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Railway Infrastructure

Railway Infrastructure

@ Safety system:

signal, interlocking

@ Energy System:

feeding power supply

@ Communications:
Speakers, information board, applications

@ Support:

subsoil, cables and wires

@ Crossing:

Tunnels, level crossing, fences

@ Guiding:

Rail, switches, joints

Measurements:
Infradata from fixed and on-board sensors

(®) Rolling stock:

Passengers and freight

@ Transfer:

Station, elevators
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Defects in rails

Initiating squat

Two squags at a thermite weld

Wheel burns

Damaged welds

Corrugation
Insulated jointwith
plastic surface
degradation
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In The Netherlands (about 7000 km of tracks)

Almost no time for monitoring and
maintenance ®
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What do we need?
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What do we need?

A method that can tell us whether the image is:

Healthy rail

Insulated rail joint

Ralil surface defect
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Images: dimensions

Dimensions Dimensions
266 x 224 12 x 10

Answer: (12 x 10) 263

How many possible images Grey scale

do we have?
About 1.8 x 10°32
Grey scale (265 levels) possible images
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M87's black hole is 53.5 million

Ima light-years away
(5.014 x 102° millimeters)

Dimensions
266 x 224

But don’t worry, the
Interesting features of the

image lies in a lower dimension
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Features hierarchy
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Contour Edge - Shapes

Smaller Dimensions
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Classification methods
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Feature 1

Classification methods
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Feature 1

Classification methods

Decision
boundary

Feature 2
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Feature 1

Classification methods
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Classification methods

Decision
boundary
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Feature 1
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Decision
boundary

Feature 1
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Feature 1

Classification methods

Decision -
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Possible methods

MNIST 28x28 images, 60,000 train, 10,000 test
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Linear K-Nearest Boosted SVMs Neural nets Convolutional
Classifiers Neighbors Stumps nets
Source: http://yann.lecun.com/exdb/mnist/
2015
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Deep learning

- Classic :
Classic
Machine Learning Deep Learning
Input
Input Input i
J Learned features
l Mapping 7.
. Hand designed
Mapping ( ¢ gned) ‘1’
(Hand designed) | Learned features
Learned mapping
l ‘1' Learned mapping
Output Output Output
_If_;u Delft Tim de Bruin and Robert Babuska, “Artificial Neural Networks 1”. Course: Knowledge-Based Control Systems (SC42050), TUDelft. -




Deep learning: learned features

Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layer mixed4b,c)

'F;U Delft https://ai.googleblog.com/2017/11/feature-visualization.html 2%




Deep learning: learned mapping

McCulloch and Pitts H
modelled the behavior
of a single neuron in 4
1943. They called this
mathematical model a
Perceptron.
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dendrites

soma

T —

T axon

oL }

synapse
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Deep learning: learned mapping

Xl Wl
X, — W
2 2 /
o ( 7 ) Ly
Xn Wn
Artificial neuron
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Deep learning: learned mapping

Output of
Xl Wl the neuron
o(z)—Y
/ Activation
X— W / function
For
Adaptive weights Perceptron
| Inputs of | (synaptic B }
the neuron strength) G(Z) — ﬁ



Deep learning: learned mapping

Multi-layer ANN
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Paul Werbos, the father of
backpropagation, since 1974 we
can train neural networks
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Detection of rail defects

Feature (F) maps Output:

Input image 22 * 46 - maps
0 x50
100 x 46 x 23
F maps
38 x 18

6 classes

Normal

Weld

F maps

M-squat Moderate Severe
S-squat S'CI uat Sq uat

Joint

L-squat
F maps

Joint

Bx

Ooxs 2x2 09x6 2x28x22x2\®
—_—
Convolution Max-pooling C Mp C Mp Fully-connected

© (Mp) (F)

4 S. Faghih-Roohi, S. Hajizadeh, A. Nuiez, R. Babuska, and B. De Schutter, “A deep learning approach for detection of rail defects”.
TU D Ift Proceedings of the IEEE World Congress on Computational Intelligence, IEEE WCCI 2016, 2016 International Joint Conference on 31
e Neural Networks (IJCNN), Vancouver, Canada, 25-29 July, 2016, pp. 2584-2589.




Image data

» The dataset consists of 4220 samples, of which 3170 are
normal, and roughly 1000 are defects.

» We train a convolutional neural network model with
80% of the data, and test with the remaining 20% (in 5
folds). Here is the averaged result of the test:

Predicted normal | Predicted defect

Normal samples | 635 1
Defects 10 197

Accuracy = 0.9870
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False detections (image data)

Defects not detected

Images from
INSPECTATION
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Hits 1 (image data)

True Positive

Images from
INSPECTATION
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Hits 2 (image data)

True Positive

Images from
INSPECTATION
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Classification of types

» We also tried to classify the defects into 2 categories of
spots/light vs. medium/severe.

Normal 90
80
70
Light =
»n squat 60 8
(2] -
L )
Q Q.
§ Medium .E’
F & severe g
squat g
120
Joint 0.00 3.02 5.96 110
: 0
Normal Light Medium & Joint
squat severe squat
Detected class
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% A big data analysis approach is used to
automatically detect squats from rail
images.

% A Bayesian model is employed to
estimate the failure probability.
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ﬂ; A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Nufiez, R. Babuska, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis
TU Delft approach for rail failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507. 38
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Fully-connected Network

Architecture of the proposed DCNN model
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Conclusions

* “Fancy” algorithms will not perform 100% if the
knowledge of the railway system is not included explicitly.

* Purely data-based methods do not guarantee physical
meaning. A combined approach, data-based with physical
modelling would be preferred.

* There is a great potential for using Deep Learning to
facilitate maintenance decisions on Dutch railways. Further
research: head-checks, corrugation, wheel-burns,
indentations.
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Conclusions

» Self-learning, transfer learning and new architectures
could be tested.

* Higher resolutions cameras, including 3D measurements,
can allow a complete digitalization of the railways assets.

» Many open challenges: Fusion of data, velocity, etc.
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How to keep improving?

Dense layer with

) Rel U activation
1D convolutional

lavers

+ Video and ABA to detect
squats.

% Other signals for influential
factors used for modelling.

Acceleration, m/s?
Acceleration, m/s?

E 8 & @

500 1000 1500 2000 2500 3000 3500
Samples

o 500 1000 1500 2000 2500 3000 3500
Samples

(; A. Jamshidi, S. Hajizadeh, Z. Su, M. Naeimi, A. Nufez, R. Dollevoet, B. De Schutter and Z. Li, “A decision
TU D elft support approach for condition-based maintenance of rails based on big data analysis”. Transportation

Research Part C: Emeriini Technoloiiesi Volume 95i October 2018i Paies: 185-206. 43




Deep learning: learned features

Just for fun:

https://affinelayer.com/pixsrv/index.html

https://playground.tensorflow.org/
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