Modelling of the shear behaviour of reinforced concrete members without shear reinforcement under complex boundary conditions

Background

Using the Critical Shear Displacement Theory(CSDT) to evaluate the shear behavior of reinforced concrete members without shear reinforcement

Simply supported bridge

Continuous supported bridge

Continuous supported slab

Limitations & critical issues

The inclination of critical shear crack Load Load (M/ Vd)_{max} =1.65 Support Calculation of concrete contribution V_c

Mechanism of the formation of critical shear crack

Expected results

CSDT for a full range of M/Vd

M/Vd < 2

Continuous

supported

Methodology

Aggregate interlock force based on curved crack

Concrete contribution based on differential equation $\left(\frac{M}{E_c I}\right)' = \left(\frac{d^2 y}{dx^2}\right)$

Distributed load

 $M/Vd \ge 2$

Simply

supported

- Prestressed member
- Continuous supported slab

ncrete structures

PhD candidate: Jiandong Lu Supervisor(s): Dr. ir. Yuguang Yang

Extension