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Railway Infrastructure
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Defects in rails

Light Moderate Severe Two squats at a thermite weld
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In The Netherlands (about 7000 km of tracks)

Almost no time for monitoring and 
maintenance 
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Video
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What do we need?
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What do we need?
A method that can tell us whether the image is:

Healthy rail

Insulated rail joint

Rail surface defect 
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Images: dimensions

How many possible images 
do we have?

Grey scale (265 levels)

Dimensions
266 x 224

Dimensions
12 x 10

Answer: (12 x 10) 265

Grey scale

About 1.8 x 10532

possible images
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Images: dimensions

How many possible images 
do we have?

Grey scale (265 levels)

Dimensions
266 x 224

Dimensions
12 x 10

Answer: (12 x 10) 265

Grey scale

About 1.8 x 10532

possible images

The estimated number of atoms in the 
observable universe (1080)

M87's black hole is 53.5 million 
light-years away 

(5.014 × 1026 millimeters)

But don’t worry, the 
Interesting features of the

image lies in a lower dimension
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Features hierarchy

Image Contour Edge   Shapes

Smaller Dimensions
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Possible methods

Source: http://yann.lecun.com/exdb/mnist/
2015
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Deep learning

Classic

Input

Output

Mapping 
(Hand designed)

Classic
Machine Learning

Input

Output

Mapping 
(Hand designed)

Deep Learning

Input

Output

Learned mapping

Tim de Bruin and Robert Babuska, “Artificial Neural Networks 1”. Course: Knowledge-Based Control Systems (SC42050), TUDelft.

Learned mapping

Learned features

Learned features

……
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Deep learning: learned features

https://ai.googleblog.com/2017/11/feature-visualization.html
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Deep learning: learned mapping

R. Babuska, Knowledge based Control Systems, Lecture notes.

McCulloch and Pitts 
modelled the behavior 
of a single neuron in 

1943. They called this 
mathematical model a 

Perceptron.
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Deep learning: learned mapping

R. Babuska, Knowledge based Control Systems, Lecture notes.

Paul Werbos, the father of 
backpropagation, since 1974 we 

can train neural networks
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S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska, and B. De Schutter, “A deep learning approach for detection of rail defects”. 
Proceedings of the IEEE World Congress on Computational Intelligence, IEEE WCCI 2016, 2016 International Joint Conference on 

Neural Networks (IJCNN), Vancouver, Canada, 25-29 July, 2016, pp. 2584-2589.

Detection of rail defects
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Image data
• The dataset consists of 4220 samples, of which 3170 are 

normal, and roughly 1000 are defects.

• We train a convolutional neural network model with 
80% of the data, and test with the remaining 20% (in 5 
folds). Here is the averaged result of the test:

Accuracy = 0.9870

Predicted normal Predicted defect

Normal samples 635 1

Defects 10 197

32
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False detections (image data)

Defects not detected

Images from 
INSPECTATION
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Hits 1 (image data)
True Positive

TU DELFT

Images from 
INSPECTATION



35

Hits 2 (image data)

TU DELFT

Images from 
INSPECTATION

True Positive
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Classification of types
• We also tried to classify the defects into 2 categories of 

spots/light vs. medium/severe.

TU DELFT
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A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuška, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis 

approach for rail failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507. 

 A big data analysis approach is used to 
automatically detect squats from rail 

images.

 A Bayesian model is employed to 
estimate the failure probability.



39

Architecture of the proposed DCNN model

A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuška, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis 
approach for rail failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507. 
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Conclusions

• “Fancy” algorithms will not perform 100% if the 
knowledge of the railway system is not included explicitly. 

• Purely data-based methods do not guarantee physical 
meaning. A combined approach, data-based with physical 
modelling would be preferred. 

• There is a great potential for using Deep Learning to 
facilitate maintenance decisions on Dutch railways. Further 
research: head-checks, corrugation, wheel-burns, 
indentations.  
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Conclusions

• Self-learning, transfer learning and new architectures 
could be tested.

• Higher resolutions cameras, including 3D measurements, 
can allow a complete digitalization of the railways assets.

• Many open challenges: Fusion of data, velocity, etc.
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A. Jamshidi, S. Hajizadeh, Z. Su, M. Naeimi, A. Núñez, R. Dollevoet, B. De Schutter and Z. Li, “A decision
support approach for condition-based maintenance of rails based on big data analysis”. Transportation 

Research Part C: Emerging Technologies, Volume 95, October 2018, Pages: 185-206.

 Video and ABA to detect 
squats.

 Other signals for influential 
factors used for modelling.

How to keep improving? 
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Deep learning: learned features

Just for fun:

https://affinelayer.com/pixsrv/index.html

https://playground.tensorflow.org/
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