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Abstract: The house price index compiled by Statistics Netherlands relies on the Sale 

Price Appraisal Ratio (SPAR) method. The SPAR method combines selling prices with 

prior government assessments of properties. This paper outlines an alternative approach 

where the appraisals serve as auxiliary information in a generalized regression (GREG) 

framework. An application on Dutch data demonstrates that, although the GREG index 

is much smoother than the ratio of sample means, it is very similar to the SPAR series. 

To explain this result we show that the SPAR index is an estimator of our more general 

GREG index and in practice almost as efficient. 
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1. Introduction 

When attempting to construct constant-quality house price indexes, statistical agencies 

face a number of problems. First, exact matching of properties over time is problematic 

as their quality will likely have changed; houses depreciate and they may also have had 

major repairs, additions or remodelling done to them. In other words, every property in 

each period can be viewed as a unique good. Second, the turnover of houses is generally 

low compared to the housing stock and the mix of properties sold changes over time, so 

a quality mix problem arises. Third, there is often a lack of data on characteristics. Data 

availability issues have implications for the choice of measurement method. 

Three main types of house price indexes can be found in the literature: median or 

mean indexes, repeat sales indexes and hedonic indexes. A median (mean) index tracks 

the change in the price of the median (mean) house traded from one period to the next. 

This method is problematic in that the characteristics of, e.g., the median house changes 

over time. The problem is often tackled by stratifying the samples according to region, 

type of dwelling, etc., a procedure which is also known as mix adjustment. Stratification 

obviously requires additional data. 

Repeat sales methods address the quality mix problem by restricting the data set 

to houses that have been sold twice or more during the sample period. This ensures that 

‘like is compared with like’, assuming that the quality of the individual houses remains 

unchanged. Repeat sales methods are based on regressions where the repeat sales data 

pertaining to different periods are pooled. A potential drawback is revision; when new 

data is added to the sample, previously computed index numbers will change. The 

repeat sales method is originally due to Bailey, Muth and Nourse (1963). Case and 

Shiller (1987, 1989) argue that changes in house prices include components whose 

variances increase with the interval of sales and propose a Weighted Least Squares 

approach to adjust for this type of heteroskedasticity. An alternative weighted method 

has been suggested by Calhoun (1996). Jansen et al. (2008), using Dutch data, compare 

the unweighted repeat sales method with various weighted methods and conclude that 

the unweighted method performs satisfactorily. 

Unlike repeat sales methods, hedonic regression methods can in principle adjust 

for quality changes of individual properties (in addition to quality mix changes). These 

methods utilize information on housing characteristics, such as number of bedrooms, lot 

size and location, to estimate quality adjusted price indexes using regression techniques. 
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Today, hedonic house price indexes are computed in many countries. For example, the 

French statistical agency (INSEE), jointly with Conseil Supérieur du Notariat, compiles 

a hedonic index (Gouriéroux and Laferrère, 2009) as does Statistics Finland (Saarnio, 

2006). The UK has three hedonic house price indexes, compiled by different institutes. 

RPData-Rismark computes hedonic indexes for the capital cities in Australia (Hardman, 

2011). Hedonic indexes come in two main varieties. The time dummy method models 

the log of price as a function of property characteristics and a set of dummy variables 

indicating the time periods. Since the data of all periods are pooled, this method suffers 

from revision as well. Hedonic imputation methods, which estimate the ‘missing 

prices’, do not have this drawback. Hill and Melser (2008) discuss numerous hedonic 

imputation methods in the housing context. Diewert, Heravi and Silver (2009) and de 

Haan (2010) provide a comparison between time dummy and hedonic imputation price 

indexes. 

A fourth approach to estimating house price indexes is the use of assessment or 

appraisal data. One option is to augment a repeat sales dataset by using assessment data 

as estimates for past or current values of properties that have not been resold during the 

sample period. Some of the data on which the repeat sales index is based would then be 

pseudo rather than genuine repeat data. For more on the use of assessment information 

in a repeat sales price index and the removal of appraisal bias, see e.g. Geltner (1996), 

Edelstein and Quan (2006), and Leventis (2006). Another option, which also controls 

for quality-mix changes, is to combine current selling prices with appraisals from an 

earlier period to compute price relatives in a standard matched-model framework. An 

advantage over the repeat sales approach is that index numbers will not be revised. This 

so-called Sale Price Appraisal Ratio (SPAR) method has been applied in New Zealand 

for a long time now and is currently also being used in the Netherlands and a few other 

European countries. Bourassa, Hoesli and Sun (2007) describe the New Zealand SPAR 

index which is compiled by Quotable Value, a state-owned property valuation company. 

Other studies into the SPAR method include Rossini and Kershaw (2006), van der Wal, 

ter Steege and Kroese (2006), de Vries et al. (2009), de Haan, van der Wal and de Vries 

(2009), Shi, Young and Hargreaves (2009), and Grimes and Young (2010). 

In this paper we outline an alternative appraisal-based method to measure house 

price change. The appraisals serve as auxiliary information in a generalized regression 

(GREG) estimation framework. GREG is a model-assisted technique that can be used to 
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increase efficiency as compared to simpler estimators such as sample means (Särndal, 

Swensson and Wretman, 1992), provided that population information is known for one 

or more variables that exhibit a strong linear correlation with the variable under study. 

In our case we regress selling prices in each time period on appraisals. Appraised values 

are available in the Netherlands for all properties in stock in some reference period, and 

we expect them to be highly collinear with selling prices. Although the method is based 

on regression, the resulting price index is not a hedonic index as the regression model is 

descriptive rather than explanatory. 

The paper is organized as follows. To set the stage, in Section 2 we describe the 

SPAR method and its relation to the sample means of sale prices and appraisals. Due to 

compositional change and the relatively low number of transactions, the Dutch SPAR 

series exhibits strong volatility, especially for small market segments. In Section 3 we 

outline a simple GREG estimator of house price change and two alternatives. The first 

alternative is a stratified version of the original index whereas the second one uses an 

alternative model specification. Section 4 contains empirical evidence using Dutch data. 

The GREG index numbers turn out to be very similar to the SPAR index numbers and 

are equally volatile. In Section 5 we explain this result by showing that the SPAR index 

is in fact an estimator of the GREG index and almost as efficient. Section 6 concludes 

and suggests a topic for further research in this field. 

2. Horvitz-Thompson Estimators and the SPAR Index 

The typical aim of survey sampling is to estimate the total or (arithmetic) mean of some 

variable for a finite population. In a housing context we may want to estimate the total 

value of the housing stock in, say, period 0. Let 0U  denote the housing stock of size 
0N  and 0

np  the value of house n ),...,1( 0Nn = . The target to be estimated is 

∑
∈
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Suppose we have a sample 0S  consisting of 0n  houses sold in the base period. If the 

houses were selected by simple random sampling from the housing stock 0U , where 

each house had the same inclusion probability, then the Horvitz-Thompson estimator 
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is an unbiased estimator of (1); see e.g. Cochran (1977). 

A natural target – though not the only possibility – for a house price index would 

be the value change of a fixed housing stock. Conditioning on the base period stock has 

two implications: additions to the stock (mostly newly-built houses) should be excluded 

and the price changes of existing properties should be adjusted for quality changes, i.e. 

for the impact of depreciation, renovations and extensions. For convenience we assume 

that such quality changes are negligible. In that case the target price index going from 

the base period 0 to the comparison period t )0(>  is defined as 
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with obvious notation. Suppose that we also have a sample tS , consisting of tn  houses 

sold in period t and assume that it is an independent random draw from the base period 

stock. The ratio of the Horvitz-Thompson estimators (the sample means) in both periods 
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might seem a natural estimator of our target index (3). However, if the samples 0S  and 
tS  are independently drawn, the variance of estimator (4) can be substantial. Moreover, 

an estimated ratio such as (4) has a bias that depends on the variance of the numerator 

and the covariance of the numerator and the denominator (Cochran, 1977). From an 

index number perspective the issue at stake is that the mix of properties traded in period 

t differs from that in period 0. That is, we are not comparing like with like. 

The standard approach to estimating price indexes relies on the matched model 

methodology where prices 0np  and t
np  are observed for a fixed panel of items. The use 

of panel data ensures that like is compared with like and will reduce the variance of the 

ratio estimator because 0np  and t
np  are typically positively correlated. However, unless 

the samples 0S  and tS  are extraordinary large, there will only be few matched houses, 

if any. Hence, while prices tnp  are observed for the houses belonging to tS , for most of 

those houses the base period prices 0
np  are ‘missing’. What may be available instead are 

government assessments 0
na . We could use these as base period values and construct the 

following (pseudo) matched-model estimator of house price change: 
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A problem associated with estimator (5) is that the base period index number 

will differ from 1 because the appraisals 0
na  differ from the selling prices 0

np . Rescaling 

(5) by dividing it by its base period value is an obvious solution, yielding 
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Note that the rescaling factor is stochastic, as it is a ratio of sample means for the base 

period, and will increase the variance of (6) as compared to the estimator given by (5), 

depending on the correlations between the appraisals and the selling prices. Details can 

be found in de Haan (2007). But we cannot circumvent rescaling since a price index that 

does not start at the value 1 would be meaningless. 

Expression (6) is called a Sale Price Appraisal Ratio (SPAR) index. The SPAR 

method has been applied in the Netherlands since January 2008 to measure the price 

change of owner-occupied dwellings. As mentioned earlier, we assume that the SPAR 

index aims at tracking the price change of the housing stock, which is a measure of the 

change in wealth. In the context of the Harmonized Index of Consumer Prices on the 

other hand, the house price index should measure the price change of the houses sold 

during the base period (Makaronidis and Hayes, 2006; Eurostat, 2010). Under the latter 

concept there would be no sampling involved if all transactions are recorded and used in 

the compilation of the index, as is the case in the Netherlands. 

The second expression on the right-hand side of (6) writes the SPAR index as 

the product of two factors, the ratio of sample means and a factor between brackets. As 

the SPAR index is essentially based on the matched model methodology (using base 

period appraisals instead of sale prices), this factor adjusts the ratio of sample means for 

changes in the quality mix of the samples that occur between period 0 and period t. A 

potential problem is that the SPAR index is not a panel-type estimator. A SPAR time 

series, say for periods Tt ,...,0= , might therefore suffer from short-term volatility due 

to mix changes, especially when the number of sales is low. 
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3. Generalized Regression Estimation 

3.1 A Simple GREG Method 

In this section we will outline an alternative approach to measuring house price change 

that makes use of appraisal data. The appraisals now serve as auxiliary information in a 

generalized regression (GREG) framework. Consider the following simple two-variable 

linear regression model: 

00000
nnn ap εβα ++= ,         (7) 

where 0
nε  is the error term. Unlike hedonic regression models, which postulate a causal 

relation between the selling price 0np  and a set of characteristics relating to the structure 

and the location of the housing units, this model does not say anything about how house 

prices are generated; equation (7) is merely a descriptive model. 

Estimating model (7) by least squares regression on the data of sample 0S  yields 

predicted prices 

0000 ˆˆˆ nn ap βα += .         (8) 

The regression residuals for 0Sn∈ are 000 ˆ nnn ppe −= . Assuming random sampling, as 

before, we can write the Horvitz-Thompson estimator 00 /0 np
Sn n∑ ∈

 of the mean value 
00 /0 Np
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Replacing the sample average of appraisals, 00 /0 na
Sn n∑ ∈

, by its population counterpart 
00 /0 Na

Un n∑ ∈
 yields the generalized regression (GREG) estimator: 
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Model-assisted sampling theory shows that GREG estimators are asymptotically 

design unbiased (Särndal, Swensson and Wretman, 1992), irrespective of the choice of 

regressors. Unless the sample would be small, the bias can be neglected. It is obvious 

that the GREG estimator (10) will be more efficient – in the sense that it has a lower 

variance – than the Horvitz-Thompson estimator (9). As a result, the GREG estimator 

will usually outperform the Horvitz-Thompson estimator in terms of the mean square 

error (the sum of the variance and the squared bias). 
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The same procedure can be applied to the comparison period t. After estimating 

the model 

t
nn

ttt
n ap εβα ++= 0        (11) 

through least squares regression on the data of the current period sample tS , we obtain 

predicted prices 

0ˆˆˆ n
ttt

n ap βα += ,       (12) 

which lead to the GREG estimator of the mean value of the housing stock in period t: 
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where t
n

t
n

t
n ppe ˆ−=  denote the period t regression residuals. For a fixed housing stock 

we have 0UU t = , hence 000 // 0 NaNa
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= , and it follows that 
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The GREG estimator of house price change results simply from taking the ratio 

of equations (14) and (10): 
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where 000 /0 Naa
Un n∑ ∈

= . Some additional small sample bias will be introduced due to 

the non-linear (ratio) structure. When using Ordinary Least Squares (OLS) regression to 

estimate the models (7) and (11), the unweighted sample means of regression residuals 

in (15), 00 /0 ne
Sn n∑ ∈

 and t

Sn

t
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, will be equal to 0 and the GREG index reduces 

to 
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As the first expression on the right-hand side of (16) indicates, the (OLS) GREG 

approach essentially imputes prices pertaining to the base period and the current period 

using equations (8) and (12). The difference with the hedonic double imputation method 

is twofold: a descriptive model, not a hedonic one, is used to estimate predicted prices – 
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so that we cannot speak of unbiased predicted prices – and prices are imputed for all 

houses of the housing stock instead of the sub-set of sampled houses. 

3.2 Properties of the GREG Index 

The (OLS) GREG index has several properties worth mentioning. First, the computation 

of the GREG index is very simple. Once the population mean of appraisals 0a  and the 

base period regression coefficients 0α̂  and 0β̂  have been calculated, all that is needed 

is running a regression each month of selling prices against appraisals and plugging the 

coefficients tα̂  and tβ̂  into (16). Note that the GREG index can be written as a pseudo 

chain index: 
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This can be helpful in practice, particularly when new appraisal data becomes available. 

New appraisal data often becomes available to the statistical agency with a considerable 

time lag, up to more than a year. There are two reasons for using the latest appraisal 

information. The quality of the appraisals may improve over time, which seems to have 

been the case in the Netherlands (de Vries et al., 2009). Also, the assumption of a fixed 

housing stock can be relaxed so that newly-built properties can be incorporated through 

chaining; the resulting chained GREG index takes the dynamics of the housing stock 

into account. The same advantages of chaining apply to the SPAR method. Suppose 

new appraisals, relating to period T )0( tT ≤< , are available in period 1+t . The time 

series can then be updated through chain-linking, i.e. by multiplying t
OLSGREGP0
,

ˆ  by the 

month-to-month change )
~

/~/()
~

/~( 11 tTttTt aa βαβα ++ ++ , where the coefficients now 

pertain to a regression of selling prices on the period T appraisals. 

Second, standard errors of the GREG index can be estimated rather easily using 

the variance-covariance matrix of the regression coefficients, which is standard output 

of most statistical packages. An expression for the approximate standard error is derived 

in the Appendix. The standard error of the GREG index depends on the goodness of fit 

)( 2R  of the regression model. It is most likely that 2R  for the base period regression is 

higher than that for the current period regressions. This is because we expect to find a 

strong linear relation between appraisals and sale prices in the appraisal reference period 

while in later periods this relation will probably be weaker due to differing price trends 
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across different types of houses or regions. The derivation of approximate standard 

errors for the SPAR index is a bit more complex because there is an additional source of 

sampling error, namely the sampling variability of the mean appraisals; see de Haan 

(2007). 

The latter point brings us to the third property of the GREG index, namely its 

dependence on the quality of the appraisal data. For two reasons at least the appraisals 

may not exactly represent the transaction prices during the base period so that the model 

fit is not perfect )1( 2 <R . The assessment authorities may not have (real time) access to 

the actual sale prices and therefore have to make their own judgements based on other 

information. But even if they knew the selling prices, the authorities may still decide to 

make adjustments when determining the property values. It can be argued that selling 

prices do not always properly measure the unknown market values – which can be seen 

as a latent variable – and tend to be more volatile. In this respect, Francke (2010) and 

others have used the term transaction noise. 

The way in which the appraisals have been determined will affect the standard 

error of the GREG index. As long as the quality of the appraisal data is the same for all 

houses in stock, no bias arises since the appraisals only serve as an auxiliary variable in 

regressions run on the samples 0S  and tS  of properties sold in periods 0 and t 

),...,1( Tt = . However, in general we expect the quality of the appraisals to be higher for 

properties belonging to the appraisal reference (base) period sample 0S , although this 

will most likely differ across valuation methods. In the Netherlands the properties are 

assessed for tax purposes, both for income tax and local taxes. The municipalities are 

responsible for the valuations. Several municipalities value the houses which are sold 

during the reference period (January) by the selling price. Houses which were not sold 

are sometimes valued by comparing them to similar traded houses. Some municipalities 

apparently use a form of hedonic regression to value the houses, but the methodology is 

unfortunately not made publicly available. For more information on the Dutch appraisal 

system, see de Vries et al. (2009). 

So far we have assumed that the quality of the individual houses stays the same 

over time. This is a strong assumption. Thus, the fourth property – and most important 

drawback – of the GREG method is that the resulting price index suffers from quality 

change bias since explicit quality adjustments are not carried out. The same drawback 

holds true for the SPAR method and for the standard repeat sales method. In principle, 
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hedonic regression methods can deal with the quality change problem, although it may 

prove difficult to control for all relevant price determining characteristics, in particular 

micro location. The SPAR method automatically controls for micro location, provided 

of course that the appraisals sufficiently account for this, as it is based on the matched-

model methodology where the matching is done at the address level. 

3.3 Alternative GREG Estimators 

Statistics Netherlands not only computes house price indexes for the whole country but 

also for segments of the housing market, according to type of house (family dwellings 

and apartments) and region (provinces and large cities), mainly because of user needs. 

Another motivation behind stratifying the sample can be to mitigate the effect of sample 

selection bias. This type of bias may arise if the set of houses sold in a particular period 

is not a random selection from the housing stock. The nationwide index should then be 

indirectly computed as a weighted average of the stratum indexes instead of directly 

from all observations. 

Suppose the total housing stock 0U  is sub-divided into K non-overlapping strata 
0
kU  of size 0

kN  )(
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where ∑∑ ∈∈
= 00

00 /
kk Un nUn

t
n

t
k ppP  is the target price index for stratum 0kU  ),...,1( Kk = . 

The base period stock value shares ∑∑ ∈∈
= 00

000 /
Un nUn nk pps

k
, which serve as weights 

for the stratum indexes, are unknown and have to be estimated. Assuming the variables 

that define the strata are known for all 0Un∈ , a natural choice for the weights would 

be the appraisal shares )/)(/(/ˆ 0000000
00 aaNNaas kkUn nUn nk

k
== ∑∑ ∈∈

. Obviously, the 

stratum-defining housing variables should be included in the appraisal data set. In the 

Netherlands address and type of dwelling are included. This allows a sub-division of the 

population into cross classifications of location and type of dwelling. Appraisals may 

not always be accurate estimates of the ‘true’ market values of the individual properties 

but at the stratum level we expect the accuracy of the average appraisals to be sufficient 

for the computation of the weights. 
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Statistical techniques such as GREG estimation are typically applied to estimate 

totals or means for small domains for which the number of observations is so small that 

the standard errors using traditional (Horvitz-Thompson) estimators – in our case the 

ratio of sample means – would become unacceptably high. It should be mentioned that, 

even with the GREG method, the stratification scheme should not be too detailed since 

that might unduly raise the variance of the stratum indexes and hence of the aggregate 

index. More importantly perhaps, small sample bias will increase and may become non-

negligible with very small samples. 

OLS regressions of selling prices on appraisals should now be run in every time 

period for each stratum in order to compute the aggregate GREG index. The stratified 

(OLS) GREG index is 
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Differences in the slope coefficients skβ̂  ),0( ts =  across the strata could be the result of 

sampling error or reflect a real phenomenon. The latter can be of particular importance 

for periods t which are very distant from period 0 as different housing market segments 

tend to show varying price trends. Whether any differences in the slope coefficients 

reflect a real phenomenon could be tested. 

An alternative model, to be estimated on the entire data set, is one with a single 

intercept term, but where the β ’s are allowed to differ across the strata. Let knD ,  be a 

dummy variable that has the value 1 if property n belongs to stratum k and 0 otherwise. 

In period s ),0( ts =  the model 
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is estimated by OLS regression on the data of the sample sS , yielding predicted prices 
0~~~
n

s
k

ss
n ap βα +=  for 0

kUn∈ . The residuals again sum to zero and the new (unstratified) 

OLS GREG index becomes 
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Model (20) is more flexible than the original model given by equations (7) and 

(11), and could be useful if the proportionality between sale prices and appraisals fails. 

Estimator (21) reduces to the original GREG index (16) if the s
kβ~ ’s are all equal. In 

practice this will not happen, and (21) and (16) will give different answers. A common 

justification for the use of GREG estimators is that, being asymptotically unbiased, they 

are relatively robust to model choice. So we would expect the impact of the alternative 

model specification (21) to be moderate. On the other hand, it is well recognized in the 

literature that model dependence can be an issue under specific circumstances, notably 

when dealing with highly variable and outlier-prone populations. For example, Hedlin et 

al. (2001) stress the importance of a careful model specification search while Beaumont 

and Alavi (2004) focus on the treatment of outliers. It would therefore be worthwhile 

examining the effect of this alternative model specification. 

4. Empirical Illustration 

For the empirical study we used two data sets from different sources. The first data set 

contains the sale prices of nearly all transactions of existing houses (excluding newly-

built houses) in the Netherlands between January 2003 and March 2009 as registered by 

the Dutch land registry office. The total number of observations amounts to 1,126,242 

or approximately 15 thousand per month. The sales were recorded at the time the final 

agreement was made at the notary’s office, on average six weeks after the preliminary 

sale was agreed on. The second data set contains the government appraisals, relating to 

January 2003, for all owner-occupied dwellings in the housing stock. Because addresses 

are available in both data sets, we know the sale price and the appraisal value for each 

transaction. Because the type of dwelling is also available, we were able to stratify by 

dwelling type and location. 

The first thing we did was run unstratified OLS regressions of selling prices on 

appraisals, using model (14), for all 75 months. A selection of the results is listed in 

Table 1; detailed empirical material is available from the authors upon request. Not 

surprisingly, the coefficients tβ̂  are different from zero at very low significance levels. 

In most cases the intercepts tα̂  differ significantly from zero at the 5% level. Roughly 

80 to 90% of the variation in selling prices is ‘explained’ by the variation in appraisals, 

as shown by the 2R  values. In other words, the correlation coefficient between selling 
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prices and base period appraisals ranges from 0.89 to 0.95. Figure 1 shows that 2R  

diminishes slightly over time. As mentioned earlier, one of the reasons could be that 

different segments of the market exhibit different price changes. We were a bit surprised 

to find though that 2R  is not the highest in January 2003, being the appraisal reference 

period. 

 

[Insert Table 1] 

 

[Insert Figure 1] 

 

Based on the above regression results, we computed GREG price index numbers 

according to equation (16). From January 2003 until mid 2008 house prices increased 

by some 25% in the Netherlands but then started to fall, probably due to the financial 

and economic crisis. Importantly, the GREG index turns out to be a lot smoother than 

the simple ratio of sample means as Figure 2 makes clear, which is precisely what the 

index has been designed for. 

 

[Insert Figure 2] 

 

Figure 3 compares the GREG index with the SPAR index. In general the trend of 

both indexes is very similar, although there appears to be a small difference by the end 

of the period. Figure 4 shows that the month-to-month changes in the GREG and SPAR 

indexes do not differ much either, the GREG index being just a little bit less volatile. So 

we can conclude that, at the nationwide level, both methods generate more or less equal 

results. Note that the SPAR index in Figures 3 and 4 is not the official SPAR index 

published by Statistics Netherlands. We computed a fixed base index using appraisals 

for January 2003 only whereas the official index is a chained index, based on appraisals 

for various reference periods; see also Section 5.3. 

 

[Insert Figure 3] 

 

[Insert Figure 4] 
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Next we stratified the data by thirteen provinces and five types of dwellings, ran 

OLS regressions per month for the resulting 65 strata and calculated GREG indexes as 

well as sample means ratios. Figure 5 displays the results for one stratum, apartments in 

the province of Friesland. Due to the relatively low number of observations there are 

some dramatic spikes, for instance in September 2009 when the ratio of sample means 

increases by 50%. Again, the GREG index is smoother than the ratio of sample means 

(but still very volatile) and strikingly similar to the SPAR. The same picture emerges for 

the other strata, so we do not present those results. 

 

[Insert Figure 5] 

 

Finally, using the stratum results, we computed stratified GREG indexes for the 

whole country according to equation (19), where the base period appraisal shares serve 

as stock value weights. As can be seen from Figure 6, there are hardly any differences 

between the stratified and unstratified GREG indexes, suggesting that sample selection 

bias is not a major issue. Figure 6 also shows a second alternative GREG price index, 

computed according to equation (21), which is based on OLS regressions of the dummy 

variable model (20). And again, the differences with the original GREG index appear to 

be small. 

 

[Insert Figure 6] 

 

It should be noted that even within strata some houses are still more likely to sell 

than others, in particular during the crisis after 2008, so that some sample selection bias 

in the GREG and SPAR indexes will remain. The direction and magnitude of this bias 

can only be predicted if data on property characteristics was available to estimate the 

likelihood of houses to sell. Also, as was mentioned earlier, a too detailed stratification 

will increase both the sampling variance and small sample bias in case the number of 

houses sold is extremely low and may raise rather than reduce the mean square error of 

the estimators. 
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5. Discussion 

5.1 Comparing GREG to SPAR 

The most interesting question arising from Section 4 is: why are the GREG and SPAR 

index numbers so similar in spite of their very different construction methods? It is not 

remarkable that the trends are similar: although the GREG index does not rely on the 

matched-model methodology, this index does aim at the same target as the SPAR index. 

If the sample sizes 0n  and tn  would approach the population size 0N  – which in reality 

will of course never happen – then both price indexes approach the value change of the 

fixed housing stock. Put differently, the two methods are both asymptotically unbiased 

or ‘consistent’. 

What may come as a surprise is that the GREG index exhibits roughly the same 

amount of volatility over time as the SPAR index. To understand the reason why, recall 

that, with OLS, the regression residuals sum to zero in every time period. This implies 
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using (8) and (12) for 0Sn∈  and tSn∈ , respectively, where 00)0(0 /0 naa
Sn n∑ ∈

=  and 
t

Sn n
t naa t /0)(0 ∑ ∈

=  for short. There is a striking similarity between the last expression 

on the right-hand sides of (22) and (16). The only difference is that the SPAR index (22) 

divides the coefficients 0α̂  and tα̂  by the sample means of appraisals, )0(0a  and )(0 ta , 

whereas the GREG index (16) divides them both by the fixed, non-stochastic population 

mean 0a . Essentially, the SPAR index is a fully sample-based estimator of the GREG 

index. 

Compared with the SPAR method, the GREG approach eliminates one source of 

sampling error, i.e., the sampling variability of the mean appraisals. In accordance with 

generalized regression theory, we would intuitively expect the GREG method to reduce 

the sampling error of the price index and produce a less volatile time series (under the 

reasonable assumption that )(0 ta  and tα̂  are uncorrelated across periods Tt ,...,0= ). 

Put differently, while the GREG method has been designed as an improvement over the 
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ratio of sample means, we might have expected it to work as a smoothing procedure for 

the SPAR index also. But, as was shown in Section 4, in practice this is hardly the case. 

This result can be explained as follows. 

The variance reduction of the GREG index relative to the SPAR depends on the 

value of the intercept terms from the regressions in periods 0 and t. If the regression 

lines passed exactly through the origin )0ˆˆ( 0 == αα t , then the GREG index and SPAR 

index would both be equal to the ratio of the slope coefficients 0ˆ/ˆ ββ t  and no reduction 

in variance would be achieved. In the less extreme case, when tα̂  and 0α̂  are close to 0 

and the ratios 0/ˆ atα , )(0/ˆ tt aα , 00 /ˆ aα  and )0(00 /ˆ aα  in (16) and (23) are very small 

compared to tβ̂  and 0β̂ , the GREG and SPAR indexes will differ only slightly and the 

variance reduction will be marginal; see also the Appendix. 

The latter is indeed what happens in practice, as can be seen from Figures 7 and 

8 where the values of 0/ˆ atα  and )(0/ˆ tt aα  and those of tβ̂  are plotted over time. The 

ratios 0/ˆ atα  and )(0/ˆ tt aα  are remarkably similar and small as compared to the tβ̂ ’s. 

Although we cannot ignore those ratios, it is the change in tβ̂  that mainly drives the 

GREG and SPAR indexes. The SPAR index is not only a fully sample-based estimator 

of the GREG index, as mentioned above, it appears to be almost as efficient. 

 

[Insert Figure 7] 

 

[Insert Figure 8] 

5.2 The Volatility of the Slope Coefficient 

Several factors may have contributed to the volatility of the slope coefficients tβ̂  in our 

regressions of selling prices on appraisals and hence of the GREG and SPAR indexes. 

We will briefly discuss three of these factors: sample mix change, heteroskedasticity 

and outliers. 

A sample of houses can be viewed as a sample of locations, or addresses, since 

houses are attached to the land they are built on. A change in the sample mix is nothing 

else than a change in the observed mix of locations at the lowest level. A location mix 

change affects the sample composition in terms of the average quality characteristics of 

the properties, such as the number of rooms, surface area, etc. In our simple framework, 
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where we observe only one (non-physical) characteristic, namely the appraised value, a 

location mix change boils down to a change in the sample distribution of the appraisals. 

This, together with any varying price changes across market segments, induces a change 

in the sample distribution of the ratios 0/ n
t
n ap , which in turn leads to a change in tβ̂  in 

the two-variable regression model (11). 

Other than by stratification there is little we can do about the effect of changes in 

the sample mix of locations (but stratifying by province and type of dwelling did not 

help much), so the volatility of tβ̂  and therefore of the GREG and SPAR indexes, will 

be difficult to reduce. Controlling for location at the address level is also impossible in 

hedonic imputation methods. Here, the effect of (location) mix change is mitigated by 

controlling for region plus a range of physical characteristics. However, this does not 

necessarily mean that hedonic imputation will produce more stable index series than the 

GREG or SPAR methods. Most standard hedonic models fit the cross sectional data less 

well than our model does, and the characteristics’ coefficients typically exhibit a great 

deal of variability over time. So maybe it is not surprising that Bourassa, Hoesli and Sun 

(2006) find that “the SPAR index [….] reliably tracks house price changes, but exhibits 

less volatility than index methods that require more parameter estimates.” 

We can alternatively look at the variability of the slope coefficient from a purely 

statistical perspective. It is well known that in a two-variable model the OLS estimator 
tβ̂  can be written as 

)(

)(
),(ˆ

0
0

as

ps
apr

t
tt =β ,       (23) 

where ),( 0apr t  denotes the sample correlation coefficient in period t between selling 

prices and appraisals, which is equal to the square root of 2R ; )( tps  and )( 0as  are the 

corresponding sample standard deviations. A comparison of Figures 1 and 8 suggests 

that sudden changes in 2R  are largely responsible for the volatility of tβ̂ . In December 

2004 for example, a substantial drop in 2R  coincides with a significant decrease of tβ̂  

(and with a decrease in the GREG and SPAR indexes, as shown by Figure 4). 

Least squares regression can either be weighted or unweighted. In the absence of 

heteroskedasticity, i.e., when the variance of the errors is constant, OLS should be used. 

Weighted Least Squares (WLS) is preferred if there is evidence of heteroskedasticity; 

using appropriate weights, WLS will lead to more stable coefficients than OLS. In this 

case the unweighted sample sum of the residuals differs from zero so the estimator (15) 
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has to be applied. To facilitate the interpretation of the GREG index and the comparison 

with the SPAR index, in Section 3 we assumed away the problem of heteroskedasticity 

and restricted ourselves to OLS. Note that the (OLS) GREG estimator (16) remains 

asymptotically design unbiased if heteroskedasticity is present. 

The most interesting form of (classical) heteroskedasticity – and, given our data 

set, the only form we would have been able to reduce – would arise if the variance of 

the errors of our regression model (11) depended on the appraisal value, being the only 

regressor. However, the residuals from our OLS regressions do not point to substantial 

heteroskedasticity of this type. This is illustrated in Figure 9 for three months, including 

the base period (January 2003), where the sale prices are plotted against the appraisals; 

the regression lines are also given. To be sure, we also performed the White (1980) test. 

This test did not point towards the presence of this form of heteroskedasticity either. 

 

[Insert Figure 9] 

 

Our initial data set of sale prices and appraisals included some obvious outliers. 

To estimate the GREG index we therefore made use of a cleaned data set that has been 

prepared to compute the official Dutch house price index. Statistics Netherlands applies 

several data cleaning procedures. Houses that were sold more than once in a month are 

excluded from the data set. To delete entry errors and outliers that may unduly affect the 

results, properties with sale prices or appraisals below €10,000 or above €5,000,000 and 

properties with ‘unrealistic’ sale price-appraisal ratios are also removed. The removal of 

‘unrealistic’ observations is done by looking at the distribution of the logarithm of the 

sale price-appraisal ratios; all observations are deleted for which the log ratio differs 

more than 5 standard deviations from the mean. For more information, see Statistics 

Netherlands (2008). 

These procedures are rather arbitrary. For regression-based estimators such as 

the GREG it is more appropriate to delete observations with high leverage, i.e. to delete 

those sample units that have a big impact on the regression coefficients when they are 

excluded from the sample. A well-known measure in this context is the DFBETA of a 

sample unit (Cook and Weisberg, 1982). Since the SPAR can be written as a regression-

based index, this measure could be used here as well to detect and delete outliers. The 

scatter plots in Figure 9 show that the cleaned data set still contains some big outliers. 
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Whether these have high leverage, and whether removing them will reduce the volatility 

of the tβ̂ ’s and the GREG and SPAR indexes, remains to be seen. 

5.3 Some Further Points 

The GREG method is based on the premise of a fixed housing stock. That is, we have 

assumed that there are no entries (e.g., newly-built houses) or exits (discarded houses) 

and that housing quality remains fixed over time. Our approach is non-symmetric in that 

we condition on the base period stock. From an index number point of view we 

estimate a Laspeyres price index for the housing stock where the quantities are all equal 

to 1 because every house is treated as a unique property. An equally justifiable approach 

would be to measure the price change of the current period stock, which includes 

additions to the stock in each period, using a Paasche index. Taking the geometric mean 

of both indexes would lead to the Fisher index. The Fisher index is a preferred measure 

of price change due to its symmetric form. The construction of a Fisher-type GREG 

index is, however, infeasible since the Paasche component requires real time assessed 

values for houses that are new to the stock, which are obviously not available. 

The assumption of a fixed (base period) housing stock can be relaxed through 

annual chaining, provided that the housing stock is re-assessed annually. This is the 

current state of affairs in the Netherlands; in the past, assessments were undertaken once 

every three or four years. Annual updating of the appraisals might also adjust for quality 

changes of the properties, to some extent at least, because the updated appraisals likely 

account for major repairs, remodelling and depreciation. 

One final remark is in order. For some purposes it is desirable to decompose the 

overall house price index into two components: a component that measures the change 

in the price of the structure and a component that measures the change in the price of 

the land. Neither our GREG method nor SPAR and repeat sales methods are fit for that 

purpose. Hedonic imputation methods might work, notwithstanding practical problems 

like multicollinearity; see Diewert, de Haan and Hendriks (2012) for a first attempt. If 

data on structure size, plot size and other price-determining attributes became available 

for all properties in the housing stock, then we would be able to estimate a “hedonic 

imputation GREG index”, including the land-structure split. The chances of getting such 

data in the Netherlands are unfortunately negligible. 
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6. Conclusion 

The simple GREG method outlined in this paper, which is based on OLS regressions of 

selling prices on appraisals, substantially reduces the volatility of a house price index as 

compared to the ratio of sample means. The SPAR index can be viewed as an estimator 

of the OLS GREG index (which itself is an estimator, of course) where the base period 

population mean of appraisals is replaced by the sample means in the base period and 

the comparison period. Our empirical results for the Netherlands indicate that the SPAR 

index is almost as efficient as the GREG index, even for small sub-populations. We 

have checked this by drawing a random sample of 50 observations each month from the 

total number of monthly sales (15,000 on average). The month-to-month changes of the 

SPAR index were only slightly bigger than those of the GREG. 

Due to compositional change of the properties sold, the GREG (and SPAR) time 

series exhibit strong short-term volatility. An increase in a particular month is typically 

followed by a decrease in the next month. Put differently, the month-to-month changes 

do not tell us much about the true price change of the housing stock which, except under 

unusual circumstances, should behave smoothly. An improved outlier detection method 

might help reduce the index volatility, but the effect will probably be limited. Applying 

a smoothing procedure would seem to be an option. However, that will typically lead to 

revisions of previously published price index numbers, and the lack of revisions is one 

of the strenghts of the GREG and SPAR approaches. Another option would be to reduce 

the frequency of observation, for example to quarters, but that may be undesirable as 

well. 

From a purely statistical point of view, in our two-variable model the variability 

of 2R  seems to be responsible for a large part of the volatility of the slope coefficient 

and therefore of the volatility of the price index series. Future research could focus on 

the relation between compositional changes in terms of the property characteristics and 

changes in 2R . As many housing characteristics are unavailable, we cannot investigate 

this issue with our data. Fortunately, Statistics Netherlands has access to a data set from 

the largest Dutch association of real estate agents that might be useful for this purpose. 

This data set covers around 70% of all housing sales in the Netherlands during 1999-

2008, includes many property characteristics and has been enriched with appraisal data. 

In the past we already used the data set to compare the SPAR index with various types 

of hedonic indexes. 



 21 

Acknowledgements 

The authors would like to thank the participants at the Economic Measurement Group 

Workshop, 1-3 December 2010, University of New South Wales, Sydney, Australia and 

the participants at an Applied Economics Seminar, 22 November 2011, University of 

Queensland, Brisbane, Australia for their helpful comments on preliminary versions of 

the paper. Comments and suggestions made by the editor and two anonymous referees 

also helped to improve the paper. The assistance of Erna van der Wal, who provided us 

with the data, is gratefully acknowledged. The views expressed in this paper are those of 

the authors and do not necessarily reflect the views of Statistics Netherlands. 

Appendix: Approximate Standard Errors of the GREG Index 

The GREG index defined by equation (16) in the main text is a ratio of two estimators, 
t
GREGp̂  and 0ˆ

GREGp ; for brevity we delete “OLS”. Using a first-order Taylor expansion, 

the variance of the index can be approximated by (see e.g. Kendall and Stuart, 1976) 
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where )ˆ( t
GREGpE  and )ˆ( 0

GREGpE  denote expected values. 

The covariance term in (A.1) is equal to 0 since, by assumption, the samples in 

periods 0 and t are independently drawn. Replacing the expected values in (A.1) by the 

estimators and subsequently taking the square root leads to the following expression for 

the standard error of t
GREGP0ˆ : 
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Equation (A.2) can be estimated in practice using 0ˆˆˆ ap sss
GREG βα +=  ),0( ts = , hence 

)ˆ,ˆcov(2)ˆvar()()ˆvar()ˆvar( 020 sssss
GREG aap βαβα ++= . Estimates of the (co)variances 

are readily available in most statistical packages from the variance-covariance matrix. 

Dividing (A.2) by t
GREGP0ˆ  yields an expression for the relative standard error or 

coefficient of variation, t
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Of more importance is the relative standard error of the percentage change of the index, 

i.e. )1ˆ/()1ˆ()1ˆ( 000 −−=− t
GREG

t
GREG

t
GREG PPsePCV . This is generally greater than )ˆ( 0t

GREGPCV , 

given that )ˆ()1ˆ( 00 t
GREG

t
GREG PsePse =−  and t

GREG
t

GREG PP 00 ˆ1ˆ <− . 

If both regression lines almost pass through the origin, hence 0ˆ ≅sα  ),0( ts = , 

we have 00 ˆ/ˆˆ ββ tt
GREGP ≅  and (A.2) simplifies to 
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In this particular case the GREG and SPAR indexes nearly coincide, so (A.4) also holds 

for the SPAR index (using t
SPARP0ˆ  rather than t

GREGP0ˆ ). 

References 

Acadametrics (2009), House Price Indices – Fact or Fiction, www.acadametrics.co.uk. 

Bailey, M.J., Muth, R.F. and Nourse, H.O. (1963). A Regression Method for Real 

Estate Price Construction. Journal of the American Statistical Association, 58, 

933-942. 

Beaumont, J.F. and Alavi, A. (2004). Robust Generalized Regression Estimation. 

Survey Methodology, 30, 195-208. 

Bourassa, S.C., Hoesli, M. and Sun, J. (2006). A Simple Alternative House Price Index 

Method. Journal of Housing Economics, 15, 80-97. 

Calhoun, C.A. (1996). OFHEO House Price Indexes: HPI Technical Description. Office 

of Federal Housing Enterprise Oversight, Washington, DC. 

Case, K.E. and Shiller, R.J. (1987). Prices of Single-Family Homes Since 1970: New 

Indexes for Four Cities. New England Economic Review, September-October, 45–

56. 

Case, K.E. and Shiller, R.J. (1989). The Efficiency of the Market for Single Family 

Homes. The American Economic Review, 79, 125-137. 

Cochran, W.G. (1977). Sampling Techniques, 3rd edition, New York: Wiley. 

Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression, New York: 

Chapman and Hall. 

Diewert, W.E. (2009). The Paris OECD-IMF Workshop on Real Estate Price Indexes: 

Conclusions and Future Directions, pp. 87-116 in W.E. Diewert, B.M. Balk, D. 



 23 

Fixler, K.J. Fox and A.O. Nakamura (eds.), Price and Productivity Measurement: 

Volume 1 – Housing, Trafford Press. 

Diewert, W.E., Heravi, S. and Silver, M. (2009). Hedonic Imputation versus Time 

Dummy Hedonic Indexes, pp. 161-196 in W.E. Diewert, J. Greenlees and C. 

Hulten (eds.), Price Index Concepts and Measurement, NBER Studies in Income 

and Wealth, vol. 70. Chicago: Chicago University Press. 

Diewert, W.E., de Haan, J. and Hendriks, R. (2012). The Decomposition of a House 

Price Index into Land and Structures Components: A Hedonic Regression 

Approach. Econometric Reviews (forthcoming). 

Edelstein, R.H. and Quan, D.C. (2006). How Does Appraisal Smoothing Bias Real 

Estate Returns Measurement? Journal of Real Estate Finance and Economics, 32, 

41-60. 

Eurostat (2010). Technical Manual on Owner-Occupied Housing for Harmonised Index 

of Consumer Prices, Version 1.9. Available at 

www.epp.eurostat.ec.europa.eu/portal/page/portal/hicp/documents/Tab/Tab/03_M

ETH-OOH-TECHMANUAL_V1-9.pdf. 

Francke, M.K. (2010). Repeat Sales Index for Thin Markets: A Structural Time Series 

Approach. Journal of Real Estate Finance and Economics, 41, 24-52. 

Geltner, D. (1996). The Repeated-Measures Regression-Based Index: A Better Way to 

Construct Appraisal-Based Indexes of Commercial Property Value. Real Estate 

Finance, 12, 29-35. 

Gouriéroux, C. and Laferrère, A. (2009). Managing Hedonic House Price Indexes: The 

French Experience. Journal of Housing Economics, 18, 206-213. 

Grimes, A. and Young, C. (2010). A Simple Repeat Sales House Price Index: 

Comparative Properties Under Alternative Data Generation Processes. Motu 

Working Paper 10-10, Motu Economic and Public Policy Research, New 

Zealand. 

de Haan, J. (2007). Formulae for the Variance of (Changes in) the SPAR Index. 

Unpublished manuscript, Statistics Netherlands, Voorburg (Dutch only; available 

from the author upon request). 

de Haan, J. (2010). Hedonic Price Indexes: A Comparison of Imputation, Time Dummy 

and ‘Re-Pricing’ Methods, Journal of Economics and Statistics (Jahrbucher fur 

Nationalokonomie und Statistik), 230, 772-791. 



 24 

de Haan, J., van der Wal, E. and de Vries, P. (2009). The Measurement of House Prices: 

A Review of the Sale Price Appraisal Method. Journal of Economic and Social 

Measurement, 34, 51-86. 

Hedlin, D., Falvey, H., Chambers, R. and Kokic, P. (2001). Does the Model Matter for 

GREG Estimation? A Business Survey Example. Journal of Official Statistics, 17, 

527-544. 

Hill, R.J. and Melser, D. (2008). Hedonic Imputation and the Price Index Problem: An 

Application to Housing. Economic Inquiry, 46, 593-609. 

Jansen, S.J.T., de Vries, P., Coolen, H.C.C.H., Lamain, C.J.M. and Boelhouwer, P. 

(2008). Developing a House Price Index for the Netherlands: A Practical 

Application of Weighted Repeat Sales. Journal of Real Estate Finance and 

Economics, 37, 163-186. 

Kendall, M. and Stuart, A. (1976). The Advanced Theory of Statistics – Volume 1: 

Distribution Theory, 4th edition, London: Charles Griffin & Company. 

Leventis, A. (2006). Removing Appraisal Bias from a Repeat Transactions House Price 

Index: A Basic Approach. Paper presented at the OECD-IMF Workshop on Real 

Estate Price Indexes, Paris, 6-7 November 2006. 

Makaronidis, A. and Hayes, K. (2006). Owner Occupied Housing for the HICP. Paper 

presented at the OECD-IMF Workshop on Real Estate Price Indexes, Paris, 6-7 

November 2006. 

Hardman, M. (2011). Calculating High Frequency Australian Residential Property Price 

Indices. Rismark Technical Paper, available at 

www.rpdata.com/images/stories/content/PDFs/technical_method_paper.pdf. 

Rossini, P. and Kershaw, P. (2006). Developing a Weekly Residential Price Index 

Using the Sales Price Appraisal Ratio. Paper presented at the twelfth Annual 

Pacific Rim Real Estate Society Conference, Auckland, 22-25 January 2006. 

Saarnio M. (2006). Housing Price Statistics at Statistics Finland. Paper presented at the 

OECD-IMF Workshop on Real Estate Price Indexes, Paris, 6-7 November 2006. 

Särndal, C.E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling, 

New York: Springer-Verlag. 

Shi, S., Young, M. and Hargreaves, B. (2009). Issues in Measuring a Monthly House 

Price Index in New Zealand. Journal of Housing Economics, 18, 336-350. 



 25 

Statistics Netherlands (2008). Price Index Owner-occupied Existing Dwellings; Method 

Description. Statistics Netherlands, The Hague, available at 

www.cbs.nl/NR/rdonlyres/A49D8542-26EC-40FD-9093-

82A519247F4B/0/MethodebeschrijvingPrijsindexBestaandeKoopwoningene.pdf. 

de Vries, P., de Haan, J., van der Wal, E. and Mariën,G. (2009). A House Price Index 

Based on the SPAR Method. Journal of Housing Economics, 18, 214-223. 

van der Wal, E., ter Steege, D. and Kroese B. (2006). Two Ways to Construct a House 

Price Index for the Netherlands: The Repeat Sale and Sale Price Appraisal Ratio. 

Paper presented at the OECD-IMF Workshop on Real Estate Price Indexes, Paris, 

6-7 November 2006. 

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a 

Direct Test for Heteroskedasticity. Econometrica, 48, 817–838. 

 

 



 26 

Tables and Figures 

 

 

Table 1. Regression results 
Month Alpha t Beta t R squared 
January 2003 1900.49 2.26 0.98 275.19 0.87 
January 2004 5039.16 5.96 1.01 269.26 0.88 
January 2005 -2555.12 2.43 1.08 237.54 0.84 
January 2006 1282.14 1.41 1.11 286.39 0.87 
January 2007 -7567.99 6.36 1.19 243.72 0.83 
January 2008 11007.39 8.48 1.26 231.93 0.83 
January 2009 16677.31 9.83 1.30 184.24 0.81 
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Figure 1. R squared values 
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Figure 2. GREG index and ratio of sample means 
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Figure 3. GREG and SPAR indexes 
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Figure 4. GREG and SPAR: month-to-month percentage changes 
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Figure 5. GREG and SPAR indexes and ratio of sample means; apartments in the 
province of Friesland 
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Figure 6. GREG, stratified GREG and dummy variable GREG indexes 
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Figure 7. Intercepts divided by appraisal means 
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Figure 8. Slope coefficients 
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Figure 9. Scatter plots and regression lines 


