i.e. Eqs. (6.5) and (6.3) respectively). To cap-
ture all important dynamics, both MTFs are estimated using a broad bandwidth
force perturbation signal containing frequencies up to 100 Hz. Using the closed-
loop multivariable identification method from De Vlugt et al. (2003), the (two-input
two-output) multivariable frequency response function (MFRF) of the correspond-
ing MTFs can be estimated. The method requires the hand reaction force, hand
position and the independent external force perturbation.

For the estimation of the test loads, a force disturbance signal including fre-
quencies to 20 Hz is used. The reason for this range is that all important mechanical
properties of the human arm are excited by these frequencies (Perreault et al. 1999).
Estimation accuracy beyond 20 Hz is therefore considered not relevant. The time
period of observation is 20 sec in all cases.
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Table 6.1: Gain and phase margins corresponding to M -circles (> 1) used to im-

pose the stability boundaries. The phase and amplitude margins are determined

with respect to the point [-1,0] in the complex plain: phase margin ϕ equals the re-

maining angle at unity gain; amplitude margin A equals the remaining amplitude at

-180 deg phase shift.

ϕ [deg] A [-]
M

1.3 50 0.44
2 30 0.33
3 20 0.25
4 15 0.20
5 12 0.17

Since MFRFs are only valid descriptions of input-output systems when the un-
derlying system behaves almost linearly, the partial and multiple coherence func-
tions are also estimated as an indication of linearity (De Vlugt et al. 2003; Van der
Helm et al. 2002). These functions are equal to one if the system output (X) is a
linear function of it’s input (Fext) and decrease with system nonlinearities, or ad-
ditional unmeasured inputs like voluntary forces or measurement noise.

Characteristic loci and M-circles

An adequate method to infer stability and performance properties of systems un-
der feedback control is to plot the characteristic loci of the open-loop system trans-
fer functions, i.e. the MFTFs of the force and servo loops in the present case (Ma-
ciejowski 1989). Characteristic loci are the frequency-dependent complex eigenval-
ues of a multivariable system, describing the dynamic relation between a system
input and output signal vector. Another useful tool in control engineering practice
is the use of M -circles. These circles apply to the (open-loop) loci and mark the
points in the complex plane where the gain of the (closed-loop) system is equal
to M . M -circles greater than one are used to determine the stability margins. For
instance, if all characteristic loci lie outside the M = 1.3 circle, the maximum over-
shoot of the closed-loop system following an input step is less than 30 %. Stability
margins corresponding to five different M -circles are used for both the servo (Ms)
and the force (Mf ) loop, ranging from 1.3 to 5 (Table 6.1). M -circles smaller than
one are used to determine the performance of the closed servo loop. One standard
value of M = 1

2

√
2 is used. The frequency where the loci cross this circle equals the

bandwidth of the closed-loop MTF, i.e. where |Hservo(s)| = 1
2

√
2.

As an example, Figure 6.3 shows the characteristic loci of the servo loop for the
central position and an initial (stable) set of controller gains, being: kp,1 = kp,2 =
2400 and kd,1 = kd,2 = 24. The direction of increasing frequency (f ) is indicated by
arrows. The circle on the left is the Ms = 1.3 circle and the larger circle on the right
is the Ms = 1

2

√
2 circle. The loci do not cross the Ms = 1.3 circle, meaning that the

servo is stable and sufficiently damped for these initial controller gains. These gains
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appeared to be stable for the other positions also, so that all the necessary MFRFs
of the manipulator and those of the subject’s arm admittance were estimated and
used to determine the optimal controller gains (Sec. 6.3.3). The Ms = 1

2

√
2 circle is

crossed at 2 Hz and 6 Hz for the first and second locus respectively (Fig. 6.3).

Implementing the optimization

The servo controller gains are optimized by minimizing the following cost function:

P (k) = Ps(k) + Ph(k) (6.11)

where Ps(k) is related to the servo performance (desired effect) and Ph(k) to high
frequency amplification beyond the servo bandwidth (undesired effect, i.e. actuator
overdrive). Both functions are dependent on the controller parameter vector k =
{kp,1, kp,2, kd,1, kd,2} (see Eq. 6.10).

For the servo performance, the bandwidths of both servo loci are taken as direct
measures according to:

Ps(k) =
1

fb,1(k)
+

1

fb,2(k)
(6.12)

with fb,1 and fb,2 the bandwidth of the first and second locus respectively.
The usage of Ph in Eq. (6.11) is to prevent the actuator torque from varying too

quickly. For the hydraulic actuators in the present case, the pressure differences in
the valves would otherwise be too large leading to undesired noise in the pressure
control loops and annoying ’sawing’ sounds from highly turbulent oil flows. High
frequency excitation is undesired in general and not a specific issue in the hydraulic
case in this study. In a preliminary experimental setup we experienced comparable
high-frequency noise in the current controller of an electrically powered wrist ma-
nipulator. The common problem is that differential (D)-action is required inside the
servo bandwidth to induce the necessary phase lead, which at the same time am-
plifies the gains at frequencies beyond the bandwidth. Therefore, excessively high
differential (D)-action in the servo controller is penalized by weighting the gains of
the servo loci above 25 Hz in the present case, which approximately equals the fre-
quency where the first locus of the manipulator admittance starts to increase again
(Fig. 6.4A). The following cost function Ph to be minimized is therefore taken:

Ph = c

n∆f=100
∑

n∆f=25

|λs1
(2πn∆fj)| + |λs2

(2πn∆fj)| (6.13)

with λs1
, λs2

the servo loci and c a weighing factor. Different values for c are used,
being 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50.

The constraint to the minimization of Eq. (6.11) is that the servo loci may not
cross the stability boundaries given by the Ms-circles. For each value of c and for
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Figure 6.3: Characteristic loci (solid: first locus; dashed dotted: second locus) for

initial and stable controller gains (kp,1 = kp,2 = 2400 and kd,1 = kd,2 = 24) of the

servo loop
←֓

Hservo (s) in the case the subject is attached. The force loop is opened

(hand reaction force was not fed back). The endpoint is in the central position. The

stability area is represented by the Ms = 1.3 circle which is not crossed by the loci.

The M = 1

2

√
2 ≈ 0.71 circle on the right indicates the bandwidth, i.e. where the

gains of the closed loop servo equals 1

2

√
2 (fb,1 ≈ 2 Hz, fb,2 ≈ 6 Hz). The direction

of increasing frequency is indicated by f along the arrows.
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Figure 6.4: Estimated frequency response functions (FRFs) of the characteristic

loci (gain and phase plots) of the manipulator. A: first locus of the admittance of the

manipulator loaded with the human arm, i.e. the combined admittance G(s) (solid

lines), and that of the unloaded manipulator P (s) (dashed lines). B: the second

locus; loaded (solid lines) and unloaded (dashed lines). The loci correspond to the

MFRF between the actuator torque (Tact(s)) and rotation angles (Θ(s)).
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each value of the stability margin Ms (25 combinations), the characteristic loci of
the servo loop MTFs (Eq. 6.3) are optimized by minimizing P (k).

Given the optimized servo, the force loop is optimized by determining the min-
imal virtual mass for each combination of Ms and c and for the five different values
of Mf (resulting in 75 values of the virtual mass). This is achieved by sizing the
loci of the force loop for different values of the virtual mass such that the loci just
touch, but do not intersect the Mf -circle. The virtual mass is taken isotropically for
simplicity, such that it can be described by one parameter: mv = mxx = myy with
mxy = myx = 0.

6.3.4 Test loads

The overall quality of the optimally controlled haptic device is judged on two prop-
erties: the accuracy with which the desired virtual admittance is simulated and the
ability to retrieve reliable estimates of the human arm.
The estimator is tested by identification of known mass-spring loads. The estimated
load is then compared to the true one. For this purpose, different combinations of
masses and springs are attached to the handle of the manipulator in the central
position. All loads are taken symmetrically. Three different isotropic masses were
used, weighing 0.99, 1.30 and 1.61 kg. With the smallest mass, four spring con-
figurations were applied: the combination (kxx, kyy) was taken equal to (300,300),
(600,300), (300,600) and (600,600) respectively (values in Nm−1). The values are
taken as a representative range for the human arm stiffness (Tsuji et al. 1995). Due
to the configuration of the springs, the actual stiffness in one direction is increased
by the springs in the perpendicular direction. A schematic representation of the
spring configuration and the derivation of the true stiffness values is presented in
Appendix D. To judge the accuracy of the estimates, a second order mass-spring
model has been fitted in the frequency domain through the diagonal elements of
the estimated FRFs using a straight forward least squares algorithm. For all com-
binations of the test loads, the virtual admittance of the manipulator was set at
zero stiffness and a symmetric mass of 5 kg. A small amount of virtual damping (5
Nsm−1) was used to suppress oscillations of the endpoint. In the case where the test
load includes no springs, the virtual stiffness was set to a small value of 50 Nm−1

to exclude drifting of the endpoint position.
After the estimation accuracy is determined, the admittance of the virtual environ-
ment is estimated and compared to the real admittance of the manipulator. The
estimation is performed while the subject holds the handle and performs the maxi-
mal resistance position maintenance task. The difference is expressed as the ratio in
eigenvalues of the estimated virtual mass ellipse and the real mass ellipse. The mass
ellipse is graphically displayed as a force vector in response to a unit acceleration
vector generated by sin and cos functions, according to:

[

f1

f2

]

= M

[

cos φ
sinφ

]

(6.14)
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for 0 < φ < 2π and where

M =

[

m 0
0 m

]

is the endpoint mass matrix (for small excursions of the endpoint around a fixed
position). Since the mass is taken isotropically, the ellipse is a circle of which the
two eigenvalues are equal, i.e. λ1 = λ2 = m. In contrast, the real mass of the manip-
ulator at endpoint is displayed as an ellipse having non-zero off-diagonal terms and
unequal diagonal terms, which is a general property of a chain of rotating linkages
(Craig 1989).

6.3.5 Subject

The arm admittance of one subject (male, 29 years) was estimated. The subject gave
informed consent to the experimental procedure. The experiment was carried out
with the right arm. The subject was asked to take a firm grip on the manipula-
tor handle (Fig. 6.1). Gravitational forces were compensated for by supporting the
upper arm with a brace that was fixed by a rope to the ceiling. The subject was
instructed to minimize the displacements of the hand that resulted from the force
perturbations, evoking high stiffness and damping of the arm (Van der Helm et al.,
2002). On a monitor screen 65 cm in front of the subject, the reference position was
visualized by means of a 3 cm diameter circle inside which the subject had to keep
a smaller (0.5 cm diameter) filled circle representing the actual hand position. The
force perturbation always started after the subject had positioned his or her hand
in the center of the reference circles.

6.4 Results

6.4.1 Manipulator dynamics

Figure 6.4 shows the estimated characteristic loci, presented as FRFs, of the manip-
ulator loaded with the human arm, i.e. the combined admittance, G(s) (dark lines),
and the unloaded manipulator, P (s) (dashed lines). Distinct troughs and strongly
alternating phase shifts are clearly seen, especially for the first locus (Fig. 6.4A), and
are typical for systems with distributed regions of low stiffness. The gain of the first
locus of the combined admittance exhibits two collapses around 22 Hz and 53 Hz.
The loci of the manipulator only are largely comparable to those of the combined
admittance. The main differences are the increase of the frequency where the first
trough occurs and the absence of the second trough. Both differences are the result
of changes in eigenfrequencies due to the additional load of the human arm.
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6.4.2 Controller gains

The optimized servo bandwidth and minimal virtual mass are given in Figure 6.5
for high frequency weighting c = 1.25. Lower weighting of the high frequency
gains in the servo loop (c < 1.25) resulted in hydraulic overdrive meaning that the
corresponding controller gains were not of practical use. For the largest weighting
(c = 1.5) the controller was too conservative resulting in a smaller bandwidth and a
slightly larger minimum for the virtual mass. Because the bandwidth of the second
locus is substantially higher (> 30 Hz), only the bandwidth of the first locus, fb,1,
is given. The bandwidth increases with decreasing servo stability margins (increas-
ing values of Ms). The minimal virtual mass also increases with Ms for the smallest
stability margins of the force loop (Mf = 5) and remains almost the same for the
largest margins (Mf = 1.3). It is clear that there is a trade-off between bandwidth
and minimal attainable virtual mass. As the best choice between smallest virtual
mass and highest bandwidth, we have chosen mv = 1.72 kg and fb,1 = 12.9 Hz,
corresponding to Ms = 2 and Mf = 5 as indicated by the encircled values in Fig-
ure 6.5. The corresponding controller parameters are kp,1 = 12432.0, kp,2 = 6240.0,
kd,1 = 244.8, kd,2 = 8.6.

The values of the bandwidth are minima, and always occurred at the proximal
position where the manipulator was highly extended. The highest bandwidth al-
ways occurred at the distal position and was approximately 20 % higher.

The optimal loci of the servo are shown in Figure 6.6A for the proximal (limit-
ing) position. The bandwidths are indicated by filled dots on the crossing point of
the loci with the M = 1

2

√
2 circle. Figure 6.6B shows the loci of the force loop. The

’touch’ with the corresponding M -circles is clearly visible and always occurred for
the second locus.

Figure 6.7 shows the four FRFs of the two-by-two servo MFRF in the Cartesian
frame. The decomposition of the endpoint MFRF into its four Cartesian FRFs is a
common way of studying the planar admittance and is used as the default repre-
sentation hereafter. The x-direction is restrictive, having a bandwidth comparable
to the first locus of the MFRF (≈ 13 Hz). In the y-direction, the bandwidth is much
higher (> 20 Hz) and comparable with the second locus of the MFRF. Within the
smallest bandwidth, the Cartesian directions are reasonably decoupled, as indi-
cated by the reduced gains of the cross terms. For both loading conditions in all
positions, the multiple coherence is higher than 0.85, indicating highly linear be-
havior of the servo.

6.4.3 Test load estimation

Figure 6.8A shows the estimations and model fits in the case of the smallest test
mass without springs. Figure 6.8B shown the results in the case of added springs.
The estimated FRFs show the typical responses of mass-spring systems. In the case
of the mass load, the gain decreases monotonically with -100 [N/m] per frequency
decade at a constant phase lag of -180 degrees. Added springs decrease the low
frequency gain and introduce an undamped oscillation peak at the eigenfrequency.
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gins of the servo Ms (abscissae) and high frequency weighting c = 1.25. Upper:
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stability margins (Mf = 5, filled circles) and largest stability margins (Mf = 1.3,

diamonds) of the force loop. The encircled values mark the best choice, i.e. the

smallest attainable virtual mass at the highest bandwidth.

The estimated cross terms are much smaller compared to the diagonal terms. This
is expected because all loads are purely diagonal. An additional indication of the
amount of coupling in the (combined) system is given by the partial coherence func-
tions, shown in Figure 6.9. For the cross-terms, the partial coherence functions are
almost zero within the servo bandwidth. On the contrary, values close to one are
found for the diagonal terms indicating that the output in one direction is mainly
determined by the input in the same direction within the bandwidth.
The estimated multiple coherence functions are high (> 0.85 up to 15 Hz), indicat-
ing highly linear behavior. The model fits are accurate for all load combinations
and yield parameter estimates showing negligible deviations from the true values
(R > 0.9995) with absolute differences smaller than 2% of the true value.
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6.4.4 Human arm admittance estimation

Figure 6.10A shows the estimated MFRF of the subject in the central position. The
estimated FRFs show rather flat or slightly declining gains with frequency to ap-
proximately 6 Hz and decline steeper with further increase of frequency. The cor-
responding phase lag increases from zero to -180 degrees for the diagonal terms.
Oscillatory behavior appears around 6 Hz. In the other positions, the magnitudes
of these oscillations were different (or sometimes absent) while the oscillation oc-
curred within the same frequency range (not shown). Multiple coherence functions
are high (> 0.75). The estimated FRFs of the virtual admittance closely resemble
those of the desired admittance, being an isotropic mass of 1.72 kg (Fig. 6.10B).
Around 13 Hz, the FRFs deviate slightly from the intended ones (dotted lines), in
particular in the x-direction. The multiple coherence functions indicate highly lin-
ear behavior over the whole frequency range.

Figure 6.11 shows the ellipses of the real mass of the manipulator (dotted) and
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Figure 6.8: Estimated FRFs (solid lines) and model fits (dotted lines) for two dif-

ferent test loads: isotropic mass of 0.99 kg (A) and the same mass with diagonal

spring stiffness in x-direction kxx=600 Nm−1 and in y-direction kyy=300 Nm−1 (B).
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Isotropic mass (solid lines) and additional springs (dotted lines). Partial coherence

functions are defined as follows: γ2

xx is the linear contribution from input force per-

turbation fext,x, to the output hand position, xx; γ2

xy : from fext,y to xx; γ2

yx : from

fext,x to xy and γ2

yy : from fext,y to xy. Multiple coherence functions: γ2

x and γ2

y from

both external inputs (fext,x, fext,y) to one output xx and xy respectively.

the estimated virtual environment (solid). The eigenvalues of the real mass matrix
of the manipulator are λ1,real = 4.97 kg and λ2,real = 0.90 kg. The eigenvalues
of the estimated virtual mass ellipse are equal to the minimal attainable mass, i.e.
λ1,vir = λ2,vir = 1.72 kg. The real mass is therefore reduced by λ1,vir = λ1,real =
1.72/4.97 = 35% while in the opposite direction the real mass is increased by a
factor λ2,vir = λ2,real = 1.72/0.90 = 1.9 (almost doubled).

6.5 Discussion

6.5.1 Stability and performance of the haptic device

The servo controller has a minimal bandwidth of 12.9 Hz. Within this frequency
range, the virtual admittance is almost equal to the desired one provided by the vir-
tual dynamics (Fig. 6.10). The real mass of the manipulator is strongly reduced in
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Figure 6.10: A: Estimated MFRFs (gain and phase) of the subject’s endpoint ad-

mittance and of the virtual environment it interacts with (B) in the central position.

Bottom row: multiple coherence functions. The desired endpoint admittance, corre-

sponding to the minimal virtual mass of 1.72 kg, is also shown (dotted lines).
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the linear direction of the outer linkage (35%) but is almost doubled in the opposite
direction. Because the virtual mass is minimized in two directions (x and y) equally,
due to its prescribed isotropic form, the minimum is probably not the ultimate for
each direction individually. That is, the optimum perhaps elicits a virtual mass that
is more ellipsoidal when optimized in both directions independently. The facility
to use an ellipsoidal virtual mass however, is not of prime interest. Rather, chang-
ing the virtual stiffness or damping in different directions seems a more logical
approach to investigate the direction dependent visco-elastic disturbance behavior
of the human arm (De Vlugt et al. 2002).

The minimal value of the virtual mass is 1.72 kg and is the result of the most
appropriate choice between a least dominant environment and a large servo band-
width. The phase and amplitude margins are sufficient for the servo loop (Ms = 2)
but narrow for the force loop (Mf = 5). We have successfully validated stable inter-
action in the case of several goal-directed movements within the boundaries given
by the separate positions. In the case contact instability still occurs, more conserva-
tive controller gains (at the cost of bandwidth) or a larger virtual mass should be
taken.

Due to the material stiffness, the gain of the manipulator admittance does not
decay for higher frequencies (Fig. 6.4A). Consequently, the increase of the servo
loop gain by the controller is limited to avoid actuator overdrive, and thus the
desired virtual admittance cannot accurately be realized (Eq. 6.9). This indicates
the need to use stiff and lightweight materials for all moving parts (Carignan and
Cleary 2000).

When wide servo stability margins are imposed (Ms = 1.3), D-action is neces-
sary at the cost of additional P-action. In contrast, for small stability margins D-
action is not required and is therefore directly penalized by high frequency weight-
ing. In that case, additional P-action is allowed and beneficial for increasing the
bandwidth at the cost of a higher virtual mass. The latter is explained by the lack
of phase advance from the D-action. The trade-off illustrates the conflict of two de-
sired effects: high phase advance inside the bandwidth and sufficient gain attenu-
ation outside the bandwidth. Therefore, the application of several stability bound-
aries and control effort weighting at high frequencies is a practical and efficient
method to adjust the servo controller.

An important aspect regarding the stability of the haptic device in general is the
sampling frequency of the controller. Discretization (sample and hold circuits) in-
troduces phase lags that increase with frequency. For the present case, the sampling
frequency of 1 kHz appeared to be the upper limit gained with our hardware, which
can be regarded as sufficient for these types of admittance controlled applications
(Carignan and Cleary 2000).

Regarding contact instability as the result of badly controllable and oscillatory
states, the addition of any dissipative elements can be used to suppress those os-
cillations. The first location where those elements could be applied is in the force
loop, by simply providing the virtual dynamics (Eq. 6.2) with damping terms that
directly reduces phase lags from -180 to -90 at the lower frequencies. In this case
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one has to accept a certain minimal virtual damping to be present which limits the
haptic device in its range of virtual admittances. Energy dissipative elements can
also be applied in the servo loop, by adding an arrangement of physical dashpots
to the linkage system. It is expected that such a facility will improve the servo but
also at lower frequencies only. Furthermore, such an arrangement will increase the
inertia of the device which in turn will enhance oscillatory behavior.

6.5.2 Test load estimation

The estimation of the load is accurate over the whole frequency range to 20 Hz.
The reason is that the applied closed-loop estimator separately estimates the load
admittance irrespective of the properties of the environment (De Vlugt et al. 2003).
This property only holds for the condition that the servo does not introduce too
much noise beyond its bandwidth. Since the combined system response is highly
linear, as proved by the high multiple coherence functions in all cases (Figs 6.9
and 6.10), the limited bandwidth does not affect the estimation of the MFRF of the
human arm admittance.

High correlations between the true and estimated parameters of the mass-spring
loads validate the accuracy of the identification procedure. The validation is per-
formed on the diagonal elements only. This is because it was not possible to create
cross-terms in the load configuration with the test frame as used in this study (Ap-
pendix D, Fig. D.1). For that purpose, a more sophisticated test bed would have to
be used that is morphologically comparable with the human arm. Such a facility
comprises multi-DOF rotating levers with additional (and adjustable) joint visco-
elasticity. Such an elaborate mechanism is much harder to construct and was not at
hand.

If springs are used as test loads, wave propagation (longitudinal and transver-
sal) of the springs probably causes additional reaction forces that are (partly) un-
correlated with the external force perturbation and therefore reduce the multiple
coherence above 10 Hz (Fig. 6.9).

6.5.3 Human arm admittance estimation

Some general features seen in the estimated arm MFRF that reflect underlying me-
chanical properties will be briefly discussed. The endpoint MFRF measured at the
hand is comprised of the rotational dynamics around the wrist, elbow and shoulder
joint. Assuming that the joint impedance MTF is of second order, the joint admit-
tance MTF (matrix inverse of the impedance MTF) is then of sixth order, i.e. three
second order systems in series. Consequently, the endpoint admittance of the arm
is also of sixth order, as it follows from pre- and post-multiplication of the joint
admittance MTF by the Jacobian (J) and its transposed (JT ) respectively. For the
shoulder-elbow combination (fixated wrist) a moderate amplification around 2 Hz
was measured (amongst others) by Gomi et al. (1998) and Perreault et al. (2001). In
those studies, the subjects performed a submaximal force task while in the present
study maximal performance position tasks were performed resulting in higher joint
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stiffness values. Such an oscillation was not clearly seen in our estimates (Fig. 6.10A,
upper part). The resonance at 6 Hz probably indicates the influence of the wrist.

6.5.4 Other control strategies

Generally, there are two control strategies that can be used in haptic control: feed-
forward and feedback control.

Feedforward control

Feedforward control is based on forward coupling of either the measured interac-
tion force or the endpoint position. Feedforward controllers enforce accurate mod-
els of the manipulator admittance to completely cancel out all the dynamics and
insert any virtual admittance instead. The cancellation is performed using the in-
versed admittance model (impedance) yielding high amplification at high frequen-
cies, resulting in unacceptably fast changes of the actuator control signals, i.e. ac-
tuator overdrive. Accurate modeling of the admittance is possible for the low fre-
quency dynamics but is almost impossible for higher frequencies due to mechanical
resonance resulting from material weakness. Imperfect cancellation will easily lead
to unstable interaction. Additionally, the resonance frequencies shift with config-
uration of the linkages, such that a generic model will end in an excessively high
computational burden. For these reasons, feedforward control is not appropriate
for the current application.

Feedback control

The other control strategy is based on feedback control which does not require ac-
curate system knowledge (Hogan 1985). Feedback control for haptic applications
comes within two basic configurations: impedance and admittance control. The
latter is applied in this study. Both consist of an inner feedback loop to track the
desired endpoint force (impedance control) or endpoint position (admittance con-
trol). The interaction force is included by an outer feedback loop. The benefit of
feedback is that excellent high bandwidth tracking can be established when high
gain of the inner feedback loop can be realized. Again, mechanical resonance pre-
vents high gains which leads to limited servo bandwidths.

As the result of a limited bandwidth, and therewith an improper (but stable) re-
alization of the virtual admittance, the force loop can become unstable for high loop
gains, i.e. the problem of contact instability (Adams and Hannaford 1999; Carignan
and Cleary 2000; Hannaford and Ryu 2002; Van der Linden 1997). High force loop
gain occurs when the human impedance is high, e.g. when one tightens the grip
and fully cocontracts the muscles around the shoulder, elbow and wrist joints. In
that case, the human load causes force loop gains that increase with frequency.

Comparing both feedback controllers, impedance control has a practical draw-
back and that is the requirement to measure the acceleration for adaptation of the
virtual mass. Accelerometers are commercially available in different types but are
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less accurate than force sensors. Also, on-line differentiation of the position is very
susceptible to noise and slow drift. Considering this drawback, an admittance con-
troller has been chosen for the current application.

6.6 Conclusions

The haptic manipulator presented in this study facilitates the analysis of human
arm motion control during natural interaction with compliant environments. It of-
fers a stable and accurate testbed to estimate the mechanical admittance of the hu-
man arm at different positions in the horizontal plane. From the mechanical admit-
tance, important physiological properties related to intrinsic and reflexive muscle
mechanisms can be analyzed to study the adaptability of the human arm neuro-
musculature to deal with different types of environments.
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Chapter 7

Intrinsic and reflexive properties during a

multi-joint posture task

Erwin de Vlugt, Frans C. T. van der Helm
to be submitted

This study estimates the intrinsic and reflexive properties of single-joint and two-
joint muscles acting around the shoulder, elbow and the wrist during posture main-
tenance of the arm in the horizontal plane. External force disturbances were ap-
plied to the hand while the subjects were instructed to minimize their hand dis-
placements that resulted from the disturbance. To examine how the nervous system
modifies intrinsic and reflexive muscle properties, external damping was increased
and also the amplitude of the disturbance was varied. Different hand positions
were also used to find any effect of the joint configuration on muscular control. By
a two-step identification method model parameters describing intrinsic, activation
and reflexive properties were estimated. The latter representing afferent feedback
gains from muscle spindles and golgi tendon organs. Consistent time delays and
activation cut-off frequencies were found for mono-articular and bi-articular mus-
cle groups. The results showed also consistent reflexive parameter estimates, how-
ever no modification with external damping or disturbance amplitude was found.
Single-joint shoulder muscles showed minimal intrinsic properties, that was com-
pensated for by reflexive feedback. Two-joint shoulder-elbow muscles showed a
significant intrinsic and reflexive contribution in contrast to two-joint elbow-wrist
muscles. The results from this study indicate that during multijoint posture main-
tenance, the mechanical properties are controlled on the joint level and not on the
endpoint level.
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7.1 Introduction

To maintain the hand at a specific point in space, humans need to control their mus-
cles around the shoulder, elbow and wrist joints simultaneously. If external disturb-
ing forces act upon the arm, a sufficient amount of muscle visco-elasticity is needed
to suppress joint displacements that result from the disturbance. It is known from
previous experimental studies that joint resistance is produced by intrinsic muscle
visco-elasticity and reflexive feedback from muscle spindles. Most intriguing to the
majority of motor control studies that focus on posture maintenance is the function-
ality of the reflexive feedback mechanism because it shows how the nervous system
modifies the feedback gains to minimize deviations from a desired position. It has
been shown that the position and velocity feedback gains of the monosynaptic Ia
reflex increases for decreasing amplitude (Poppele, 1981; Stein and Kearney, 1995;
Cathers et al., 1999) and decreasing frequency of the disturbance (Van der Helm et
al., 2002). A recent study also reported enhanced position feedback with increasing
damping of the environment (De Vlugt et al., 2002). These results indicate that the
CNS is adaptive to cope with different disturbance conditions.

These previous single joint studies together with numerous others, have con-
tributed to the fundamental understanding of neuromuscular functioning. How-
ever, these studies were all based on single joint experiments that give no insight
into more natural multiple degree-of-freedom (DOF) posture control. Quantitative
two joint (shoulder-elbow) studies have been done to measure the net stiffness and
damping at the hand and joint level (Mussa-Ivaldi et al., 1985; Dolan et al., 1993;
Tsuji et al., 1995; Gomi and Kawato, 1996; McIntyre et al., 1996; Gomi and Osu,
1998; Perreault et al., 2001; Perreault, 2002). Endpoint stiffness fields in the hori-
zontal plane have been measured by most of these studies and was found to be
strongly dependent on arm posture, joint stiffness and endpoint force. Stiffness de-
termines the low frequency response to external disturbances while damping and
inertia are important at higher frequencies. Because these previous studies made
no distinction between underlying intrinsic and reflexive mechanisms, the role of
the CNS during multiple DOF posture maintenance remains unknown.

The goal of this study is to quantify intrinsic and reflexive muscle properties
of the shoulder, elbow and wrist joint simultaneously during arm posture main-
tenance in the horizontal plane. Since the number of DOF at joint level (three) is
higher than the DOF at endpoint level (two), there is kinematic and dynamic re-
dundancy. This means that there exists many different combinations of joint angles
to obtain the same endpoint position. And similarly, endpoint stiffness (and damp-
ing) is not uniquely determined by joint stiffness (and damping). Does redundancy
changes the way intrinsic and reflexive muscle properties are controlled?

In redundant joint system, there exists a null-space which is that part of the joint
space in which parameter variations do not affect the endpoint properties. Con-
sequently, joint properties could not be found algebraically from endpoint mea-
surements. We solved this problem by model based optimization. Multivariable
frequency response transfer functions were estimated from the recorded hand po-
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sition and hand force with the aid of a newly developed two DOF manipulator
and a multivariable subspace identification technique. Highly accurate estimates
of the endpoint admittance were obtained on which a detailed three-joint neuro-
musculoskeletal (NMS) model was fitted by minimizing the difference of the mod-
elled and the estimated endpoint admittance. Interchange of the parameters due
to redundancy was restricted by using a proper model structure, the absence of
tri-articular muscles and feasible bounds of the parameters. Consistent intrinsic
and reflexive joint parameters were estimated. The adaptability of the intrinsic and
reflexive properties were studied by varying the disturbance amplitude, external
damping and hand position. The set of experimental conditions largely overlaps
with those applied in the previously referred studies. In addition to the reflexive
properties of Ia afferents, we also estimated the cut-off frequency of the muscle ac-
tivation process and force feedback gains from golgi tendon organs (Ib-afferent) of
which no comparable data exists.

7.2 Materials and Method

7.2.1 Experimental

Apparatus

Endpoint arm admittance was estimated using continuous force disturbances ap-
plied by a planar two-joint robotic manipulator which properties are described in
detail previously (De Vlugt et al., 2003b) and are summarized briefly here. Fig-
ure 7.1 shows this device which acted as a mechanical mass-damper-spring system,
hereafter referred to as the environment. The mechanical properties of the subject’s
arm are measured in endpoint coordinates in the horizontal plane and estimated
as an admittance. Admittance is the dynamic relationship between displacements
(output) in response to forces (input). Here, the measured displacements are those
of the handle of the manipulator that approximately coincides with the handgrip of
the subject. The driving forces are those generated by the subject’s arm in addition
to those externally imposed by the manipulator. Subjects were strapped rigidly in
a chair with custom supports to constrain both lateral and anterior-posterior trunk
movements. The subjects could freely take the handle of the manipulator and were
asked to hold the handle firmly during the experiments. The elbow was supported
by a long rope (2 m) attached to the ceiling. The handle was free to rotate in the
horizontal plane around its attachment point. The manipulator was instrumented
to measure the displacements of the subject’s hand and the forces applied by the
subject to the environment. Endpoint forces in two orthogonal directions were mea-
sured by strain gauges mounted inside the handle with a range of ± 300 N. End-
point displacements were measured by two optical angular encoders (Heidenhain
ROC417, 17 bits per 360 deg.) for each joint of the manipulator.
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Figure 7.1: Experimental setup. The two-joint manipulator was used to apply con-

tinuous random forces in two directions (X and Y ) onto the subject’s hand. The ma-

nipulator represented a virtual mechanical environment that consisted of a mass-

damper-spring system in the horizontal plane. The subjects were instucted to mini-

mize the hand displacements that resulted from the force disturbances.

EMG measurements

The considered movements of the human arm were: wrist flexion/extension, el-
bow flexion/extension and horizontal shoulder adduction/abduction. Muscle ac-
tivity was recorded using bipolar surface electrodes from eight arm muscles being:
flexor carpi radialis (wrist flexor, single-joint); extensor carpi radialis brevis (wrist
extensor, single-joint); brachioradialis (elbow flexor, single-joint); biceps short head
(shoulder adductor, elbow flexor, two-joint); triceps lateralis (elbow extensor, single
joint); triceps long head (shoulder abductor, elbow extensor, two-joint); deltoideus
anterior (shoulder adductor, single-joint) and the deltoideus posterior (shoulder ab-
ductor, single-joint). Before digital recording, the raw EMG signals were high pass
filtered (20 Hz, 3th order Butterworth) to remove movement artifacts, rectified and
low pass filtered (100 Hz, 3th order Butterworth) to prevent aliasing. From the EMG
recordings, mean muscle activity was derived and used to test whether the mean
muscle activation levels changed between the conditions. Handle displacements,
hand force, external disturbance and EMG signals were recorded at 250 Hz sam-
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Table 7.1: Experimental parameters, showing humural length (lhume), forearm

length (lfore) and hand length (lhand, measured from wrist joint to centre of ma-

nipulator handle) for each subject, as well as the three joint angles (shoulder: θs,

elbow: θe, wrist: θw) corresponding to each endpoint location. Mean wrist angle (θw)

remained almost constant at 15 degrees extension in all cases.

Subject Link lengths (cm) Arm orientation (deg)
Left Central Right

lhume lfore lhand θs θe θs θe θs θe

1 29 26 7 87 58 54 82 29 83
2 26 25 6 99 36 59 70 35 71
3 29 25 8 88 58 54 82 29 82
4 32 28 8 79 75 48 93 23 94
5 35 31 10 70 88 40 104 15 104

ple frequency (16 bit resolution) for further analysis. All signals, except EMG, were
digitally re-sampled to 66.25 Hz to speed up the parametric estimation.

Subjects and protocol

Five healthy subjects (4 women, 2 left handed) with a mean (standard deviation,
SD) age of 26.8 (8.1) years and a mean length of 175.8 (14.4) m, with no history of
neurological impairments participated in this study. Subjects gave informed con-
sent to the procedures and were free to withdraw from the study at any time. All
measurements were made on the right arm.

To observe the variation of the intrinsic and reflexive muscle properties with
configuration of the arm, measurements were made at three different hand loca-
tions in the horizontal workspace at the vertical level of the gleno-humeral joint.
All locations were 0.4 m anterior to the acromion. The left position (Left) was 0.2
m to the left of the acromion, the central position (Central) in front of the acromion
and the right position (Right) 0.2 m tot the right of the acromion. Due to kinematic
redundancy the hand position could be attained by many different combinations
of joint angles. However, all subjects chose an arm orientation where the wrist an-
gle was at ± 15 degrees extension. The wrist angle was read from a goniometer
at several instants during the experiments. Limb lengths were measured by a tape
measure as the distance between corresponding joint rotation centers. The position
of the gleno-humeral joint in the horizontal plane was measured in manipulator
coordinates such that the shoulder and elbow angles were calculated from the mea-
sured handle position, limb lengths and known wrist angle. Table 7.1 showes the
joint angles corresponding to the three endpoint positions for each subject.

For all trials, the force disturbance contained power at frequencies between 0.06
to 20 Hz and was designed as a sum of sinusoids with equal amplitudes and mu-
tually random phase shifts to prevent any anticipation (Van der Helm et al., 2002).
Figure 7.2 shows an example of the autospectrum and a time sample of the force
disturbance. In each position, the following experimental conditions were applied:
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Figure 7.2: Example of the force disturbance signal used in this study. Left: au-

tospectrum. Right: 4 second time sample.

• Different hand displacement amplitudes to test on the existence of nonlinear
behavior that might be the result of underlying neuromuscular properties.
The power of the force disturbance was adjusted such that hand displace-
ments in either the x- or y-direction had a root-mean-square (RMS) value of 4
mm, 5.5 mm and 7 mm.

• Different viscosity fields to test if the CNS takes advantage of increased sta-
bility margins at the endpoint. For each displacement the external damping
of the environment, Be, was assigned four different values, being 0, 50, 100
and 150 Ns/m (isotropic field).

In total, the number of conditions equals 36 (3 positions, 3 hand displacements,
4 damping fields). Each condition was repeated four times to evaluate the con-
sistency of the estimated model parameters, giving a total number of 144 trials.
Each trial lasted 20 s, of which the first 4 seconds were omitted from the analysis
to exclude any responses from start-up transients. The remaining 16 seconds (210

samples at 62.5 Hz) of each signal was used for further processing.
Subjects were given a clear position task by the instruction to minimize their

hand displacements as good as possible. To assist the subject in performing the
task, the reference position was visualized on a monitor screen 65 cm in front of the
subject, by means of a 3 cm diameter circle inside which the subject had to keep
a smaller (0.5 cm diameter) filled circle representing the actual hand position. The
force perturbation always started after the subject had positioned his or her hand
in the center of the reference circles.

Before the trials were recorded, each condition was applied once to obtain the
appropriate magnitude of the handle displacements by adjusting the power of the
force disturbance. The power was equal in both directions and increased by small
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Table 7.2: RMS values of the handle displacements in the x-direction, averaged

over 16 trials (four different external damping values and four repetitions). Target

values were 4 mm, 5.5 mm, 7 mm (RMS). The figures only show the values for the

x-component because the displacements were largest in this direction in all cases.

Subject Hand displacements in the x-direction (mm RMS)
Left Central Right

RMS 4 5.5 7 4 5.5 7 4 5.5 7

1 3.7 5.3 6.2 4.1 4.7 6.9 4.2 5.2 6.8
2 4.3 5.3 7.1 4.0 6.2 8.8 4.2 5.4 7.3
3 3.8 5.1 6.4 3.9 5.4 6.4 3.9 5.7 6.3
4 3.7 4.9 6.6 3.8 5.5 7.2 3.4 5.2 6.3
5 3.6 5.1 6.8 3.7 5.6 7.1 3.4 4.9 6.8
mean 3.8 5.1 6.6 3.9 5.5 7.3 3.8 5.3 6.7

steps until the appropriate RMS value was obtained. These trials were also used
to make the subjects familiar with the experiment and were not used for further
analyses. Table 7.2 gives the final RMS values of the displacements for all trials and
all subjects. The figures only show the values for the x-component of the displace-
ment because the RMS value was largest in this direction in all cases. On average,
the measured RMS values corresponded well to the intended values.

7.2.2 Identification and parameter estimation

Endpoint arm admittance is the transfer function describing the dynamic relation-
ship between hand force and hand displacement, and captures all underlying mech-
anisms that contribute to this relationship, such as intrinsic and reflexive muscle
properties and inertia of the segments. The goal was first to identify the horizontal
plane arm admittance at endpoint level from measurements in two horizontal di-
rections. Secondly, model parameters describing the NMS properties constituting
the arm admittance on joint level, were estimated from the identified endpoint ad-
mittance. This two step estimation procedure is described in the following sections.

Parametric identification of the arm admittance

As the first step, a parametric description of the arm admittance is to be quanti-
fied without using any a-priori knowledge of the neuromuscular system. This was
achieved by using a time domain identification method based on linear ARX mod-
els. This method uses open-loop system descriptions which can easily be derived
from the blockscheme in Figure 7.3.

The first open-loop system equation is derived by expressing the output X(t) as
a function the inputs D(t) and N(t):

X(t) = H(q−1)(N(t) + D(t)) − H(q−1)E(q−1)X(t)

= (I + H(q−1)E(q−1))−1H(q−1)D(t) + (I + H(q−1)E(q−1))−1H(q−1)N(t)(7.1)
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Figure 7.3: Linear closed loop system configuration of the human arm interact-

ing with the environment. The human arm is modelled as an admittance (H) and

consequently the environment is modelled as an impedance (E). The system is ex-

cited by the external force disturbance (D(t)) and a noise source (N(t)). The latter

representing any contributions from muscle forces that are not correlated with the

external force disturbance and also any model remnant due to linearization. The

measured variables are the hand force F (t), the hand displacement X(t) and the

external force disturbance. Xref ≡ 0 mimics the posture task, i.e. minimize hand

displacements.

By using the following algebraic property:

(I + H(q−1)E(q−1))−1H(q−1) = H(q−1)(I + E(q−1)H(q−1))−1

Eq. (7.1) becomes:

X(t) = H(q−1)(I + E(q−1)H(q−1))−1D(t) + H(q−1)(I + E(q−1)H(q−1))−1N(t)

= H(q−1)S(q−1)D(t) + H(q−1)S(q−1)N(t) (7.2)

with S(q−1) = (I + E(q−1)H(q−1))−1. Common notation for discrete systems is
adopted with q the backward shift operator such that q−1X(t) = X(t − ∆t).

The second open-loop system equation is derived by expressing the input F (t)
of the arm admittance as a function of the inputs:

F (t) = (I + E(q−1)H(q−1))−1D(t) + (I + E(q−1)H(q−1))−1E(q−1)H(q−1)N(t)

= S(q−1)D(t) + S(q−1)E(q−1)H(q−1)N(t) (7.3)

Rearranging Eqs (7.2) and (7.3) gives:

S(q−1)−1H(q−1)−1X(t) = D(t) + N(t) (7.4)

H(q−1)−1E(q−1)−1S(q−1)−1F (t) = H(q−1)−1E(q−1)−1D(t) + N(t) (7.5)

Equations (7.4) and (7.5) are structured in the ARX format:

A(q−1, θ)y(t) = B(q−1, θ)u(t − nk) + e(t) (7.6)
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with

A(q−1, θ) = 1 + a1q
−1 + a2q

−2 + . . . + anaq−na

B(q−1, θ) = b0 + b1q
−1 + b2q

−2 + . . . + bnb−1q
−nb+1

and θ the parameter vector:

θ := [a1 a2 . . . ana b0 b1 . . . bnb−1]
T

A(q−1, θ)y(t) is the AutoRegressive part, B(q−1, θ)u(t) the eXogenous part and e(t)
an additional noise term that has no linear relationship with u(t). Any delay from
the input to the output is modelled by nk. The only source of delay in this study
comes from one sample and hold execution in the discrete controller of the ma-
nipulator, which operates at 1kHz. Such a small delay completely vanishes for the
signals at 62.5 Hz sample frequency as used in the analysis. Therefore, with nk = 0
the best predictions were obtained. The total number of model parameters is the
sum of na and nb, representing the orders of the A and B polynomials respectively.

In terms of the ARX structure, Eqs (7.4) and (7.5) become:

Ax(q−1, θx)X(t) = Bx(q−1, θx)D(t) + N(t) (7.7)

Af (q−1, θf )F (t) = Bf (q−1, θf )D(t) + N(t) (7.8)

with

Ax(q−1, θx) = S(q−1)−1H(q−1)−1 (7.9)

Bx(q−1, θx) = 1 (7.10)

Af (q−1, θf ) = H(q−1)−1E(q−1)−1S(q−1)−1 (7.11)

Bf (q−1, θf ) = H(q−1)−1E(q−1)−1 (7.12)

The one step ahead prediction, X̂(t) and F̂ (t) follow from Eqs (7.7) and (7.8):

X̂(t|t − ∆t) = Bx(q−1, θ̂x)D(t) + (1 − Ax(q−1, θ̂x))X(t) (7.13)

F̂ (t|t − ∆t) = Bf (q−1, θ̂f )D(t) + (1 − Af (q−1, θ̂f ))F (t) (7.14)

The goal is to find parameter vectors that minimize the quadratic criterion func-
tions:

Vx,N (θ̂x, ZN
x ) =

1

N

N
∑

t=1

[X(t) − X̂(t|t − 1)]2 (7.15)

Vf,N (θ̂f , ZN
f ) =

1

N

N
∑

t=1

[F (t) − F̂ (t|t − 1)]2 (7.16)

with Vx,N and Vf,N the quadratic functions of prediction errors, N the number of

time samples (in this study N = 210), θ̂x and θ̂f the estimated parameter vectors,
ZN

x = [D(t) X(t)] and ZN
f = [D(t) F (t)] the measured data sets.
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Since the ARX model structure is linear in its parameters, the solution to this
problem is found analytically, which immediately shows the great advantage of

ARX models. For the optimal number of parameters of θ̂x and θ̂f , it can be proven
that the residual of the prediction error is uncorrelated with the external input, i.e.
the force disturbance D(t) in this case (Ljung, 1999).

To prevent overfitting of the model, the smallest number of parameters for θ̂x

and θ̂f should be found. Such a minimal parameter set is determined by trading-off
the prediction error with the number of model parameters Nθx

(Nθf
). An effective

and commonly used criterion for this purpose is Akaikes Final Prediction Error
Criterion (FPE) (Ljung, 1999), which in this case are:

FPEx =
1 + Nθx

/N

1 − Nθx
/N

Vx,N (θ̂x,N , ZN
x ) (7.17)

FPEf =
1 + Nθf

/N

1 − Nθf
/N

Vf,N (θ̂f,N , ZN
f ) (7.18)

with Vx,N (θ̂x,N , ZN
x ) and Vf,N (θ̂f,N , ZN

f ) the quadratic criterion functions Eqs (7.15)
and (7.16) respectively.

Once a minimal model order is found, an accurate estimation of the arm admit-
tance H(q−1) is obtained from Eqs (7.9)-(7.12), according to:

Ax(q−1, θx)−1 = Ĥ(q−1)Ŝ(q−1)

Af (q−1, θf )−1Bf (q−1, θf ) = Ŝ(q−1)Ê(q−1)Ĥ(q−1)Ĥ(q−1)−1Ê(q−1)−1 = Ŝ(q−1)

such that

Ax(q−1, θx)−1(Af (q−1, θf )−1Bf (q−1, θf ))−1 = Ĥ(q−1)Ŝ(q−1)Ŝ(q−1) = Ĥ(q−1)

(7.19)

where Ĥ(q−1) is the estimate of the endpoint admittance.

Parameter estimation

The parameters in the estimate (Eq. 7.19) do not have any physical meaning to
underlying neuromuscular properties. Therefore, a physical model of the arm ad-
mittance containing all relevant NMS properties is fitted onto the estimated arm

admittance Ĥ(q−1). Similarly to the parametric identification, the NMS model pa-
rameters have to be estimated by minimization of the quadratic error criterion
W (n∆f, p) in the frequency domain:

W (n∆f, p) =

n2
∑

n=n1

1

(1 + n∆f)
log(|Ĥ(n∆f) − Hmod(n∆f, p)|)2 (7.20)

where n∆f is the discrete frequency in Hz (∆f = 1
T

, T the observation period)
with n1 = 1 and n2 = 327 (i.e. n2∆f = 327/16.4 ≈ 20 Hz), Hmod(n∆f, p) the
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frequency response function of the arm model (Eq. E.26 without the environment)
and p is the parameter vector of the model. The estimated multivariable frequency

response function (MFRF) of the admittance Ĥ(q−1) is obtained by substitution of
q = ej2π∆f . Equation 7.20 is solved numerically using a nonlinear least squares
algorithm.

A valuable measure for the accuracy of the estimates is the variance of the pa-
rameter distribution (Ljung, 1999):

Var{p̂} = diag[(JT
p Jp)

−1]
W (n∆f, p)T W (n∆f, p)

N3
(7.21)

with Jp the Jacobian containing the gradients of the prediction error W (n∆f, p), i.e.
first derivatives to the parameter vector p. Both Jp and W (n∆f, p) are evaluated N
times, such that the Jacobians have N rows and as much columns as there are pa-
rameters. By taking the diagonal of the first term on the right hand side in Eq. (7.21),
only the variances of the parameters are obtained excluding the covariance parts.
From Eq. (7.21) it follows that the accuracy of a certain parameter is related to how
sensitive the prediction error is with respect to this parameter. Clearly, the more a
parameter affects the prediction the easier it will be to determine its value. Gen-
erally, parameters that have little contribution to the prediction error will result in
correspondingly larger variances.

To obtain an overall validity index for the parametrized models (ARX and arm
model), the variance accounted for (VAF) were determined. First, the VAF of the
ARX model is obtained by comparison of the predicted and the measured endpoint
position, according to:

VAFarx = 1 −
∑N

n=1

∣

∣

∣
Xh(tn) − X̂h,arx(tn)

∣

∣

∣

2

∑N
n=1 |Xh(tn)|2

with X̂h,arx(tn) the predicted position and Xh(tn) the measured endpoint position

(n indexes the time samples). The predicted position X̂(tn) is obtained by simulat-

ing the ARX model of the total system of arm plus environment Ĥ(q−1)Ŝ(q−1) by
simulation of Eq. (7.13) using the corresponding experimental disturbances D(t) as
the input signal. The VAFarx value gives an indication of how well the ARX model
describes the endpoint position. A value of 100 % means that the model fully de-
scribes the measured system response and is equal to the real system. Lower val-
ues indicate to either a bad model fit or to the existence of noise. Bad model fits
were not likely since the optimal model was selected from a wide range of differ-
ent model structures. Validation of this assumption was confirmed by the fact that
the autospectra of the prediction errors were white noise processes (not shown).
Therefore, the VAFarx values are a measure of the linear deterministic part in the
recorded signals for which the ARX models gave perfect fits.

VAF values of the arm model (VAFarm) were obtained from the following equa-
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tion:

VAFarm = 1 −
∑N

n=1

∣

∣

∣
Xh,arx(tn) − X̂h,arm(tn)

∣

∣

∣

2

∑N
n=1 |Xh,arx(tn)|2

(7.22)

In this expression, the predicted endpoint position X̂h,arm(tn) of the NMS arm-
environment model is compared to that of the linear ARX model. To obtain the

hand position X̂h,arm(tn), the corresponding values of the environmental mass
(Menv) and damping (Benv) were included in the model. The usage of the ARX
model prediction instead of the measured position in Eq. (7.22) is logical since the
linear arm model is only capable of describing that part in the response that is lin-
early related to the input, which was just obtained by the ARX model. As the result,
VAFarm is a direct indication of the goodness of the parametrized linear arm model.
VAFarm values are reduced by inaccurate parameter estimates, that in turn can be
the consequence of bad model structures that do not correspond properly to the
real system or from inaccuracy of the parameter estimation method of the NMS
model.

3-DOF neuromusculoskeletal arm model

To describe the dynamic NMS properties of the human arm, a three-DOF model
is developed at the joint level. Muscle properties appear as lumped quantities in
joint coordinates. Note that all dynamic joint properties of the human arm are de-
scribed in a 3×3 matrix structure and that all dynamic properties of the (Cartesian)
environment are described in a 2 × 2 matrix format.

Essential to the model structure is that properties of single- and two-joint mus-
cles are included. For the intrinsic properties this means that visco-elasticity of
single-joint muscles of the shoulder, elbow and wrist joints are modelled. For the
reflexive part, only autoreflexes (reflex action from the same muscle) are modelled.
Both intrinsic and reflexive properties are taken equal for those two-joint muscles
that operate in antagonistic pairs.

The model is structured into a state-space form, i.e. implicitly expressed as a
function of the complex Laplace operator s = j2π∆f to facilitate direct evaluation
in the frequency domain. Figure 7.4 shows a blockscheme of the NMS arm model.
Appendix E gives the matrix and vector structures of all system properties and sig-
nals and the derivation of the total input-output transfer function. The subsystems
that are used in the model derivation are briefly described below.

The arm inertia I comprises the segmental masses in their configurational re-
lationships. Intrinsic muscle visco-elasticity is represented by the feedback system
Hint(s):

Hint(s) = Bs + K (7.23)

with B the intrinsic muscle viscosity and K the intrinsic muscle elasticity.
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Figure 7.4: Linear model of the arm admittance in connection with the environment.

See Text and Appendix E for explanation of the subsystems. Recorded signals: ex-

ternal force disturbance (D); hand force (F ), handle displacement (X) and muscle

activation by EMG (A). J is the Jacobian that maps joint coordinates to endpoint

coordinates. Xhand is the position of the subject’s hand and Tex the external joint

torque due to the hand force. The leftmost summation point represents the affer-

ent signal processing at the motoneuron pool. During the experiments in this study

supraspinal control (U ) is not relevant and is modelled as a constant (zero) input,

mimicing the task instruction.

Muscle spindle sensor dynamics are described by position (KP ), velocity (KV )
and acceleration (KA) feedback gains, according to:

Hspindle(s) = KAs2 + KV s + KP (7.24)

Golgi tendon organs provide feedback information of muscle force that in con-
trast to afferent information from the muscle spindles has an inhibitory effect onto
the alpha motoneurons. Hence the minus sign at the leftmost summation point
(Fig. 7.4). The golgi feedback model equals:

Hgolgi = Kg (7.25)

Note that this model includes no dynamics but only a static gain.
The neural delay involved from signal transport from the muscle to the alpha

motoneuron and back to the muscle is described by a third order Pade approxi-
mation. There are only three time delays included in the model, one for each joint.
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This means that the delay of reflex arcs of two-joint muscles are assumed to be equal
to their corresponding single-joint reflex arcs. For instance, the reflex delay of the
shoulder-to-elbow muscle is the same as that of the single-joint shoulder muscles.

Muscle activation dynamics represent the process from neural excitation to mus-
cle force build-up, which is mainly determined by the calcium in and outflow of
the sarcoplasmatic reticulum (Chapter 1). This process is modelled as a critically
damped second order (Butterworth) filter having the cut-off frequency as its only
parameter. Critically damped second order models were proved to described the
activation dynamics accurately (Schouten et al., 2003c).

Movement of the fingers and visco-elasticity of the hand tissues are modelled
by the hand dynamics:

Hhand = BHs + KH (7.26)

with BH the viscosity and KH the elasticity of the handgrip. Due to the hand dy-
namics, the measured handle displacement X is not identical to the hand displace-
ment Xhand (see Fig. 7.4). Because hand stiffness appeared to be very large (see
Results), hand displacement is used in the remainder of the text to refer to both
handle and hand displacements (i.e. not for the analysis).

Separated by the hand visco-elasticity, the environment acts in parallel to the
arm, which is modelled by:

Henv(s) = MEs2 + BEs + KE (7.27)

where KE = 0 (Nm/rad) and ME = 3 (kg) at all cases (isotropic, i.e. with equal
diagonal terms only).

Table 7.3 summarizes all model parameters to be estimated in this study.

The mapping from angular rotations to endpoint displacements is determined
by the Jacobian, according to:

∂X = J∂Θ

with J the Jacobian (see Appendix E, Eq. E.23). The Jacobian also transforms forces
into joint torques, according to:

τe = JT F

where T denotes the transposed.

7.3 Results

7.3.1 Identification and parameter estimation

Figure 7.5 shows the optimal number of model parameters for both ARX models
(Eqs (7.7) and (7.8)) as obtained from the FPE criteria (Eqs (7.17) and (7.18)). The
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Table 7.3: Model parameters to be estimated. The following subscripts refer to the

mono- and bi-articular joints: s, from shoulder rotation to shoulder torque; se, from

shoulder to elbow; es from elbow to shoulder; e, from elbow to elbow; ew, from

elbow to wrist; we, from wrist to elbow and w, from wrist to wrist.

nr Parameter Unit nr Parameter Unit

Segmental Mass Acceleration feedback (spindles)
1 mhume kg 16 kas Nms2/rad
2 mfore ” 17 kase(= kaes) ”
3 mhand ” 18 kae ”
Viscosity 19 kaew(= kawe) ”
4 bs Nms/rad 20 kaw ”
5 bse(= bes) ” Velocity feedback (spindles)
6 be ” 21 kvs Nms/rad
7 bew(= bwe) ” 22 kvse(= kves) ”
8 bw ” 23 kve ”
Elasticity 24 kvew(= kvwe) ”
9 ks Nm/rad 25 kvw ”
10 kse(= kes) ” Position feedback (spindles)
11 ke ” 26 kps Nm/rad
12 kew(= kwe) ” 27 kpse(= kpes) ”
13 kw ” 28 kpe ”
Hand Visco-elasticity (2 × 2 matrices) 29 kpew(= kpwe) ”
14 Bh Ns/m 30 kpw ”
15 Kh N/m Force feedback (golgi)

31 kfs -
32 kfse(= kfes) -
33 kfe -
34 kfew(= kfwe) -
35 kfw -
Activation cut-off frequency
36 fs Hz
37 fe ”
38 fw ”
Neural time delay
39 Tds ms
40 Tde ”
41 Tdw ”

number of parameters corresponding to the best fits were na=22 and nb=10 for
the ARX model of the system H(q−1)S(q−1) and na=21 and nb=15 for the ARX
model of the system S(q−1). The total number of model parameters of the latter
system showed a clear convergence to the best one whereas convergence was less
pronounced for the former system. There was a clear trend towards the optimal
model structures. E.g. the number of parameters [na, nb] of the ten best models
varied in the ranges [22 − 26, 10 − 16] and [19 − 22, 14 − 17] for H(q−1)S(q−1) and
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Figure 7.5: Akaikes Final Prediction Error Criterion (FPE) for a range of different

ARX models (Eqs (7.7) and (7.8)). For this trial (Subject 1, displacement 4 mm

(RMS), damping 50 Ns/m, repetition (a)) the optimal number of parameters is indi-

cated by circles and equals 32 for H(q−1)S(q−1) and 36 for S(q−1), with [na, nb] is

[22, 10] and [21, 15] respectively.

S(q−1) respectively.

To validate if the estimated admittance indeed gives a good representation of
the input-output behavior, the nonparametric estimate is used for comparison (De
Vlugt et al., 2003a). Because nonparametric estimators do not separate signals from
noise on a structural basis as do ARX models, their estimates contain substan-
tial variance. Comparison is therefore rather crude but gives a direct indication
whether the main characteristics are reasonably described by the parametric esti-
mates. Figure 7.6 shows an example of the estimated endpoint MFRFs of the arm
admittance (gain and phase characteristics) as obtained by parametric ARX mod-
els (black lines) and by nonparametric estimation (gray lines) for a typical condi-
tion. The latter is only used for validation of the global frequency characteristics.
The nonparametric estimate is traced by the parametric estimate. The parametric
estimate is smooth and exhibits subtle changes more pronounced than the non-
parametric estimate. At the lowest frequency the admittance is high for all separate
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Table 7.4: Estimated ’invariant’ model parameters (mean (SD)) for all subjects: seg-

mental mass (mhume, mfore, mhand), handgrip visco-elasticity (bh, kh), neural time

delay (Tds, Tde, Tdw) and activation cut-off frequency (fact,s, fact,e, fact,w).

Parameter Value (mean (SD))
Subject 1 2 3 4 5

mhume [kg] 1.96 (0.295) 1.88 (0.397) 1.78 (0.262) 1.86 (0.388) 2.17 (0.332)
mfore [kg] 1.13 (0.240) 1.19 (0.154) 1.08 (0.148) 1.27 (0.171) 1.18 (0.202)
mhand [kg] 0.496 (0.0976) 0.363 (0.0628) 0.425 (0.0885) 0.546 (0.0483) 0.384 (0.0883)

bh [Ns/m] 157 (66.7) 184 (66.1) 194 (101) 167 (74.9) 214 (109)
kh [kN/m] 7.39 (3.09) 6.46 (2.03) 8.06 (2.53) 13.3 (4.27) 8.28 (4.47)

Tds [ms] 30.4 (2.48) 29.4 (3.17) 28.6 (2.71) 30.7 (2.42) 29.7 (3.51)
Tde [ms] 34.2 (3.11) 32.7 (2.89) 34.1 (2.80) 33.4 (2.61) 32.0 (1.80)
Tdw [ms] 40.4 (3.00) 37.7 (1.89) 37.6 (1.54) 41.4 (2.13) 39.8 (2.68)

fact,s [Hz] 1.98 (0.0842) 2.11 (0.139) 2.15 (0.164) 1.99 (0.116) 2.08 (0.145)
fact,e [Hz] 2.17 (0.176) 2.30 (0.101) 2.28 (0.107) 2.35 (0.102) 2.26 (0.136)
fact,w [Hz] 2.11 (0.175) 2.21 (0.132) 2.19 (0.140) 2.13 (0.147) 2.09 (0.171)

frequency response functions (FRFs), i.e. all combinations of inputs and outputs.
For medium frequencies between 1 and 10 Hz pronounced peaks and troughs were
present. The gains decreased clearly with higher frequencies beyond 10 Hz while
the phase increased or decreased to approximately 180 or -180 degrees respectively.

A typical result of the NMS model fit onto the estimated parametric ARX model
is shown in Figure 7.7. Clear variations of the FRFs from the ARX model (gray lines)
were very well approximated by the NMS arm model (black lines) for both phase
and gain responses of all four FRFs. Comparable fits were obtained for all other
conditions and subjects.

7.3.2 Estimated joint parameters

The parameters that can be regarded as invariant are the segmental mass, the neural
delay and the activation cut-off frequency as shown in Table 7.4. Over all subjects
and all conditions applied, the estimated values of the mass showed a standard
deviation varying from 10-20% of the corresponding mean values. The estimated
hand visco-elastic parameters showed the largest variation (30-60%) while the es-
timated time constants and activation cut-off frequency had the smallest variation
(5-8%). As was expected, the mass of the segments decreases with their distance to
the shoulder joint. The neural time delay was largest for the wrist joint and smallest
for the shoulder joint, as was expected from the increase in nerve fiber length with
distality of the joint. The activation cut-off frequency of the elbow joint muscles
varied in the range of 2.17-2.35 Hz for all subjects and was 0.15 and 0.3 Hz higher
than those of the wrist and shoulder joint respectively. Hand grip visco-elasticity
varied substantially over the conditions. These parameters were also shown sepa-
rately by Table 7.4 because they do not result from direct control of arm muscles, as
do the intrinsic and reflexive parameters, but mainly relate to tension of the finger
muscles.

The estimated intrinsic and reflexive parameters are shown in Figure 7.8 and



176 CHAPTER 7

10
−5

10
−3

10
−1

G
a
in

 [
N

/m
]

Human Arm Admittance

H
xx

10
−5

10
−3

10
−1

G
a
in

 [
N

/m
]

H
xy

−180

0

180

360

P
h
a
s
e
 [
d
e
g
.]

−180

0

180

360
P

h
a
s
e
 [
d
e
g
.]

10
−5

10
−3

10
−1

G
a
in

 [
N

/m
]

H
yx

10
−5

10
−3

10
−1

G
a
in

 [
N

/m
]

H
yy

10
0

−180

0

180

360

P
h
a
s
e
 [
d
e
g
.]

Frequency [Hz]
10

0
−180

0

180

360

P
h
a
s
e
 [
d
e
g
.]

Frequency [Hz]

Figure 7.6: Gain and phase characteristics of the estimated arm admittance ob-

tained from ARX models (black lines) and from nonparametric spectral estimation

(grey lines). The latter is used only for global judgement of the ARX model estimate.

Subject 2, Left position, Be=50 Ns/m, X=4 mm (RMS), repetition (a).
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Figure 7.7: Gain and phase characteristics of the NMS arm model (black lines) after

parametrization by fitting onto the corresponding ARX model (grey lines). Subject

2, Central Position, Be=0 Ns/m, X=5.5 mm (RMS), repetition (a).
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grouped by subject (columns) and hand position (gray scales) for all joint combi-
nations (abscissa). In general, the parameters (intrinsic and reflexive) did not vary
consistently with any of the experimental conditions applied, which was rather sur-
prising. Correlation tests (not shown) proved there was no significant relation be-
tween parameters and conditions. Also, the estimated MFRFs did not show a clear
trend with the conditions applied. There was some increase of the intrinsic param-
eter values with position from the Left to the Right (upper two rows in Figure 7.8).
The velocity feedback gains KV for the shoulder joint and the shoulder-to-elbow
joint (s and se) showed the largest variation with position, especially for Subject 3.
These gains were highest in the Left position and lowest in the Right position.

Intrinsic parameters

With respect to the different joints, large difference in the parameters existed. In-
trinsic stiffness and damping from the elbow joint was larger (factor 2 or 3) than
for the shoulder joint (upper two rows). Elbow joint damping was in the range
of 1-2 Nms/rad against 0.5-1 Nms/rad for the shoulder joint, as an average over
all subjects. The estimated intrinsic damping and stiffness covaried clearly in all
cases. Intrinsic damping and stiffness were smallest for the wrist joint, varying in
the range of 0.15-0.25 Nms/rad and 5-15 Nm/rad respectively. Compared to the
single joints, two-joint damping and stiffness was generally smaller.

To check if any variation in the intrinsic parameters was due to changes in mean
muscle activation levels, the mean and standard deviation of the EMG of each mus-
cle was taken, see Table 7.5. For mutual comparison of the muscles, EMG was nor-
malized to the values corresponding to the Central position. Mean values did not
substantially change and also the standard deviation was small (0.06-0.14) for the
muscles acting on the elbow and wrist joint. The triceps (longhead), the deltoideus
anterior and posterior muscles showed the largest fluctuations of the mean EMG.
Correlation tests did not show significant relationship between mean EMG and any
estimated parameter (not shown).

Reflexive parameters

The differences of intrinsic parameters between the joints were also found from the
reflexive parameters, albeit less pronounced. Acceleration feedback (KA) showed
comparable values between the shoulder and elbow joints. Velocity feedback gains
(KV ) exhibited a pronounced decrease from proximal to distal joints. Markedly,
velocity feedback exceeded the intrinsic damping by a factor 10 to 15. The ratio
between intrinsic damping and reflexive velocity feedback gain was largest for the
shoulder joint. For the wrist joint the velocity feedback gains varied between 0.5-
2.25, which is 2 to 10 times larger than the corresponding single joint damping.
Position feedback (KP ) was largest for the shoulder joint for almost all subjects.
In contrast to the acceleration and velocity feedback gains, position feedback gain
of the wrist joint was equal to or even higher than the position feedback gain of
the elbow joint. The difference between two-joint and single joint position feedback
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Table 7.5: Mean and standard deviation (SD) of normalized EMG (with respect to

the values of the Central position) for all muscles. EMG recordings from subjects

1 and 2 were corrupted by large peaks that resulted from cross-talk at the termi-

nals of the analoguous-to-digital computer board. Hence, these recordings were

not reliable and were therefore excluded from this study.

Muscle EMG (mean (SD))
Subject 3 4 5

flex.carpi.rad. 0.950 (0.138) 0.956 (0.111) 0.918 (0.117)
ext.carpi.rad. 1.00 (0.0901) 0.918 (0.0625) 0.948 (0.119)
brachio rad. 0.942 (0.168) 0.896 (0.079) 0.932 (0.104)
biceps (short) 1.01 (0.139) 0.994 (0.117) 0.869 (0.142)
triceps lat. 0.933 (0.134) 0.928 (0.107) 0.967 (0.114)
triceps (long) 1.080 (0.229) 1.11 (0.303) 0.895 (0.140)
deltoid.ant. 0.983 (0.270) 0.923 (0.149) 0.950 (0.141)
deltoid.post. 0.929 (0.230) 0.963 (0.108) 1.08 (0.166)

was relatively small for the Left and Central positions compared to the Right posi-
tion. Force feedback gains (KG) varied the most with the conditions and therefore
showed the largest standard deviation (Fig. 7.8, bottom row). For the shoulder joint
the average value over all subjects was approximately 0.15 which is comparable
to those for the single- and two-joints of the wrist. The force feedback gains of the
elbow had values of about 0.3 and were the largest.

Parameter accuracy

Figure 7.9 shows the standard deviation of the mean estimated parameter values
(square root of the variance, Eq. 7.21). The values are averages over all experimen-
tal conditions and all subjects (dots). Because large variations existed a logarith-
mic scale on the ordinate is used. The force feedback gain of the wrist joint (KG,w)
showed the largest deviation of 10−0.7, which means that this parameter was ob-
tained with a deviation of approximately 0.2. With respect to its mean values of
0.3 (Fig. 7.8), this parameter was not accurately estimated. The majority of the pa-
rameters showed a standard deviation between 10−1.5 to 10−2.5 (≈ 0.03 to 0.003).
This range of accuracy applied the ’adjustable’ intrinsic and reflexive parameters.
Markedly, the stiffness and damping of the elbow joint had a relatively small stan-
dard deviation compared to the the other joints. The ’invariant’ parameters listed
in Table 7.4 exhibited the smallest standard deviation. Particularly, the estimates of
the time delays and the activation cut-off frequency had standard deviation smaller
than 10−3.

The ARX models were able to describe the measured endpoint position rather
good, as shown by the VAFarx values which were higher than 70% over the condi-
tions (Figure 7.10, dashed lines). The values used for the external (linear) damping
were high compared to those of the human arm at endpoint and therefore had large
effect on the overall system behavior. Consequently, the VAFarx values strongly de-
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pended on the external damping, which therefore was used on the abscissa. The de-
scriptive ability of the NMS arm-environment model, compared to the ARX model
predictions, is shown by the VAFarm values in Figure 7.10 (solid lines). VAFarm val-
ues were higher than 60 % in the case the external damping was present. Without
external damping, values ranged from nearly 50 % to 70 %, which are slightly lower
than the values reported in a comparable 1-DOF study by Schouten et al. (2003c).

7.3.3 Role of single-joint muscles

Intrinsic and reflexive single joint properties are contributed from muscles acting
around that joint, i.e. single- and two-joint muscles. In contrast, intrinsic and re-
flexive two-joint properties are due only to muscles spanning both joints (Hogan,
1985a). To indicate this distinction, reference to joint and joint muscle has been
made (see also Appendix E, Eq. (E.1) for the matrix notation). The former refers to
joint properties contributed from both single- and two-joint muscles while the latter
refers to joint properties contributed by a particular muscle group. E.g. single-joint
shoulder stiffness originates from both single-joint shoulder muscles and two-joint
shoulder-elbow muscles. And so, single-joint shoulder muscle stiffness only refers
to the single-joint shoulder muscles. Using this additive relationship, the joint pa-
rameters shown in Figure 7.8 were converted to joint muscle parameters (Fig. 7.11).

Intrinsic muscle stiffness and damping of two-joint shoulder-elbow muscles is
generally larger (except for Subject 2) than that of single-joint shoulder muscles
and smaller than that of single-joint elbow muscles. This joint related characteris-
tics of intrinsic muscle properties accentuates the characteristics already present on
joint level (Figure 7.8). Different characteristics were found from the reflexive mus-
cle properties, particularly of velocity and length feedback. Feedback gains for the
single-joint shoulder muscles and two-joint shoulder-elbow muscles were of com-
parable size and larger than those for the single-joint elbow muscles. Acceleration
feedback was mainly due to two-joint shoulder-elbow muscles. Despite their rel-
atively large deviations, force feedback gains were higher for the two-joint elbow
wrist and single-joint wrist muscles than for the other shoulder and elbow muscle
groups.

7.3.4 Endpoint admittance

A clarifying way of expressing the functionality of the arm admittance at endpoint
level is by graphical display of admittance ellipses. In contrast to the often used
stiffness ellipse (i.e. at zero frequency of the endpoint impedance), admittance el-
lipses can be drawn at each (discrete) frequency and visualize the magnitude and
direction of endpoint displacements in response to external force disturbances. The
major axis of an admittance ellipse denotes the direction along which the endpoint
of the arm is least resistant to the external force, while the (orthogonal) minor axis
indicates the direction of largest resistance. The endpoint admittance can therefore
be characterized by the lengths of the major and minor axis respectively, or singular
values, and the orientation φ of the major axis. These properties can be obtained by
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singular value decomposition of the (complex valued) admittance matrix:

Ĥ(n∆f) = U(n∆f)Σ(n∆f)V T (n∆f) (7.28)

where Σ(n∆f) is a diagonal matrix containing the singular values and U(n∆f)
and V (n∆f) are unitary matrices containing the (orthogonal) eigenvectors of both

Ĥ(n∆f)Ĥ(n∆f)T and Ĥ(n∆f)T Ĥ(n∆f) respectively (Strang, 1998). The orienta-
tion of the major axis equals:

φ(n∆f) = tan−1

( |umax,y(n∆f)|
|umax,x(n∆f)|

]

where

U(n∆f) =

[

umax,x(n∆f) umin,x(n∆f)
umax,y(n∆f) umin,y(n∆f)

]

Admittance ellipses are displayed as rotating position vectors [x y]T in response to
a unit force vector generated by sin and cos functions, according to:

[

x
y

]

= R(n∆f)Σ(n∆f)

[

cos α
sinα

]

(7.29)

for 0 < α < 2π and R(n∆f) a rotation matrix:

R(n∆f) =

[

cos(φ(n∆f)) −sin(φ(n∆f))
sin(φ(n∆f)) cos(φ(n∆f))

]

Figure 7.12 shows the admittance ellipses for a typical subject at different fre-
quencies, from 0.1 to 5 Hz. The dark-lined ellipses correspond to the NMS arm
model using the estimated mean parameters as shown in Figure 7.8. The light gray-
lined ellipses correspond to the intrinsic NMS arm model, i.e. the reflexive param-
eters were set to zero. The shaded area illustrates the additional contribution of the
reflexes to the endpoint admittance. Characteristically, at low frequencies to 1.3 Hz
the major axis was larger by a factor 5-7 for the intrinsic model. In the orthogo-
nal direction the difference was much smaller. The direction of the ellipses hardly
changed due to reflexive feedback. The orientation of the ellipses changed with
position of the endpoint. At the Left position, the major axes had mean angles of
approximately 20 degrees (anticlockwise with respect to the frontal plane), and was
zero and -25 degrees at the Central and Right position respectively. Beyond 1.3 Hz,
the effect of reflexes diminished and the responses where mainly due to the inertial
properties.

7.4 Discussion

This study examined the intrinsic and reflexive muscle properties that constitute
the endpoint admittance of the human arm. Endpoint arm admittance is the dy-
namic relationship between an external force and the resulting hand displacement.
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corner.

Thus, it characterizes the sensitivity of the arm to disturbing forces and is a useful
property for studying the control properties of the CNS during position mainte-
nance tasks. The admittance can be changed by muscle contraction and adaptation
of spinal reflex gains. Both increase the apparent net joint damping and stiffness, i.e.
decreasing the admittance. Understanding how the intrinsic and reflexive proper-
ties are modulated by the CNS may provide insight into the functioning of human
posture control. Intrinsic and reflexive joint properties did not vary with external
damping and displacement amplitude. Apart from a moderate change with arm
configuration, these findings indicated that intrinsic and reflexive muscle proper-
ties were not modulated by the CNS to these external conditions applied.

Intrinsic damping and stiffness were largest for the elbow joint whereas velocity
feedback, and to a lesser extent also position feedback, was largest for the shoulder
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joint. Average muscle activation levels varied the most for the single-joint shoulder
muscles, suggesting that the usage of these muscles had a reduced efficiency com-
pared to the elbow and wrist muscles. The simulated hand displacements in the
horizontal plane were predicted accurately, validating the three DOF joint model.

7.4.1 Methodology

A basic requirement to study postural control is the usage of force disturbances.
Then, the hand position can be controlled by adjusting the visco-elastic properties
of muscles, either intrinsically or reflexively. To estimate the underlying intrinsic
and reflexive joint properties, the endpoint admittance was identified followed by
fitting of a NMS model onto the identified admittance. Because the force distur-
bances contained power over a wide bandwidth, a complete dynamic characteriza-
tion of the endpoint admittance was obtained in a relative short observation time.
The small standard deviation of the parameters with respect to their mean values
indicates the estimation method was accurate. High VAF values gave further sup-
port to the validity of the model structure and the estimated parameters.

The specific usage of ARX models for parametric identification of the arm dy-
namics has not been used previously. The ARX models were parametrized in the
time domain where each time derivative is represented by the shift operator, ex-
cluding the need for differentiating (or integrating) the time signals. Furthermore,
the discrete ARX model was converted into multivariable frequency response func-
tions that are perfectly suited for fitting the physiological NMS model.

Previous studies of multijoint arm properties have relied on transient (step or
pulse) perturbations that measured the state just before the onset of the perturba-
tion (Mussa-Ivaldi et al., 1985; Dolan et al., 1993; Tsuji et al., 1995; Gomi and Osu,
1998). A recent multijoint study by Perreault et al. (2001) used continuous posi-
tion perturbations while requiring subjects to maintain a constant force in different
directions. The results of that study showed that endpoint stiffness was primarily
due to single-joint muscles spanning the shoulder and elbow. Then, the question
arises what the functionality of endpoint stiffness is during the performance of a
force maintenance task? Just like the majority of the previously referred studies,
the results were not interpreted from a functional relationship between the distur-
bance type and the instructed task. Position perturbations require the performance
of force tasks which hardly give insight into the stabilizing or disturbance prop-
erties of the arm during natural posture maintenance tasks. For posture control, a
position task is evident which subsequently determines the requirement of force
disturbances. Visco-elastic properties do have direct effect on the task performance
and it is to investigate how these properties are controlled and what determines
the range of adaptation by the CNS. Furthermore, no attempt has been made previ-
ously to separate intrinsic from reflexive muscle properties for the multijoint case.
This study even reaches further by separating these properties for the multijoint
redundant case, reflecting natural arm functioning.
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7.4.2 Redundancy

Dynamic properties of the arm were studied in the horizontal plane as the result of
the shoulder, elbow and wrist joint dynamics such that kinematic redundancy ex-
isted. Since the parameters were found consistently and with reasonable accuracy,
redundancy was not an obstruction to the estimation procedure. This indicates that
the NMS arm model was realistic and that the task execution was repeatable. Initial
parameter values have been varied randomly by 50 % which had no effect on the
final solutions. Larger variations of the initial values often resulted in larger values
of the criterion functions, indicating to suboptimal local minima.

7.4.3 Intrinsic and reflexive joint parameters

High cocontraction levels were also reported in a comparable one DOF study by
Schouten et al. (2003c) yielding large intrinsic damping and stiffness at the hand
of 32 Ns/m and 380 N/m respectively. In that study, the hand moved in anterior-
posterior directions with the elbow at 90 degrees flexion (zero degrees elevation
of the humerus) such that only single-joint shoulder muscles contributed to the
endpoint admittance. Accounting for a mean humeral length of 0.3 m, these val-
ues correspond to a damping from the single-joint shoulder muscles of 32×0.32 ≈3
Nms/rad and a stiffness of 380×0.32 ≈34 Nm/rad, since joint stiffness and damp-
ing scale with the square of the moment arm. In the current study, mean estimated
values (over all subjects) of 0.4 Nms/rad and 2 Nm/rad were found for respectively
the single-joint damping and stiffness from the shoulder muscles (Fig. 7.11). These
values are a factor 10 to 15 smaller than those found by Schouten et al. (2003c).

An explanation for these differences might be the difference in moment arms of
shoulder muscles acting around the gleno-humeral joint. With respect to the arm
configuration as used in the study by Schouten et al. (2003c) (moments in the sagit-
tal plane), the moment arms in this study (moments in the horizontal plane) of the
posterior muscles were smaller by a factor 2-4 (Van der Helm, 1994) depending on
the hand position (Left, Central, Right). On the contrary, the moment arms of the
anterior muscles were larger by a factor 1-1.5. This implicates that the mean mus-
cle activation of the anterior muscles must be reduced by a factor 2 × 1 = 2 to
4 × 1.5 = 6 for static moment balance. Since joint stiffness scales with the square of
the muscle moment arm and approximately linearly with muscle force, this means
that the contribution to the shoulder joint stiffness from the anterior muscles is re-
duced by a factor 1

6 × 1.52 ≈ 0.37 at most. The total joint stiffness (from anterior
plus posterior muscles) was 1 + 1 = 2 and reduces to 0.37 + 1

42 = 0.44, which a
reduction by a factor 4.5. This comparison is worst case which is only 30%− 50% of
the difference with the 1-DOF study. Perhaps, the efficiency of the shoulder muscles
might also play a role in the control of muscle force. Because the moment arm of the
shoulder with respect to the hand was larger in the current study, the increase in
endpoint stiffness from an increase in shoulder joint stiffness is relatively smaller. If
performance is traded-off against metabolic energy, a possible reduction in the acti-
vation of shoulder muscles also explains part of the difference in intrinsic shoulder



Intrinsic and reflexive properties during a multi-joint posture task 189

visco-elasticity.

Overlapping conditions (force disturbances, external damping) were also used
to study rotational dynamics of the wrist joint by Schouten et al. (2003d). In that
study the estimated mechanical wrist properties originated from both single-joint
wrist and two-joint elbow-wrist muscles and therefore correspond to the single-
joint wrist parameters in this study (and not to the single-joint wrist muscle param-
eters). Mean damping and stiffness were 0.1 Nms/rad and 10 Nm/rad for the wrist
joint which are nearly the same as found in this study, being 0.15 Nm/rad and 11
Nm/rad respectively. The values found by Schouten et al. (2003d) were obtained
for high cocontraction levels, suggesting maximal values of the intrinsic wrist pa-
rameters in the present study.

In previous studies, elbow stiffness was found to range between 0-100 Nm/rad
(Perreault et al., 2001; Gomi and Osu, 1998), obtained from unilateral contractions
during a force maintenance task and without distinguishing between intrinsic and
reflexive contributions. The total elbow joint stiffness (intrinsic plus reflexive) found
here ranged from 35 Nm/rad to 70 Nm/rad, which is significantly lower even
while the elbow muscles in this study operated in cocontraction. Most likely, po-
sition tasks exhibit contraction levels that are the result from weighting muscu-
lar effort (∼ force) to performance (∼ position) in an efficient way comparing to
force tasks. Force tasks induce higher unilateral contraction levels that likely are
not weighted against effort since effort is similar to performance (i.e. the force task).
Large differences in mean EMG levels between position and force tasks were also
found by Abbink (2002).

Muscle spindles are known to increase their sensitivity to stretch with decreas-
ing stretch amplitude, as measured during imposed position perturbations (Stein
and Kearney, 1995; Cathers et al., 1999). The range of displacement amplitudes used
here overlapped to those used in previous multijoint studies (Tsuji et al., 1995; Gomi
and Osu, 1998; Perreault et al., 2001). Nonlinear effects due to displacement ampli-
tude were not observed in this study.

The reflex gains estimated were accompanied by neural time delays that cor-
respond to the monosynaptic Ia afferents (from muscle spindles) and disynaptic
Ib afferents (from golgi tendon organs). No significant differences were found be-
tween the estimated neural time delays with those from previous studies. For the
shoulder joint muscles the average time delay was 29 ms, where Schouten et al.
(2003c) found a mean value of 28 ms. The time delay of the wrist joint was 39 ms
which is comparable to the previously found value of 41 ms (Schouten et al., 2003d).

Acceleration feedback has not been identified in vivo before. Chen and Pop-
pele (1978) have found that muscle spindles in the anaesthetized cat exhibited an
increased responsiveness to increasing frequency of displacement. Their findings
correspond to an acceleration term in the transfer function of the spindle dynam-
ics similar to the gain included in the present spindle model. Acceleration feed-
back was substantially present for the two-joint shoulder-elbow muscles and con-
sequently for the corresponding single-joints. Acceleration feedback was assumed
here to describe the nonlinear effects from the unidirectional sensitivity of the mus-
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cle spindles. Kukreja et al. (2003) showed that linearization of an unidirectional
velocity sensitivity results in higher order terms including a pronounced accelera-
tion term. In a recent one DOF model study, the endpoint dynamics were estimated
from a nonlinear NMS model including unidirectional velocity sensitivity (Stienen
et al., 2003). An acceleration term was needed to describe the estimated behavior,
suggesting that acceleration feedback is an artifact of muscle spindle unidirection-
ality rather than a distinct sensory function. Assuming nonlinear spindle behavior
is indeed the cause of an acceleration feedback term, then slower rotational move-
ments of the shoulder joint compared to the elbow joint might as well be the reason
for the observed differences. The effect of acceleration feedback becomes important
at relatively high frequencies above ± 3 Hz where inertial effects also begin to dom-
inate. Therefore, acceleration feedback has less effect to the task performance than
velocity and position feedback.

The functionality of golgi tendon organs has been studied very scarcely. In fact,
the only known property is that golgi tendon organs provide feedback of the mus-
cle force with a rather linear characteristic (Houk and Henneman, 1966). Its con-
tribution is counterproductive to the mechanical joint resistance since it has an in-
hibitory effect on motoneurons and thereby decreasing muscular activation. Force
feedback gains were found for the two-joint and single-joint wrist muscles. Rozen-
daal (1997) showed by model simulations that force feedback increases the band-
width of the activation process such that the muscle responds faster to motoneuron
excitation. A possible role of Golgi tendon organs is to regulate hand contact forces
during force tasks. In that case, wide bandwidth force control is useful while the ad-
mittance does not have to be minimal but sufficient only to preserve contact (grip),
which is mainly performed by the distal joints.

The cut-off frequency of the shoulder muscles was 2.07 Hz, which is 0.1 Hz
lower than found by Schouten et al. (2003c). Bobet and Norman (1990) identified
the activation cut-off frequency of the elbow flexor and extensor muscles and found
values of 1.9-2.8 Hz against an average of 2.27 Hz found here. Notice the small stan-
dard deviations in these parameters as well as for the neural time delays, indicating
the accuracy of the parameter estimation.

7.4.4 Role of single-joint and two-joint muscles

Muscles need to be controlled to obtain the desired joint behavior taking into ac-
count that two-joint muscles operate on two different joints. Intrinsic stiffness and
damping from single-joint shoulder muscles was almost zero implicating that the
single-joint stiffness of the shoulder was contributed mainly from the two-joint
shoulder-elbow muscles. Apparently, the required position task did not appeal to
efficient usage of the shoulder muscles that is most likely because of the relatively
large moment arm from the gleno-humeral joint to the hand, as also noted in the
previous section. Apparently, large intrinsic muscle stiffness and damping (that is
directly related to metabolic effort) has a relatively smaller effect on endpoint per-
formance compared to the elbow and the wrist. Markedly, single-joint shoulder
position and velocity reflexes were substantial and compensate for the lack of in-
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trinsic shoulder stiffness and damping in an efficient way, since muscles are only
activated when stretched. For the two-joint shoulder-elbow and single-joint elbow
muscles, the ratios of intrinsic and reflexive properties were clearly different. Tak-
ing notice of these highly varying ratios, it appeared that the CNS adapted reflexive
feedback gains independently of the amount of mean muscle activation.

Two joint shoulder-elbow muscles also increase the elbow stiffness and damp-
ing, which were high already due to the single-joint elbow muscles themselves.
Compared to the single-joint shoulder muscles and two-joint shoulder-elbow mus-
cles the reflex gains of the single-joint elbow muscles were minimal.

On the joint level, the ratio of intrinsic stiffness to reflexive position feedback
was found to increase with distality of the joint. For the single-joint shoulder stiff-
ness and position feedback gain, mean values (all averaged over the subjects) were
12 and 28 Nm/rad respectively. For the two-joint elbow these values were 12 and
18 Nm/rad, and for the single-joint elbow these values were 32 and 23 Nm/rad re-
spectively. The total stiffness is thus 40, 30 and 55 Nm/rad for the single joint shoul-
der, the two-joint shoulder-elbow and the single-joint elbow respectively. Appar-
ently, two joint stiffness has a significant role during arm posture tasks. This result
is in contrast to the previous findings during force regulating tasks where two-joint
stiffness was minimal with respect to the corresponding single-joint shoulder and
elbow stiffness (Gomi and Osu, 1998; Perreault et al., 2001). An increased force pro-
duction (from EMG and motorunit activity) of two-joint arm muscles was found
during movement tasks compared to force tasks, for one sided contractions (Tax
et al., 1990; Van Bolhuis and Gielen, 1997; Van Groeningen and Erkelens, 1994).
These results indicate that two-joint muscles play a substantial role during pos-
ture maintenance. Rozendaal (1997) showed by model simulations that two-joint
shoulder-elbow muscles have large effect on the the size and orientation of the
endpoint stiffness ellipse. Because the two-joint biceps and triceps muscles also
generate joint torque around the elbow, these two-joint muscles play an important
role to suppress external force disturbances acting upon the hand under the present
conditions.

7.4.5 Endpoint admittance

The task instruction given to the subjects was to minimize their hand displace-
ments. A small endpoint admittance in both directions was therefore desired to
suppress the effect of the force disturbances. The results showed that the endpoint
admittance was elliptic with its largest gain in the direction that was approximately
perpendicular to the line connecting the shoulder joint with the hand. In previous
studies that measured the endpoint stiffness, the major axis was always directed to-
wards the shoulder (Mussa-Ivaldi et al., 1985; Gomi and Osu, 1998; Perreault et al.,
2001). This agrees with the admittance ellipses (for the lowest frequency) from this
study since stiffness is the static part of the impedance which on its turn is the in-
verse of the admittance. The main reason for the characteristic elliptic shape of the
endpoint admittance is the configuration of the arm. Since the admittance increases
with the square of the moment arm (from joint center to hand), the admittance of
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the shoulder joint has the largest effect on the endpoint.
In the previous single-joint studies by Schouten et al. (2003c) and De Vlugt et

al. (2002), external damping was used from the hypothesis that increased stability
margins of the combined arm-environment system at endpoint level facilitates the
usage of reflex gains to improve the task at lower frequencies. This hypothesis was
proven by their results, showing a clear decrease of endpoint admittance from in-
creasing position feedback gains. Such a phenomenon was not found in this study.
A possible explanation is that for the single-joint case the displacement of the end-
point was the direct result of single-joint shoulder muscles only. This is different
from the present redundant multiple-joint case where several muscle groups act on
three different joints that control the planar endpoint admittance. Probably, if the
number of joints involved in controlling the endpoint behavior increases, minimiz-
ing the effort (mean muscle activation) is more emphasized in the trade-off against
performance. The high single-joint shoulder reflexes might already be optimal such
that any further increase due to additional damping at endpoint did not further im-
prove efficiency. Another possible explanation for the absence of reflex modulation
with external damping is related to the existence of redundancy. Because the joints
can freely rotate irrespective the viscosity of the endpoint, a change in the endpoint
admittance from varying external properties does not directly change the dynamic
properties of the individual joints. Therefore, it was verified if there was a com-
bined effect on endpoint level due to additional external damping. It was found
that endpoint admittance did not change consistently with external damping.

In conclusion, the results from this study indicate that during multijoint posture
maintenance reflexive properties are adjusted to control the mechanical properties
on the joint level and not on the endpoint level.
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8.1 Quantification of spinal reflexes during posture

maintenance

This thesis developed and applied identification techniques to quantify the prop-
erties of the human reflex system and analyzed its role to the control of posture
maintenance. As such, these techniques contribute to the understanding of funda-
mental issues in human movement control and can be applied for medical diagno-
sis to explain movement disorders in terms of affected feedback functioning. There
is an increasing number of studies (Lee and Tatton, 1975; Schouten et al., 2003a;
Smith et al., 2000) that direct to malfunctioning of neural transmission at brain and
segmental levels in the CNS that could explain abnormal movement behavior. Rel-
evant diseases to which the technique can be applied are Parkinson’s Disease (PD),
Reflexive Sympathetic Dystrophy (RSD), Repetitive Strain Injury (RSI), Spasticity
and Huntington’s’ Disease (Schouten, 2004).

Posture maintenance is a steady state act of the human body, aiming to keep
the joints in a certain configuration. It is important that the joints are mechanically
robust. That is, resistant to external disturbing forces and sufficiently stable. It is
also favorable to minimize energy consumption in order to maintain posture for a
longer period. The CNS needs to find an optimum weighting between these con-
flicting requirements by adjusting the intrinsic and reflexive muscle properties.

Intrinsic muscle visco-elasticity is effective but continuous co-activation costs
a large amount of metabolic energy. On the contrary, reflexive control is energy
efficient but is constrained by the inherent neural time delays. Excessive reflex gains
induce mechanical oscillation.

In all experiments, the co-activation levels were high and constant for all condi-
tions. This indicates that the subjects performed the task using high intrinsic visco-
elasticity. Since modulation of the intrinsic properties was not found, energy effi-
ciency was most likely not taken into account to adjust the reflexive system.

8.1.1 Spinal reflexes

The modulation of the reflex gains was found to be determined from weighting
performance against control effort and stability demands (Chapter 2, De Vlugt et
al. 2001, Van der Helm et al. 2001). And, such gain modulations obviously took
place within seconds. The short latency of approximately 30-40 ms that was found
suggests that the reflexive contribution was from monosynaptic pathways. Possi-
bly, these adaptations are accomplished by specific controlled presynaptic depolar-
ization of afferent terminals that reduces feedback sensitivity of the motoneuron
(Rudomin 1999).

In the case the damping of the environment was increased, the estimated reflex-
ive position feedback gain also increased. These results correspond to those of Mil-
ner et al. (1993) who found experimental evidence that monosynaptic reflexes are
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adapted to different external dynamics. Their results are comparable in the sense
that they found the same effects in the opposite direction, namely that feedback
gain decreased with increasing (positive) velocity feedback of the manipulator. The
results from this study support these findings in a more specific way by stating that
humans act like optimal controllers to optimize the combined dynamics of limb
and environment together. Under the current experimental conditions, i.e. continu-
ous unpredictable force perturbation while maintaining a reference position, short
latency reflex gain adjustment appear to be quite effective in performing such opti-
mizations.

Control effort weighting had a great impact on the reflex gains. This simply
meant that when performance improvement was small with a modest increase in
feedback gains, control effort weighting highly suppressed reflexive activation. The
results from the model optimizations in Chapter 2 suggested that humans optimize
performance with limited control effort. Zero weighting would result in the best
performance but excessively high gains. It is unclear which mechanisms contribute
to the weighting or limitation of afferent control effort and a single parameter is
likely too simple to describe the underlying mechanism. However, the predicted
position reflex gains showed strong resemblance with the estimated gains, in the
case the velocity feedback was omitted from the optimization. These results indi-
cate the presence of some kind of restricting mechanism between afferent position
and velocity information.

8.1.2 Task and perturbation dependency

The existence of reflex gain modulation is doubted by previous studies which sug-
gested that any gain adaptation may not be a usual mechanism by which the stretch
reflex is controlled (Crago et al. 1976; Jaeger et al. 1982; Lee and Tatton 1975). From
those studies the effect of different tasks on reflex action of the human elbow mus-
cles was investigated and considerable changes in the short latency stretch reflex
were not found. However, they neither changed the properties of the force pertur-
bation nor varied the external dynamics to assess reflex gain adjustment. Just like
the majority of studies aiming to reveal the function of reflexive feedback, these
researchers applied transient perturbations that did not allow sufficient time for
the human controller to adapt to the mechanical environment, let alone to opti-
mize some sort of a performance measure in the presence of perturbations (Carter
et al. 1993; Houk 1978; Stein and Kearney 1995; Toft et al. 1991). In fact, those ex-
periments aimed to measure the state of the subject at the time just before onset
of the perturbation rather than the performance of the reaction. Furthermore, the
subjects knew in advance that they would be perturbed so that the measured re-
sponse reflected anticipatory behavior. Actually, a naive person can only be per-
turbed once. In accordance with Smeets et al. (1991) we believe that transient like
perturbations are somewhat poor test signals to elicit short latency gain modula-
tion. Because short latency length reflexes varied substantially during our experi-
ments, continuous random force perturbations have been proved better suited to
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investigate reflex control (Agarwal and Gottlieb 1977b; Dufresne et al. 1978). The
random character of the perturbations prevented anticipatory behavior such that
the measured response was completely determined by subconscious control.

Agarwal and Gottlieb (1977a) perturbed the ankle joint with a random 0 − 50
Hz force perturbation while the subjects were instructed to counteract various bias
torques (a force task) such that foot movement was symmetrical with respect to a
reference angle. The mechanical environment was formed only by the inertia of the
footplate which was slightly larger than that of the foot. They neither did find a
distinct resonance peak and their corresponding FRF of the ankle admittance was
quite similar with the responses from this study where reflexive feedback was ab-
sent. At least the argument of Agarwal and Gottlieb, as were reflexive feedback not
functional during random perturbations per se, is strongly contradicted by the re-
sults of our study. Their conclusion is misleading and can be attributed to the fact
that both task instruction and perturbation were force based. This results in unnat-
ural adjustments of the limb, i.e. the only way to maintain a mean force level while
the limb is being perturbed is to move in the same directions as the force perturba-
tion, which for random signals is impossible. Therefore, the limb stiffness had to be
kept small as to approximate such (unnatural) behavior. Most likely, reflexive gain
control during force perturbations is not suited to force tasks but highly suited to
position tasks.

The functional importance of task instruction has not been fully recognized
in literature when interpreting human motion control. Most studies chose posi-
tion perturbations (whether continuous or transient), and formulated a force task,
without mentioning the effect of such experimental conditions on reflexive and in-
trinsic feedback mechanisms. Current results showed that the endpoint admittance
changed with the task instruction and that muscle spindle feedback was more pro-
nounced during position tasks compared to force tasks. In general, the endpoint
admittance was high for force tasks and small for position tasks (Chapter 4).

8.1.3 Other feedback mechanisms

The neural time delay of spinal reflexes is approximately 30-40 ms for arm muscles.
Other control systems that are relevant to posture maintenance are the medium
and long latency reflexes, the visual and vestibular system. Compared to spinal
reflexes, the neural time delays associated with these systems are much longer be-
cause higher brain centra are involved in processing information from these sen-
sors. The neural delay for medium and long latency reflexes for arm muscles are
approximately 60 ms and 120 ms respectively (Jaeger et al., 1982; Lee and Tatton,
1975) and 200 ms for the visual system (McRuer and Jex, 1967). These latencies
reduce the effectiveness for posture control to relatively low frequency perturba-
tions. To exclude the contributions from these additional control systems, random
perturbations were applied. The results proved that the measured behavior above 1
Hz to these perturbations were almost completely determined from spinal reflexes
(Chapters 2, 3 and 7).
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8.1.4 Nonlinearities

Despite the highly non-linear nature of the NMS, the mechanical behavior at end-
point was well described by a linear model for all experimental conditions applied.
High VAF values proved that linear models adequately described the mechanical
response of the arm at endpoint level. On a muscle level, most relevant nonlinear-
ities are the unidirectional (stretch amplitude and velocity) sensitivity of the mus-
cle spindles (e.g. Stein and Kearney 1995), different calcium activation-deactivation
rates, and mechanical properties like the force-length and force-velocity character-
istics. In multiple muscle systems these nonlinearities apparently cancel out at end-
point level under specific experimental conditions. The demonstrated linear be-
havior can be explained by the following arguments: 1) the application of small
amplitude disturbances does not excite nonlinearities; 2) unidirectionality in sen-
sor sensitivity and muscle force generation presumably turns into bi-directional
behavior in the case of muscles acting as antagonistic pairs and 3) from a functional
anatomical point of view, different muscles are likely to act at different lengths
hence distributing their characteristics over a wider range of motion which smooths
out the nonlinearities. Furthermore, nonlinearities from inertial properties (config-
urational, centripetal, Coriolis) can be considered negligible for the perturbations
used because the angular excursions were small.

The application of a linear model is further supported by a phenomenon found
by Kirsch et al. (1994). They demonstrated that stochastic perturbations tends to
linearize the intrinsic muscle response, probably because of changed dynamics of
the cross-bridge turn over. In particular, stiffness properties were found to remain
constant and not exhibit a dependence on displacement amplitude, even for move-
ments which significantly exceeded the yield length revealed by step stretches.

8.1.5 Force feedback from Golgi tendon organs

The studies in Chapters 2 and 3 attributed observed reflexive activity to muscle
spindle feedback while force feedback from Golgi tendon organs was ignored. The
reason why force feedback was not included in the analyses is because its contribu-
tion was considered not functional for disturbance rejection during posture main-
tenance. However, the results shown in Chapter 4 showed a local increase in the
gain of the endpoint admittance for several subjects (Group A) which could only
be explained by force feedback. Since force feedback decreases the effect of intrinsic
visco-elasticity, larger reflex gains would be required to describe the same endpoint
admittance. Consequently, the estimated parameter values in Chapter 2 might be
a little underestimated. Actually, this was already demonstrated by the inclusion
of the acceleration term (which has similar effect to force feedback) in Chapter 3,
showing slightly larger values of the length and velocity feedback gains.

Other studies that used position tasks in combination with force perturbations
(e.g. Jaeger et al. 1982; Doemges and Rack 1992ab and this thesis) found high re-
sistance to movement (small endpoint admittance) which was attributed to high
levels of co-contraction and substantial feedback from muscle spindles. However,
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force feedback may very well be present, which changes the relative contributions
from intrinsic and reflexive feedback from muscle spindles. Conclusions about the
precise magnitude of muscle spindle activity are to be reviewed, but the character-
istics of the spindle gains are expected to remain valid in general.

Force feedback improves the bandwidth of the activation dynamics (Rozendaal,
1997). On the contrary, force feedback increases the endpoint admittance which is
counterproductive for posture tasks such used in this thesis. The magnitude of this
latter negative effect was shown to be dependent on intrinsic visco-elasticity and
muscle spindle feedback gains (Appendix B). In the case the endpoint behavior
was comparable to that of a second order system, the effect of force feedback on
endpoint admittance was even canceled completely by a certain combination of
position and velocity feedback gains. From the experimental findings, strong in-
dications were found that force feedback was present during force tasks as well
as position tasks for a subpopulation of the subjects (Group A). For another pop-
ulation of subjects (Group B), the admittance exhibited a second order behavior.
Apparently, Group A subjects did not compensate for force feedback while Group
B subjects did. Force feedback could even be absent for Group B subjects. Intrasub-
jective variation of force feedback was not observed, which presumably means that
force feedback was not modulated with the applied conditions. Experimental con-
ditions should be developed in the future which are more appealing to the usage
of force feedback (see Section 8.2.2).

8.1.6 Improvement of the parameter estimation

The usage of the reflexive impedance based on EMG measurements included direct
information of the reflexive system into the identification procedure. The parame-
ters of a more detailed model were quantified, such as the neural time delay and an
acceleration feedback term (Chapters 3 and 7). Application of EMG for estimating
FRFs is not a trivial case due to bad signal to noise ratio (SNR) of raw EMG sig-
nals. Therefore, the SNR needed to be improved by conditioning the external force
disturbance before application (frequency clustering, cresting) and by conditioning
the raw EMG signals (whitening, filtering). The resulting coherence was high (>
0.8) and is significantly better than was found before by Cathers et al. (1999) who
did not applied signal conditioning methods before estimation of the FRFs.

Parametric ARX models were used providing more accurate descriptions of the
mechanical endpoint admittance compared to the nonparametric estimators. Para-
metric estimators use a predefined model structure, including a noise filter, and a
limited set of parameters. For comparison, nonparametric estimators do not require
any apriori model structure and produce a large number of parameters, i.e. as much
as there are time samples. The results of Chapter 7 showed that the parametric es-
timates described even the most subtle variations in the endpoint admittance that
were sometimes hardly visible in the nonparametric estimations. The conversion of
the ARX model to the frequency domain is a new and highly valuable for the cur-
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rent applications of parameter estimation. Based on the improved FRFs of the para-
metric models, a detailed multiple DOF NMS arm model could be parametrized.
Parametric system identification is therefore the future tool for parameter estima-
tion of physiological models.

The main conclusions of this thesis are:

• Force perturbations facilitate natural posture tasks and are the key require-
ments for the analysis of human movement control in vivo.

• Force controlled haptic manipulators are necessary devices to apply force dis-
turbances. The constructional demands of such devices are high, requiring
lightweight but stiff materials and powerful direct-drive actuators to avoid
mechanical resonance.

• The mechanical endpoint admittance, as a measure for the sensitivity of the
arm to external forces, is the best description to analyze underlying intrinsic
and reflexive muscle properties because it preserves causality (force input,
position output). Admittance is identified from measurements of hand posi-
tion and reaction forces that are relatively easy to obtain.

• Spinal reflexes from muscle spindles (Ia-afferents) have significant contribu-
tion to the endpoint admittance that can be of the same magnitude or even
larger than the contribution from intrinsic muscle visco-elasticity.

• Mechanical properties of the environment and the frequency content of the
force perturbation have both large effect on the reflex gains. For increased
bandwidth of the force perturbation signal, reflex gains decreased to avoid os-
cillation near the eigenfrequency of the arm. In the case the environment sup-
plied sufficient damping, reflex gains were likely determined from trading-off
performance (reducing endpoint admittance) against control effort.

• Intrinsic visco-elasticity of the shoulder was smaller compared to the elbow
and wrist during multiple DOF posture maintenance in the horizontal plane.
A compensatory effect was found by reflexive control gains, showing the
largest gains for the shoulder joint and smallest for the wrist joint. These re-
sults indicated that reflexive feedback of the shoulder joint was controlled
independently of its intrinsic visco-elasticity.

8.2 Future directions

8.2.1 Reflexes at muscle level

The studies described in this thesis measured the mechanical endpoint behavior
and quantified mechanical properties at the joint level. The mechanical properties
of a joint are the result of many muscles that operate as synergists or antagonists.
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Quantitative measures of reflexive feedback on the muscle level would be highly
informative to study the functional control of different muscle groups. However,
EMG measurements off all the muscles involved for producing arm movements are
not possible. To obtain the contribution of different muscles, model optimizations
of a detailed NMS model should be carried out (Rozendaal, 1997). The optimized
activation patterns can then be compared for those (few) muscles that are measur-
able by EMG.

8.2.2 Submaximal tasks

The task instruction given to the subjects was ”minimize the displacements of the
hand”, yielding to high co-contraction levels. Furthermore, these levels remained
almost constant for all conditions applied. As the result, intrinsic visco-elasticity
was constant. Maximal co-contraction was apparently part of the best control strat-
egy.

It is interesting to reveal the control strategy in the case co-contraction levels are
used at smaller levels during submaximal posture tasks like ’maintain position de-
viations within certain bounds’. Energy efficiency likely becomes more important
to the optimal solution since maximal co-contraction levels are no longer required.
Consequently, the energy efficient reflexive feedback from muscle spindles will pre-
sumably be more pronounced. In such a scenario, the improvement of the activa-
tion bandwidth by force feedback is beneficial. Forthcoming results can elucidate
the functioning of Golgi tendon organs of which the role is still rather vague.

8.2.3 Identification of reflexes during movement

Compared to posture maintenance, control of the CNS is substantially more diffi-
cult during movement because the mechanical properties of the arm continuously
change over time (muscle lengths and forces, inertial configuration). How is opti-
mal performance achieved to what metabolic costs? How does the CNS controls
such a time variant system? Is the stability of movement preserved? And how is
performance (speed, accuracy) reflected by the control system?

Until now, there exist no technique to quantify the properties of feedback and
forward control during movement. Forward refers to voluntary control from higher
brain centra. Previous methods are severely limited by measuring only the spring-
like properties of the human arm to sudden transient perturbations during the
movement (Gomi and Kawato, 1996, 1997). These methods cannot reveal under-
lying controller properties of the CNS as the consequence of improperness of the
used identification techniques and limited performance of manipulators.

To understand how human movement is controlled, a technique should be de-
veloped that quantifies the properties of both the feedback and forward controller
during human arm motion. With this technique, stability and performance of move-
ments can be addressed in terms of controller properties of the CNS. These expected
results are a tremendous step ahead in the field of human movement control and
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will be very helpful in explaining movement irregularities originating from neuro-
logical disorders.

Forward control is based on the assumption of an Internal Model (IM) in the
brain that directly sends motor commands down to the motoneurons in the spinal
cord (Fig. 8.1). Motoneurons activate the muscles that accelerate the limb to follow
the reference trajectory. It is assumed that the IM comprises knowledge of the dy-
namical properties of the muscles and the skeleton. Imperfections in the IM can be
compensated for by feedback control (proportional and differential) of the muscle
lengths and of the muscle forces. At novel situations like unknown objects, unex-
pected disturbances or high motion accurateness requirements, feedback is neces-
sary. It is also believed that sensory signals during novel conditions are used to
train the IM. Since it takes some time (about 30-40 msec for arm muscles) for the
neural feedback signals to travel from the sensors to the spinal cord and back to
the muscle, the feedback loop is only able to apply corrections for slow movements
(up to 3 Hz). During fast movements (up to 6-7 Hz), the activation of muscles is
likely to be only under forward control, while feedback is minimal to prevent inter-
ference with the high-speed motions. Feedback is used towards the (slower) end of
the movement phase to achieve high targeting precision. Figure 8.2 illustrates the
hypothesized shift between feedback and forward control with movement speed,
as culminated into the known IM-hypothesis (Gerdes and Happee, 1994).

The IM cannot be identified directly because the reference trajectory is a brain
act (as is the IM itself), generated as a certain coded neural activation pattern that
cannot be measured by a representative physical quantity. More downwards to the
spinal cord, the central brain commands are decoded into measurable signals like
muscle activation (via electromyography), limb reaction force and position (via the
manipulator) and the joint angles (e.g. via optical camera systems).

The main challenge for the future is to identify the properties of the feedback
controller from these peripheral variables during movement. Once these properties
are revealed, the contributions of the forward controller might then be derived. The
method should be intended to be used as a non-invasive in-vivo technique. Quan-
tification of the feedback and forward control mechanisms will definitely prove if
the IM-hypothesis is valid, which will be of crucial importance to the broad field of
human movement science.

A major problem is that the time-variant properties of the moving limb make
it difficult to identify the system properties (position, velocity and force feedback
gains, neural delays, muscle visco-elasticity) because it is not known if a varia-
tion is the result of the perturbation or of a varying property. Furthermore, biolog-
ical systems are non-linear by nature such that at other speeds or other properties
of the force perturbation signal (amplitude, frequency) the response can be com-
pletely different. An integral identification strategy is to use a neuromusculoskele-
tal (NMS) model including non-linear system properties from a priori knowledge.
Such an approach can be successful if the chosen model structure is close to that
of the real system. The parameters are found by optimization techniques that min-
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and slow movements, limb motion is mainly under feedback control. Due to the lim-

ited bandwidth of the feedback loops, forward control takes over at higher speed of
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imize the difference between the model prediction and the real system response,
similar to the criterion functions used in this thesis.

An alternative approach is to divide the movement into quasi-linear subsys-
tems sequenced in time and apply standard linear techniques to each linearized
subsystem. For each property there are as much values as there are subsystems.
The advantage of linear techniques is that nonparametric models without a priori
knowledge can be used initially. These two approaches span the range of possi-
ble identification techniques (Kearney and Hunter, 1990). Development of the most
suited technique will be a question of the stage at which a priori system knowledge
has to be implemented in the analysis.

The existing ARMANDA manipulator provides a unique opportunity for the
development of such identification techniques as it is yet the only compliant ma-
nipulator that is able to apply wide bandwidth force perturbations during motion.

It is expected that crucial research questions that have been put forward from
the fields of human motion control can be addressed if the feedback and forward
controller can be identified during movement. These questions are:

• Modulation of feedback during movement generation. Does feedback indeed
decrease during movement according to the IM-hypothesis? Previous mea-
surements showed that the spring-like property of the human arm at end-
point (hand) decreased during movement (Gomi and Kawato, 1996). Can this
be explained from a reduced feedback gain of muscle spindles?

• Learning new movements by feedback error learning (Karniel and Mussa-
Ivaldi, 2002). Is feedback enhanced during learning new movements or dur-
ing interaction with new environments? And if so, does feedback reduces
over learning time and how fast do feedback settings change?

• Dynamic stability and disturbance analyses. How optimal is the human con-
troller and what is optimized during movement? Model optimizations can be
performed and compared to the measured behavior.
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Appendix A

Dynamic model of arm, hand and

environment

In this study only the endpoint dynamics are identified, representing the lumped
effect of joint dynamics at hand level. It consists of four parts: (1) the intrinsic arm
mass, damping and stiffness; (2) the (intrinsic) hand damping and stiffness; (3) the
reflexive length and velocity feedback including muscle activation and (4), the ex-
ternal mass, damping and stiffness of the environment. Figure A.1 shows the com-
pound blockscheme of all different parts.

The model is expressed in the frequency domain where the higher derivatives
are given as powers of the Laplace operator s (= λ + j2πf).

A.1 Intrinsic part

For small displacements the visco-elastic properties of muscles can be described
well by a linear spring-damper system. Together with the arm mass the intrinsic
properties are modelled as:

Hi(s) =
Xa(s)

Fint(s)
=

1

mas2 + (bas + ka)u0
(A.1)

Any stiffness and viscosity from passive tissues surrounding muscles and joints are
also included in the model. The amount of cocontraction is represented by u0 and
scales intrinsic stiffness and damping, which seems to be justified (Agarwal and
Gottlieb 1977a). In case of silent reflexes, i.e. when the intrinsic model is estimated,
u0 is set to one as a reference.

The spring-damper system kh and bh acts in series with the arm dynamics, rep-
resenting the interaction of the hand with the handle. The position of the handle xh

in the model is different from the position of the arm xa (Fig. A.1) and represents
movement of the wrist, skin displacement and movement of the fingers:

Hh(s) =
Fh(s)

Xh(s) − Xa(s)
= bhs + kh (A.2)
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Figure A.1: Blockscheme of combined arm-hand-environment model expressed in the fre-

quency domain. Arm dynamics (indicated below the dashed border line) consisting of Hr:

reflexive length and velocity feedback, Hact: activation dynamics, Hi: intrinsic arm dynamics

and Hh: hand dynamics. He represents the dynamics of the environment (above the dashed

line). Xa(s) is the position of the arm, Xh(s) the (measured) position of the hand, Fh(s)
the (measured) interaction force applied by the hand, Fint(s) the intrinsic force, Fref (s) the

reflexive force, A(s) is the reflexive activation, and D(s) is the applied external force pertur-

bation.

The intrinsic arm model becomes (Fint(s) = Fh(s)):

Xh(s)

Fh(s)
=

1 + Hh(s)Hi(s)

Hh(s)
= H−1

h (s) + Hi(s) (A.3)

The intrinsic parameters to be estimated are: ma, ba, ka, bh and kh (u0 = 1).

A.2 Reflexive part

Spindle dynamics are described by a first order transfer function Hr(s), relating
arm position Xa(s) to the afferent neural signal A(s) (Fig. A.1) according to:

Hr(s) =
A(s)

Xa(s)
= (kvs + kp)e

−Tds (A.4)
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Linear approximation of the spindle dynamics seems to be justified during the
small stationary periodic perturbations as used in this study (Soechting and Dufresne
1980, Zahalak and Pramod 1985). The reflex gains kp and kv represent the reflexive
position and velocity feedback gains respectively. Transmission delay and process-
ing time in the spinal cord are described by a time-delay Td = 25 ms (Smeets and
Erkelens 1991).

Activation and deactivation processes of the muscle are approximated by a first
order system with time constant τa = 30 ms (Winters and Stark, 1985):

Hact(s) =
Fref (s)

A(s)
=

1

τas + 1
(A.5)

Intrinsic arm (without hand dynamics) and reflexive feedback can now be formu-
lated as:

Ha(s) =
Xa(s)

Fh(s)
=

Hi(s)

1 + Hi(s)Hr(s)Hact(s)
(A.6)

which forms the feedback path to the hand dynamics Hh(s), resulting in the arm
dynamics (including the hand) Harm(s):

Harm(s) =
Xh(s)

Fh(s)
= H−1

h (s) + Ha(s) (A.7)

A.3 Combined model: arm plus environment

The environment acts in parallel to the arm and hand, where the sum of the reaction
force at the hand and the external force perturbation forms the input (Fig. A.1). The
second order dynamics of the environment equals:

He(s) =
Xh(s)

D(s) − Fh(s)
=

1

mes2 + bes + ke

(A.8)

with me the mass, be the viscosity and ke the stiffness of the environment. The
complete model including the environment becomes:

HDX(s) =
Xh(s)

D(s)
=

He(s)

1 + He(s)H
−1
arm(s)

(A.9)

As part of the optimization HDX(s) is used for calculating the cost function Jx and
the poles for system’s stability.

For calculating the control effort cost function Ja, the closed loop function HDA(s)
is used. Therefore, the afferent reflexive signal A(s) (Fig. A.1) is first expressed as:

A(s) = Hr(s)Xa(s) (A.10)

substituting (A.6), (A.7) and (A.9) in (A.10) gives:

HDA(s) =
A(s)

D(s)
= Hr(s)Ha(s)Harm(s)HDX(s) (A.11)
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A.4 Frequency form of Jx

The task instruction ‘minimize the displacements’ is represented mathematically in
the form of a cost function to be minimized. Having a linear, noise-free system with
stationary stochastic inputs, the cost function J of the displacement x(t) is:

Jx = E
{

x2(t)
}

where E{·} is the expectation operator. When E {x(t)} = 0, Jx is the variance σ2
x of

x(t). By using the following relations:

Jx = σ2
x =

∫

∞

−∞

Sxx(f)df = 2 ·
∫

∞

0+

Sxx(f)df

and,

Sxx(f) = E {X(f) · X(−f)}
X(f) = HDX(f) · D(f)

Jx can be rewritten in the frequency domain:

Jx = 2 ·
∫

∞

0+

|HDX(f)|2Sdd(f)df

Sdd(f) is the power spectrum of the input signal. The system inputs have rectangu-
lar power spectra:

Sdd(f) = c ∀ fl ≤ f ≤ fh

and zero elsewhere, so that Jx can be written as:

Jx = c ·
∫ fh

fl

|HDX(f)|2df (A.12)

with c is set to one.
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Interplay between reflexive and intrinsic

parameters

It was investigated to what extent a model expressing substantial reflexive activity
(Eq. 4.10) can resemble a simple intrinsic MBK system Hmbk (hand dynamics cancel
out). For identical endpoint behavior:

Harm(s) = Hmbk(s)

1

ma s2 + B s + K
=

1

ms2 + b s + k

where b and k denote the viscosity and stiffness of the MBK model respectively. It
can be readily seen that ma always equals m. Furthermore:

B =
ba + kvHact e−τms

1 + kfHact e−τgto
= b (B.1)

K =
ka + kpHact e−τms

1 + kfHact e−τgto
= k (B.2)

It is assumed that τgto = τms, since the diameter of nerves from Ib-afferents from
Golgi tendon organs (GTO) are approximately equal to those from the Ia-afferents
from muscle spindles. The stiffness and damping of Harm are determined by a
combination of reflexive and intrinsic parameters. For the following linear com-
binations Eqs B.1-B.2 hold:

ba =
kv

kf

, ka =
kp

kf

It follows that B = b = ba and K = k = ka. In other words: all dynamics of muscle
spindles can be totally compensated for by GTO force feedback, as if there was no
reflexive activity at all.
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Appendix C

State space model of arm, hand and

environment

The complete model is described by three equations (see Fig. 5.4).

The arm model:

F(s) + N(s) = MaŸ(s) + BaẎ(s) + KaY(s) (C.1)

The hand model:

F(s) = Bh(Ẋ(s) − Ẏ(s)) + Kh(X(s) − Y(s)) (C.2)

The environmental model:

D(s) − F(s) = Me(s)Ẍ(s) + BeẊ(s) + KeX(s) (C.3)

where s is the Laplace operator. Eliminating F(s) by substituting Eq. (C.2) into
Eqs (C.1) and (C.3), results in the following two system equations:

Ẍ = M−1
e

[

−(Be + Bh)Ẋ − (Ke + Kh)X + BhẎ + KhY + D
]

Ÿ = M−1
a

[

BhẊ + KhX − (Bh + Ba)Ẏ − (Kh + Ka)Y + N
]

where the Laplace operator is omitted for readability. The state space model equals:

Ψ̇ = AΨ + BU

Φ = CΨ + DU

with A the 8 × 8 system matrix, B the 8 × 4 input matrix, C the 4 × 8 output matrix
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and D the 4 × 4 throughput matrix:

A =









−M−1
e (Be + Bh) −M−1

e (Ke + Kh) M−1
e Bh M−1

e Kh

I O O O
M−1

a Bh M−1
a Kh −M−1

a (Bh + Ba) −M−1
a (Kh + Ka)

O O I O









B =









M−1
e O
O O
O M−1

a

O O









C =

[

O I O O
Bh Kh −Bh −Kh

]

D =

[

O O
O O

]

I is the 2 × 2 identity matrix and O the 2 × 2 nulmatrix.
The state vector X equals:

Ψ =









Ẋ

X

Ẏ

Y









with X = [XxXy]
T and Y = [YxYy]

T . The input and output vectors equal:

U =

[

D

N

]

with D = [DxDy]
T , N = [NxNy]

T and

Φ =

[

X

F

]

with F = [FxFy]
T
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Spatial derivation of the true stiffness field

Figure D.1: Technical spring system used for calibration, consisting of four linear springs at

90◦ angles (see inset) constituting a static equilibrium (point A). Kx: stiffness of springs in x

direction; Ky: stiffness of springs in y direction. The stiffness in one direction (either x or y)

consists of a longitudinal (linear) and a tangential part. A small movement in the y direction

is vizualized to elaborate on the stiffness contribution in the x direction. See Text for further

explanation and derivation of the resulting stiffness field.



214 APPENDIX D

The total stiffness field of the applied technical spring system at the interconnection
point A (Fig. D.1, inset) equals:

K =

[

Kxx Kxy

Kyx Kyy

]

(D.1)

Since the configuration is taken to be symmetrical, no force in y direction emerges
when moving in the x direction and vice versa, i.e. Kxy = Kyx = 0. The stiffness
field is therefore only determined by the diagonal terms being:

Kxx =
∂Fx

∂x

Kyy =
∂Fy

∂y

E.g. the stiffness Kyy is derived from a movement of the interconnection point in
the y direction (from A to B, Fig. D.1; springs in the y direction are omitted for
clarity). Similar derivation holds for the stiffness Kxx.

At initial lengths a0 (O − A, gray springs)) the force exerted by one spring in the
x direction (x spring) Fs0

equals:

Fs0
= Kx(a0 − l0)

with Kx the stiffness of the x springs and l0 the length at zero spring force. In the
case where the connection point is moved from A to B, the x spring forces increase
to:

Fs = Fs0
+ Kx(a − a0)

= Kx(a0 − l0) + Kx(a − a0)

= Kx(a − l0) (D.2)

with a the the x spring length (O − B). In point B, the force in the y direction Fy

equals:

Fy = 2Kyy + Fs sin α (D.3)

with Ky the stiffness of the y springs. Substituting Eq. D.2 (for both x springs) into
Eq. D.3 gives:

Fy = 2Kyy + 2Kx(a − l0) sin α (D.4)

Expressing a and sin α into the initial length a0 and the displacement y:

a =
√

a2
0 + y2

sinα =
y

a
=

y
√

a2
0 + y2
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and substituting into Eq. D.4 gives:

Fy = 2Kyy + 2Kx(
√

a2
0 + y2 − l0)

y
√

a2
0 + y2

= 2

[

Kyy + Kxy − Kxl0
y

√

a2
0 + y2

]

(D.5)

Partial derivation of Eq. D.5 around y = 0 results in the stiffness Kyy :

∂Fy

∂y

∣

∣

∣

∣

y=0

= 2
∂

∂y

[

Kyy + Kxy − Kxl0
y

√

a2
0 + y2

]

= 2

[

Ky + Kx − Kxl0
1

√

a2
0 + y2

− Kxl0y
∂

∂y

(

1
√

a2
0 + y2

)]

= 2



Ky + Kx − Kxl0
1

√

a2
0 + y2

+ Kxl0y
2

(

1
√

a2
0 + y2

)3




= 2

[

Ky + Kx

(

1 − l0
a0

)]

(D.6)

In the case where the springs have zero initial force (Fs0
= 0) such that it is possible

to let a0 be equal to l0, the additional stiffness of the x-springs is zero, i.e. Kyy =
2Ky . Normally, springs do have an initial force at rest length (pre-tension) such that
a0 > l0 and so the x springs increase the net stiffness in the y direction.

In summary, for small displacements around the initial equilibrium position y,
the stiffness field is diagonal and equal to:

Kxx = 2

[

Kx + Ky

(

1 − l0
a0

)]

Kyy = 2

[

Ky + Kx

(

1 − l0
a0

)]
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Appendix E

Three DOF Joint Model

The model describes the dynamic relation from the hand reaction force (input) to
the handle position (output) in state space format. The resulting transferfunction is
expressed in a 2-DOF extracorporal cartesian coordinate frame. The model part de-
scribing the NMS system is expressed in 3-DOF joint coordinates ([θs θe θw]), where
the subscripts s, e, and w denote the shoulder, elbow and wrist joint respectively.
The following variables are used for model development (see also the blockscheme
of Figure 7.4 for reference).

θ = [θs θe θw]T joint angle

τe = [τe,s τe,e τe,w]T joint torque (from external force)

τr = [τr,s τr,e τr,w]T joint torque (from reflexive muscle force)

τm = [τm,s τm,e τm,w]T joint torque (from nett muscle force)

x = [xx xy]T endpoint (handle) coordinate

f = [fx fy]T endpoint (hand) reaction

a = [as ae aw]T muscle activation (active state)

r = [rs re rw]T output Pade filter

ur = [ur,s ur,e ur,w]T reflexive excitation

ud = [ud,s ud,e ud,w]T delayed reflexive excitation

d = [dx dy]T endpoint force disturbance

where T denotes the transpose. All model parameters are structured in matrix no-
tation, being:
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Bh =

[

bh 0
0 bh

]

hand grip viscosity

Kh =

[

kh 0
0 kh

]

hand grip elasticity

B =





bs bse 0
bse be bew

0 bew bw



 intrinsic joint damping

K =





ks kse 0
kse ke kew

0 kew kw



 intrinsic joint stiffness

Ka =





kas kase 0
kase kae kaew

0 kaew kaw



 acceleration feedback gain

Kv =





kvs kvse 0
kvse kve kvew

0 kvew kvw



 velocity feedback gain

Kp =





kps kpse 0
kpse kpe kpew

0 kpew kpw



 position feedback gain

Kg =





kgs kgse 0
kgse kge kgew

0 kgew kgw



 force feedback gain

The above matrices describe properties on the joint level. The corresponding
matrix notation (only given for the stiffness) for the joint muscle properties (con-
tributed by muscle groups) equals (Hogan, 1985a):

K =





k∗

s + kse kse 0
kse k∗

e + kse + kew kew

0 kew k∗

w + kew



 (E.1)

where the star (∗) denotes the single-joint muscle stiffness. Single-joint muscle prop-
erties follow from the estimated single-joint and two-joint properties: k∗

s = ks−kse,
k∗

e = ke − kse − kew and k∗

w = kw − kew.

The model consists of four connected subsystems, being: intrinsic, activation,
neural delay and the environment.
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Intrinsic musculoskeleton

The explicit equation of motion of the three-joint system of the arm in state space
is:

[

θ̈

θ̇

]

= Ai

[

θ̇
θ

]

+ Bi(τe − τr) (E.2)

with Ai the system matrix containing the rotational joint dynamics including
the stiffness, damping and inertial properties and Bi the input matrix. The inputs
τe and τr are the joint torque due to external forces from the hand and the reflexive
forces respectively. The derivation of the equations of motion is elaborated in the
following.

The joint inertia is derived by transformation of the motion of mass from the
cartesian frame to the joint frame using the transformation matrix from joint to
cartesian space and described in the following.

Lets define the following distances of the centre of mass (COM) of the segments
with respect to the joint positions:

lm,1 = lhume/2

lm,2 = lfore/2

lm,3 = lhand/1.25

with lhume, lfore and lhand the segment length of humerus, forcearm and hand re-
spectively. The following rotation matrices are used. Rotation of the humerus with
respect to the frontal plane, R1:

R1 =

[

cos θs − sin θs

sin θs cos θs

]

(E.3)

Rotation of the forearm with respect to the humerus, R2:

R2 =

[

cos θe − sin θe

sin θe cos θe

]

(E.4)

Rotation of the hand with respect to the forearm, R3:

R3 =

[

cos θw − sin θw

sin θw cos θw

]

(E.5)

with θs, θe and θw the angle of the shoulder, elbow and wrist joint respectively.
Then, the position of the COM of all segments becomes:

xm,1 = xs + R1

[

lm,1

0

]

xm,2 = xe + R1 ∗ R2

[

lm,2

0

]

xm,3 = xw + R1 ∗ R2 ∗ R3

[

lm,3

0

]
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with xs, xe and xw the position of the shoulder joint, elbow joint and wrist joint
respectively, being:

xs =

[

0
0

]

xe = R1

[

lhume

0

]

xw = le + R1R2

[

lfore

0

]

Take a vector T containing the COM of all segments:

T =





xm,1

xm,2

xm,3



 (E.6)

The velocity vector of the COMs, ẋm, equals:

ẋm = Ṫ (q) =
∂T (q)

∂q
q̇ (E.7)

with

ẋm =





ẋm,1

ẋm,2

ẋm,3





the vector of COM velocities and

q =





θs

θe

θw



 (E.8)

the vector of joint angles. Eq. (E.7) relates motions of mass from the cartesian frame
to the joint frame. Differentiating once more gives:

ẍm =
∂∂T (q)

∂q∂q
q̇q̇ +

∂T (q)

∂q
q̈ (E.9)

Now take the Newton-Euler equation of motion, applied to the segmental masses
of each linkage:

k=3
∑

k=1

Fk − Mxẍm = 0 (E.10)
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with Fk the force acting at the COM of segment k and M the (diagonal) mass matrix:

M =

















mhume 0 0 0 0 0
0 mhume 0 0 0 0
0 0 mfore 0 0 0
0 0 0 mfore 0 0
0 0 0 0 mhand 0
0 0 0 0 0 mhand

















where mhume, mfore and mhand the mass of the humerus, forearm and hand respec-
tively. Substitution of ẍm (Eq. E.9) into Eq. (E.10) gives:

k=3
∑

k=1

Fk − Mx

(

∂Tq

∂q
q̇q̇ + Tq q̈

)

= 0 (E.11)

with Tq = ∂T (q)
∂q

. Premultiplication of Eq. (E.11) by TT
q and rearranging gives:

TT
q MxTq q̈ = TT

q

k=3
∑

k=1

Fk − TT
q Mx

∂Tq

∂q
q̇q̇ (E.12)

Since only small variations around a fixed working point were studied, the non-
linear velocity terms (centrifugal and Coriolis) were neglected. Additionally, the
mapping of the angular velocities to the endpoint velocities Tq was taken constant,
corresponding to the mean joint angles. Finally, the intrinsic stiffness and damping
properties are included leading to the final linear intrinsic model:

q̈ =
(

TT
q MxTq

)−1
TT

q

k=3
∑

k=1

Fk −
(

TT
q MxTq

)−1
(Bq̇ + Kq) (E.13)

The first term on the right-hand side of Eq.( E.13) contains the input from which

the (6×1) input matrix Bi follows, where TT
q

∑k=3
k=1 Fk = τe − τr. The second term

on the right-hand side contains the system dynamics from which the (6×6) system
matrix Ai is obtained.

Activation dynamics

[

ä
ȧ

]

= Aact

[

ȧ
a

]

+ Bactud

τr = Cact

[

ȧ
a

]

(E.14)

and similar filters for the elbow and wrist.
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The activation dynamics were modelled as a second order Butterworth filter for
each joint. E.g. for the shoulder joint the filter was:

as(s)

τs(s)
=

1
1

ω2
0

s2 + 2β
ω0

s + 1

where ω0 = 2πfact,s is the cutt-off frequency and β = 1
2

√
2 the relative damping.

The state-space model matrices are:

Aacts,s =

[

−2βω0 −ω2
0

1 0

]

Bacts,s =

[

ω2
0

0

]

Cacts,s =
[

0 1
]

Dacts,s = 0

(E.15)

Corresponding state-space matrices were obtained for the other joints and taken
together separately as partitions of one state space model (Eq. E.14). The input of
the activation model ud is the output of the model of the neural time delays.

Neural delay

Neural time delays are modelled by third order Pade approximations.




...
r
r̈
ṙ



 = Adel





r̈
ṙ
r



 + Bdelur (E.16)

ud = Cdel





r̈
ṙ
r



 + Ddelur (E.17)

where the input ur is the ’reflexive joint torque’ representing the output of the mus-
cle spindles and Golgi tendon organs:

ur = [Ka Kv Kp]





θ̈

θ̇
θ



 − Kgτm

with

τm = −τr − τi

= −Cact

[

ȧ
a

]

− [B K]

[

θ̇
θ

]

(E.18)

The three Pade filters are taken together as separate partitions of the state space
model (Eq. E.17).
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Environment

[

ẍ
ẋ

]

= Aenv

[

ẋ
x

]

+ Benv(d − f) (E.19)

with

Aenv =

[

−BeM
−1
e −KeM

−1
e

I O

]

Benv =

[

M−1
e

O

]

Cenv =
[

O I
]

Denv = O

where

I =

[

1 0
0 1

]

O =

[

0 0
0 0

]

(E.20)

Algebraic equations used to link the intrinsic arm model to the environment:

τe = JT f (E.21)

f = Bh(ẋ − Jq̇) + Kh(x − Jq)

= [−BhJ − KhJ ]

[

q̇
q

]

+ [Bh Kh]

[

ẋ
x

]

(E.22)

J is the Jacobian:

J =

[

−lhss − lfsse − lwssew −lfsse − lwssew −lwssew

lhcs + lecse + lwcsew lecse + lwcsew lwcsew

]

(E.23)

with

ss = sin θ̄s

sse = sin (θ̄s + θ̄e)

ssew = sin (θ̄s + θ̄e + θ̄w)

cs = cos θ̄s

cse = cos (θ̄s + θ̄e)

csew = cos (θ̄s + θ̄e) + θ̄w

and θ̄s, θ̄e and θ̄w the mean shoulder, elbow and wrist angle respectively.
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The final arm-environment model has the structure of:

ż = Az + Bd

x = Cz + Df (E.24)

with A (25×25) the system matrix, B (25×2) the input matrix, C (2×25) the output
matrix and D (2× 2 null matrix) the throughput matrix. These matrices follow after
elaboration on Eqs (E.2)-(E.23). The state vector z (25 × 1) equals:

z = [θ̇ θ ȧ a p̈ ṗ p ẋ x]T (E.25)

The multivariable transfer function (MTF) of the combined arm-environment
model is:

H(s)tot = C[sI − A]B + D (E.26)

The MTF of the arm only is obtained by adjusting the values of the external dynam-
ics (Aenv and Benv), by setting Me at a small value and Be and Ke to zero.
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Summary

In this thesis, experimental and analytical techniques are developed to quantify
the properties of spinal reflexes that are part of the human neuromuscular (NMS)
system. Spinal reflexes are important for the maintenance of postures by sending
information of the stretch and stretch rate of the muscles to the central nervous
system (CNS). From a control theoretical point of view it is shown that reflexes
are effective in suppressing undesired displacements that result from external force
disturbances. By obtaining quantitative measures of the reflexive system, new fun-
damental knowledge is obtained about the functioning of the human motion con-
trol system. These measures are very helpful in explaining movement irregularities
originating from neurological disorders.

Research was embedded in the Man Machine Systems group at the Delft Uni-
versity of Technology. This research group has an established reputation in biome-
chanics of the upper extremities, from fundamental issues to clinical applications.
This was the reason why technique development was focused to the reflex system
of the human arm. The techniques are not restricted to the arm and can be applied
to any (bio)mechanical system.

Spinal reflexes were quantified in vivo from measurements of the hand force
and hand position. For this purpose, continuous random force perturbations were
applied to the hand by haptic manipulators while the subject had to minimize
the hand displacements that resulted from these perturbations. The dynamic re-
lation between the hand force and hand position, called the endpoint admittance,
was identified as a frequency response function (FRF) comprising the contributions
from intrinsic and reflexive properties. These properties were obtained as the pa-
rameters of a NMS model that was fitted onto the endpoint admittance.

The innovation of this methodology is that spinal reflexes can be studied from
in vivo experiments while the subject performs a natural motion task. Spinal reflex
control gains can be explained functionally by analyzing their effect onto the task
performance, i.e. the endpoint admittance.

Humans continuously interact with the environment by means of hand contact.
Objects are grasped, moved and hold into different positions for many purposes.
Task performance and mechanical stability are properties that are crucial to pos-
ture control and are determined by the dynamics of both the arm and the object.
Therefore, it was investigated if the reflex system adapts to mechanical properties
of the environment it interacts with. High reflex gains tend to destabilize the joint



234

due to time delays from neural signal transport. Therefore, an external damper was
simulated by the haptic device to determine if the CNS takes advantage of the in-
creased stability margins by increasing the strength of the reflex system. Force per-
turbations were applied to the hand in one direction resulting in small one degree-
of-freedom (DOF) rotations of the shoulder. It was found that the reflexive length
feedback gain increased strongly with external damping. Model optimizations sug-
gested that the length feedback gain was optimal as to maximize performance at
minimum reflexive control effort.

In the next study, electromyography (EMG) was used as an additional measure-
ment to identify the reflexive impedance, being the dynamic relationship between
hand position and EMG. The advantage of using the reflexive impedance was that
intrinsic and reflexive properties could be quantified without the need for an a pri-
ori assumption to separate them. In the previous studies, such an assumption was
necessary. Furthermore, the NMS model was extended by an acceleration feedback
term.

An important result was that position and velocity feedback gains were larger
when the force disturbance contained only low frequencies below the eigenfre-
quency (2-3 Hz) compared to wide bandwidth perturbation signals (0-20 Hz). Ac-
celeration feedback decreased with external damping. It was concluded that the
CNS modifies the reflexive gains to maximize the mechanical resistance while pre-
serving sufficient stability margins of the whole arm.

To investigate if the previous findings were specific to the experimental condi-
tions, different combinations of disturbance types and task instructions were used
and their effect on the reflex system was explained. In comparison to force tasks,
position tasks entailed considerably lower admittances mainly due to higher levels
of muscle co-contraction. Force feedback from Golgi tendon organs was most likely
present in some subjects irrespective which of the two tasks was performed. Muscle
spindle feedback appeared to be reduced during force tasks and therefore seemed
not functional to control endpoint force.

Studying motion control of the single (shoulder) joint was attractive because
of practical simplicity. The previous single joint studies described in the first part
of this thesis together with numerous others, have contributed to the fundamental
understanding of neuromuscular functioning. However, single joint motions are
rare under physiological conditions and do not provide the opportunity to study
the complex interactions between joints that are typical of normal motor function-
ing. Multiple degree-of-freedom (DOF) movements are more natural and provide
a richer field of study. The additional property of multiple DOF movement con-
trol is that the endpoint admittance has a spatial direction. This is beneficial when
resistance in one specific direction is required.

To study multiple DOF posture control, a nonparametric identification tech-
nique was developed to estimate the multivariable endpoint admittance. Its appli-



235

cation and performance were tested and validated by a case study. Nonparametric
estimates do not require apriori system knowledge, are fast to obtain and useful in
the early stage of system identification.

To apply force disturbances in two directions, a new 2-DOF force controlled
device has been build, called the ARMANDA manipulator. A general problem of
force-controlled haptic devices is the occurrence of contact instability, especially
when a small virtual mass is required. This negative effect was reduced by the
use of a lightweight but stiff construction and a robust servo-based controller. The
application of the manipulator was evaluated by an experiment with a subject per-
forming a position maintenance task. With this device it is possible to study the
adaptability of the neuromuscular system to a variety of environments, enabling a
new and functional approach to the research of multiple DOF human motion con-
trol.

In the last study, a multiple DOF posture experiment was performed to quan-
tify the intrinsic and reflexive properties of single-joint and two-joint muscles act-
ing around the shoulder, elbow and the wrist joints during posture maintenance in
the horizontal plane. A large scale NMS model was fitted onto the endpoint admit-
tance. The latter was estimated by a parametric identification algorithm using ARX
models.

Compared to the previous single joint studies (zero degrees humeral eleva-
tion), intrinsic visco-elasticity of the shoulder joint was substantially smaller dur-
ing posture maintenance in the horizontal plane (90 degrees humeral elevation).
This was explained from reduced moment arms of shoulder muscles acting around
the gleno-humeral joint. Markedly, shoulder reflex gains were comparable to the
previous single DOF studies. Apparently, reflexes compensate for the reduction of
intrinsic visco-elasticity due to a reduction of muscle moment arms.

The main conclusions of this thesis are:

• Force perturbations facilitate natural posture tasks and are the key require-
ments for the analysis of human movement control in vivo.

• Force controlled haptic manipulators are necessary devices to apply force dis-
turbances. The technical demands of such devices are high, requiring light-
weight but stiff material and powerful actuators to avoid contact instability.

• The mechanical endpoint admittance, as a measure for the sensitivity of the
arm to external forces, is the best description of underlying intrinsic and re-
flexive muscle properties and is identified from measurements of hand posi-
tion and reaction forces that are relatively easy to obtain

• Spinal reflexes from muscle spindles (Ia-afferents) have significant contribu-
tion to the endpoint admittance that can be of the same magnitude or even
larger than the contribution from intrinsic muscle visco-elasticity



236

• Mechanical properties of the environment and the frequency content of the
force perturbation have both large effect on the reflex gains. For increasing
bandwidth of the force perturbation signal, reflex gains decreased to avoid os-
cillation near the eigenfrequency of the arm. In the case the environment sup-
plied sufficient damping, reflex gains were likely determined from trading-off
performance (reducing endpoint admittance) against control effort (minimiz-
ing afferent control).

• Intrinsic visco-elasticity of the shoulder was smaller compared to the elbow
and wrist during multiple DOF posture maintenance in the horizontal plane.
A compensatory effect was found by reflexive control gains, showing the
largest gains for the shoulder joint and smallest for the wrist joint. These re-
sults indicated that reflexive feedback of the shoulder joint was controlled
independently of its intrinsic visco-elasticity.

The techniques developed in this thesis have been approved to reveal impor-
tant functionality of the human reflex system during posture maintenance of the
human arm. To attain reflex functionality over a wider range of physiological oper-
ation, interesting future research would be to identify the reflexive system during
submaximal tasks.

A completely new research line for the future is the identification of reflexes
during goal directed movements. The application of force perturbations with the
aid of the ARMANDA manipulator facilitate the development of new identification
techniques that should be able to identify the time variant properties of the NMS
during movement.
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Samenvatting

In dit proefschrift worden experimentele en analytische technieken ontwikkeld om
de eigenschappen van spinale afferente terugkoppelbanen te kwantificeren welke
deel uitmaken van het menselijke neuromusculaire systeem (NMS). Spinale terug-
koppelbanen, ofwel spinale reflexen, zijn belangrijk voor o.a. houdingstaken waar-
bij informatie over de verlenging van skeletspieren naar het centrale zenuwstel-
sel (CZS) wordt gestuurd. Vanuit een regeltechnisch standpunt kan worden aan-
getoond dat reflexen effectief zijn voor het onderdrukken van ongewenste bewe-
gingen ten gevolge van externe krachtverstoringen. Door het verkrijgen van een
kwantitatieve maat van het reflexieve systeem zijn nieuwe fundamentele inzich-
ten verkregen van de functie van het menselijke bewegingssysteem. Deze kennis
is zeer waardevol voor het verklaren van bewegingsstoornissen welke de oorzaak
zijn van neurale aandoeningen.

Het onderzoek zoals beschreven in dit proefschrift is uitgevoerd bij de sectie
Mens Machine Systemen van de faculteit Werktuigbouwkunde aan de Technische
Universiteit Delft. Deze onderzoeksgroep heeft een goede reputatie in o.a. de bio-
mechanica van de schouder, reikend van fundamentele aspecten tot klinische toe-
passingen. Dit was de reden waarom het reflexieve systeem van de schouder en
later ook die van de elleboog en de pols zijn onderzocht. De beschreven technieken
zijn niet gebonden aan de arm en toepasbaar voor elk (biomechanisch) systeem.

Spinale reflexen zijn gekwantificeerd in vivo uit metingen van de hand positie
en de hand reactiekracht. Hiertoe werden continue onvoorspelbare krachtversto-
ringen aangebracht op de hand met behulp van haptische manipulatoren terwijl de
proefpersoon als taak had de verplaatsingen van de hand te minimaliseren. De dy-
namische relatie tussen de hand reactiekracht en de hand positie, aangeduid als de
eindpunt admittantie, is geı̈dentificeerd en uitgedrukt als een overdrachtsfunctie
in het frequentie domein. Deze overdrachtsfunctie omvat bijdragen van intrinsieke
spier visco-elasticiteit en van reflexen. Kwantificatie van deze bijdragen geschied-
de door het schatten van de corresponderende parameters van een model van het
NMS. De schatting volgde uit de minimalisatie van het verschil tussen de werkelij-
ke en de gemodelleerde overdrachtsfuncties. De gebruikte modellen waren in alle
gevallen lineair.

Het innovatieve van deze methode is dat de functionaliteit van de reflexen kan
worden bestudeerd gedurende de uitvoering van een natuurlijke houdingstaak. De
bijdrage van spinale reflexen kan worden beoordeeld door analyse van het effect op
de prestatie van de taakuitvoering: de eindpunt admittantie.
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Mensen interacteren continu met hun omgeving door middel van hand contact.
Objecten worden vastgepakt, bewogen en op een plaats gehouden voor verschillen-
de doeleinden. Hierbij zijn de prestatie van de bewegingstaak en de mechanische
stabiliteit belangrijke aspecten welke worden bepaald door de dynamische eigen-
schappen van zowel de menselijke arm als die van het object, ofwel de omgeving.
In een eerste studie was onderzocht in hoeverre de reflexieve eigenschappen adap-
teren aan een veranderende omgeving. Een sterke reflexieve terugkoppeling kan
de eindpunt admittantie verlagen (prestatie verbeteren) maar eveneens leiden tot
mechanische instabiliteit als gevolg van de gepaard gaande tijdvertragingen door
neuraal signaaltransport. Ter voorkoming van mechanische instabiliteit is de omge-
ving uitgevoerd als een mechanische demper. Hiermee kon worden vastgesteld of,
en in hoeverre, het CZS voordeel haalt uit de toegenomen stabiliteitsmarges door
gebruik van een hogere reflexieve terugkoppeling. Krachtverstoringen werden op-
gelegd in één richting zodanig dat kleine rotaties van het glenohumerale gewricht
optraden. Het resultaat was dat de reflexieve lengte terugkoppeling sterk toenam
met de omgevingsdemping. Model optimalisaties suggereerden dat de lengte te-
rugkoppeling optimaal is waarbij de prestatie wordt afgewogen tegen de grootte
van de reflexieve activiteit.

In een volgende studie is electromyografie (EMG) toegepast waarmee de re-
flexieve impedantie is geı̈dentificeerd als zijnde de dynamische overdracht tussen
hand positie en het EMG van verschillende schouderspieren. Het voordeel van het
gebruik van de reflexieve impedantie was dat de intrinsieke en reflexieve eigen-
schappen direct konden worden gekwantificeerd zonder a priori aannamen. In de
vorige studie was een dergelijke aanname nodig. Verder was het NMS model uitge-
breid met een term voor versnellingsterugkoppeling. Een belangrijk resultaat was
dat de positie- en snelheidsterugkoppelingen sterker waren in het geval de kracht-
verstoringen alleen uit lage frequenties bestond, lager dan de eigenfrequentie van
de arm (2-3 Hz), in vergelijking met breedbandige verstoringen (0-20 Hz). Versnel-
lingsterugkoppeling nam af met externe demping. In overeenstemming met de vo-
rige studie is geconcludeerd dat het CZS de grootte van de reflexieve terugkop-
peling maximaliseerd om een maximale weerstand tegen externe verstoringen te
bieden terwijl de mechanische stabiliteitsmarges van de arm worden behouden.

Om vast te stellen of de vorige bevindingen specifiek waren voor de toegepaste
experimentele condities moesten de proefpersonen in de volgende studie zowel een
kracht- als een positietaak uitvoeren, en werden naast kracht- ook positieverstorin-
gen opgelegd. Vergeleken met de krachttaak (houdt de kracht zo goed mogelijk
constant) was de admittantie significant lager voor de positietaak. Dit was voor-
al het gevolg van een hoger gemiddeld cocontractie niveau. De modellen in deze
studie waren uitgebreid met krachtterugkoppeling welke de functie van de Golgi
peesorgaantjes beschrijft. Door deze uitbreiding was een eenduidige kwantificatie
van de intrinsieke en reflexieve parameters niet meer mogelijk. Modelsimulaties
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suggereerden dat krachtterugkoppeling aanwezig was voor een aantal proefperso-
nen, ongeacht de taak. Lengte en snelheidsterugkoppeling waren zeer waarschijn-
lijk gering gedurende het uitvoeren van de krachttaak waaruit geconcludeerd kan
worden dat spierspoeltjes niet erg functioneel zijn om kracht te regelen.

Het bestuderen van de menselijke bewegingssturing van één (schouder) ge-
wricht was aantrekkelijk vanwege de praktische eenvoud. De vorige studies, zo-
als beschreven in dit proefschrift, hebben samen met andere bijgedragen aan het
begrip van de functionaliteit van het reflexieve systeem. Echter, beweging is zel-
den het resultaat van één gewricht en dergelijke studies geven niet de mogelijkheid
om complexere bewegingen door meerdere gewrichten te analyseren. Meervoudi-
ge graad-van-vrijheid bewegingen zijn natuurlijker en verschaffen een rijker veld
van studie. Een belangrijke eigenschap van meervoudige graad-van-vrijheid be-
wegingen is dat de eindpunt admittantie een spatiële afhankelijkheid heeft. Dit is
voordelig indien in de éne richting een grotere mechanische weerstand is gewenst
dan in de andere. Om meervoudige graad-van-vrijheid bewegingen (tijdens hou-
ding) te bestuderen is een niet-parametrische identificatietechniek ontwikkeld op
basis van bestaande kennis waarmee de multi-ingang multi-uitgang admittantie
kan worden geı̈dentificeerd. De toepassing en nauwkeurigheid van de techniek is
getest en gevalideerd.

Om krachtverstoringen toe te passen in twee verschillende richtingen is een
nieuwe twee graden-van-vrijheid krachtgestuurde manipulator ontwikkeld, de zo-
genoemde ARMANDA manipulator. Een algemeen bekend probleem van kracht-
gestuurde manipulatoren is het optreden van contact instabiliteit wanneer de eind-
effector (het handvat) stevig wordt beetgepakt. Met name wanneer de manipulator
een kleine virtuele belasting dient te zijn, wat in dit geval gewenst is, is het ge-
vaar voor instabiliteit het grootst. Dit negatieve effect is verkleind door gebruik
van direct aangedreven hydraulische motoren, een sterke lichtgewicht constructie
en een robuuste servoregelaar. Met de ARMANDA manipulator is het mogelijk om
de functionaliteit van het NMS tijdens complexere houdingstaken te bestuderen.

In de laatste studie is een drie graden-van-vrijheid houdingsexperiment uit-
gevoerd waarmee de intrinsieke en reflexieve eigenschappen van mono- en bi-
articulaire spieren rond het schouder-, elleboog- en polsgewricht zijn gekwantifi-
ceerd. De bewegingen van de arm waren gelimiteerd in een horizontaal vlak. De
eindpunt admittantie was geı̈dentificeerd in het tijd-domein met behulp van ARX
modellen. Een large-scale NMS model was gebruikt waarvan de parameters zijn
gekwantificeerd.

In vergelijking met de één graad-van-vrijheid studies (nul graden elevatie van
de humerus) was de intrinsieke visco-elasticiteit van de schouder substantieel klei-
ner tijdens de drie graden-van-vrijheid houdingstaak in het horizontale vlak (90
graden elevatie). Dit is verklaard door de reductie van momentarmen van een aan-
tal schouderspieren rond het gleno-humerale gewricht. Opvallend was dat de re-
flexieve parameters vergelijkbaar waren met die uit de één graad-van-vrijheid stu-
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dies. Blijkbaar compenseren reflexen de reductie in intrinsieke bijdrage als gevolg
van geometrische variaties.

De belangrijkste conclusies van dit proefschrift zijn:

• Krachtverstoringen maken het mogelijk om de mechanische eigenschappen
van het NMS te kwantificeren tijdens natuurlijke houdingstaken en zijn cru-
ciaal voor de studie naar de functie van de menselijke beweginsturing in vivo.

• Krachtgestuurde haptische manipulatoren zijn noodzakelijk om krachtver-
storingen op te leggen. De technische eisen van dergelijke apparaten zijn hoog
om de kans op contactinstabiliteit te minimaliseren.

• De mechanische eindpunt admittantie is een maat voor de gevoeligheid van
de arm voor externe krachtverstoringen en wordt gezien als de beste be-
schrijving van het NMS tijdens houdingstaken. De admittantie kan worden
geı̈dentificeerd uit de hand positie en hand reactiekracht welke relatief mak-
kelijk zijn te meten.

• Spinale reflexen van spierspoeltjes (Ia-afferenten) dragen substantieel bij aan
de admittantie van de arm en kunnen van dezelfde orde of zelfs groter zijn
als de intrinsieke bijdrage.

• Mechanische eigenschappen van de omgeving en de frequentie-inhoud van
de krachtverstoring hebben een groot effect op de reflexieve eigenschappen.
Met toenemende bandbreedte van de krachtverstoring neemt de grootte van
de reflexieve terugkoppeling af om oscillatie rond de eigenfrequentie te voor-
komen. In het geval dat de omgeving mechanische demping verschaft lijkt de
reflexieve terugkoppeling bepaald te worden door een afweging van prestatie
(het reduceren van de admittantie) en neurale regelaarinspanning (minimali-
seren van het afferente signaal).

• Intrinsieke visco-elasticiteit van de schouder is relatief kleiner dan die van
de elleboog en de pols gedurende houding in het horizontale vlak, in ver-
gelijking tot de één graad-van-vrijheid houdingstaken. Een reflexief compen-
serend effect lijkt te bestaan, waarbij de grootste reflexieve terugkoppeling
is gevonden voor de schouder. De resultaten wijzen er temeer op dat de
reflexieve terugkoppeling onafhankelijk wordt geregeld van de intrinsieke
visco-elasticiteit.

De ontwikkelde technieken in dit proefschrift hebben in hun toepassing bewe-
zen belangrijke functionaliteit van het reflexieve systeem in kaart te brengen. Om
de reflexieve sturing gedurende een breder fysiologisch gebied te bestuderen zal
in de toekomst ook gekeken moeten worden naar de mogelijkheden voor identifi-
catie van het NMS tijdens doelgerichte bewegingen. De toepassing van krachtver-
storingen en de inzet van de ARMANDA manipulator is essentieel voor dergelijk
vernieuwend onderzoek.
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