Automatic detection of rail surface defects using video image: A case study in the Dutch railways

Lunch lecture series of Monitoring Community 10th May 2019

Dr. Alfredo Núñez Vicencio Assistant Professor, TU Delft Section of Railway Engineering

Outline

1) Video Image based Monitoring of Rail

2) Deep Neural Networks for Rail Monitoring

3) Making use of the data: Risk analysis

4) Conclusions

Outline

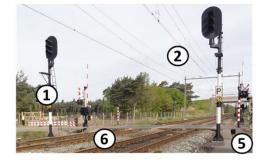
1) Video Image based Monitoring of Rail

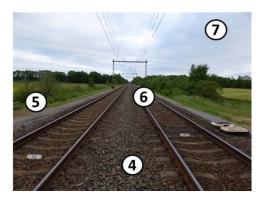
- 2) Deep Neural Networks for Rail Monitoring
- 3) Making use of the data: Risk analysis
- 4) Conclusions

Railway Infrastructure

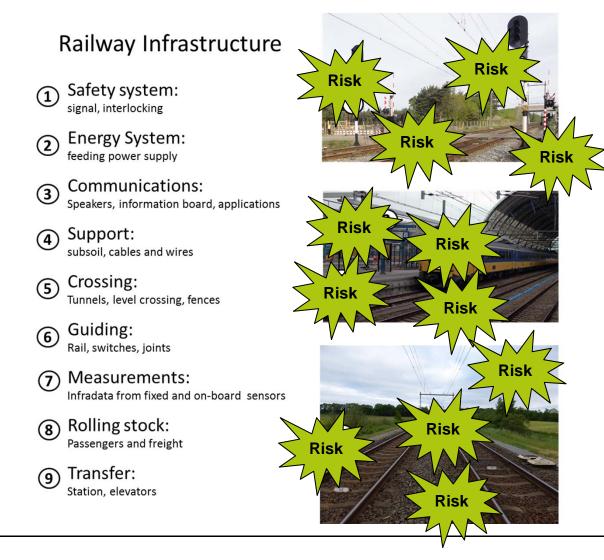
Railway Infrastructure

- ① Safety system: signal, interlocking
- Energy System: feeding power supply
- 3 Communications: Speakers, information board, applications
- (Support: subsoil, cables and wires
- S Crossing: Tunnels, level crossing, fences
- 6 Guiding: Rail, switches, joints
- Measurements: Infradata from fixed and on-board sensors
- (8) Rolling stock: Passengers and freight
- (9) Transfer: Station, elevators





Railway Infrastructure



Defects in rails

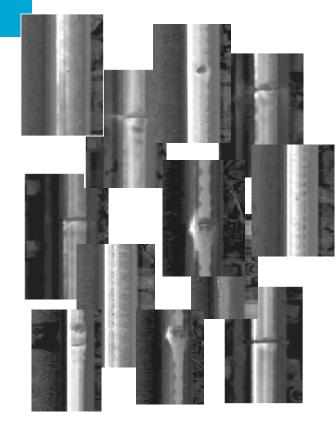
Squats

Corrugation

Insulated joint with plastic surface degradation Wheel burns Damaged welds

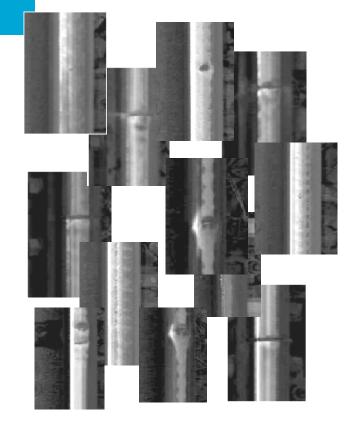
In The Netherlands (about 7000 km of tracks)

Almost no time for monitoring and maintenance ⊗



What do we need?

A method that can tell us whether the image is:



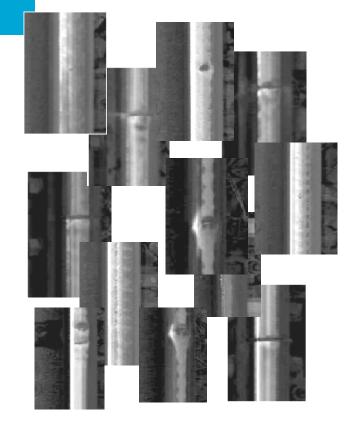
Healthy rail

Insulated rail joint

Rail surface defect

What do we need?

A method that can tell us whether the image is:



Healthy rail

Insulated rail joint

Rail surface defect

Outline

1) Video Image based Monitoring of Rail

2) Deep Neural Networks for Rail Monitoring

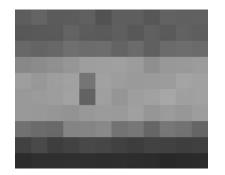
3) Making use of the data: Risk analysis

4) Conclusions

Images: dimensions

Dimensions 266 x 224

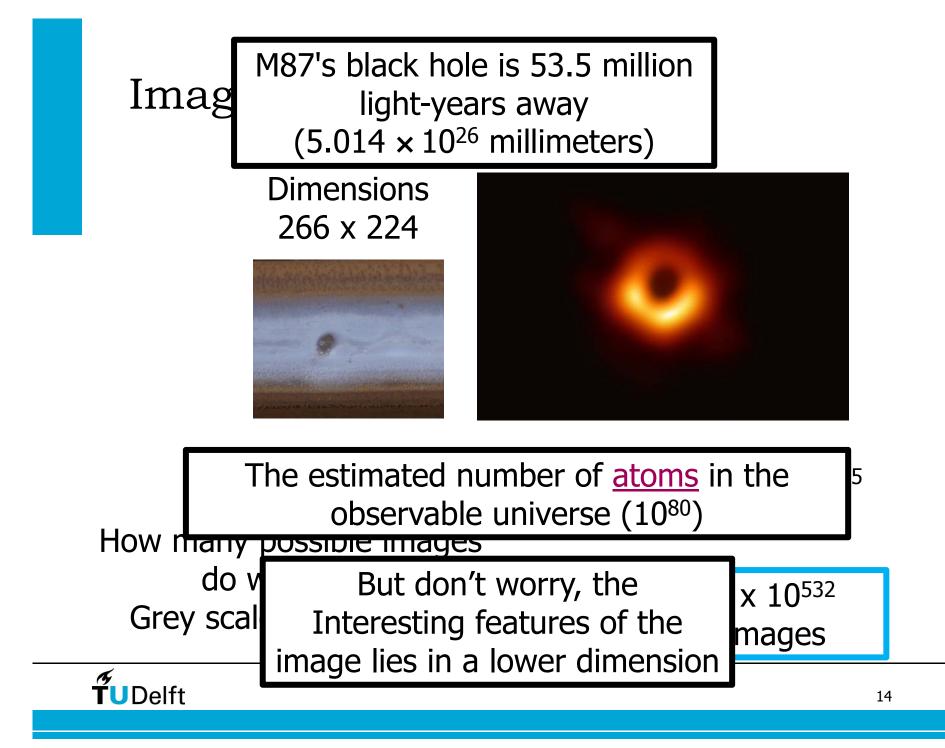
Dimensions 12 x 10



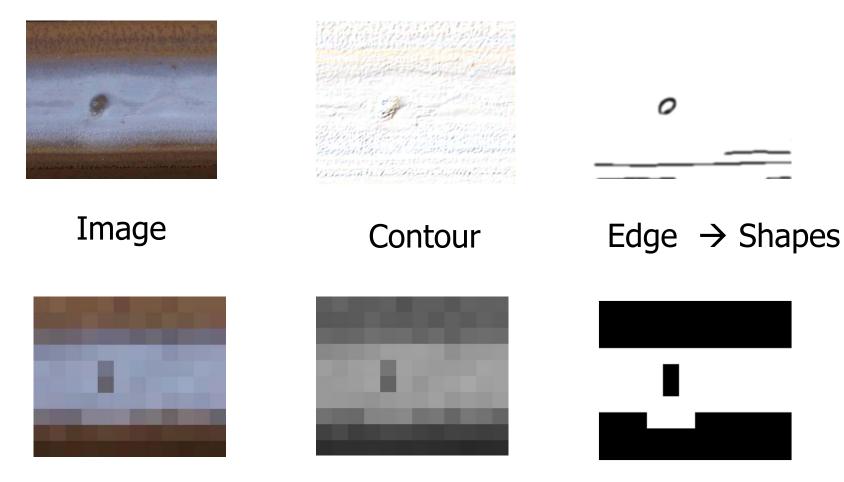
How many possible images do we have? Grey scale (265 levels) Answer: (12 x 10)²⁶⁵ Grey scale

About 1.8 x 10⁵³² possible images

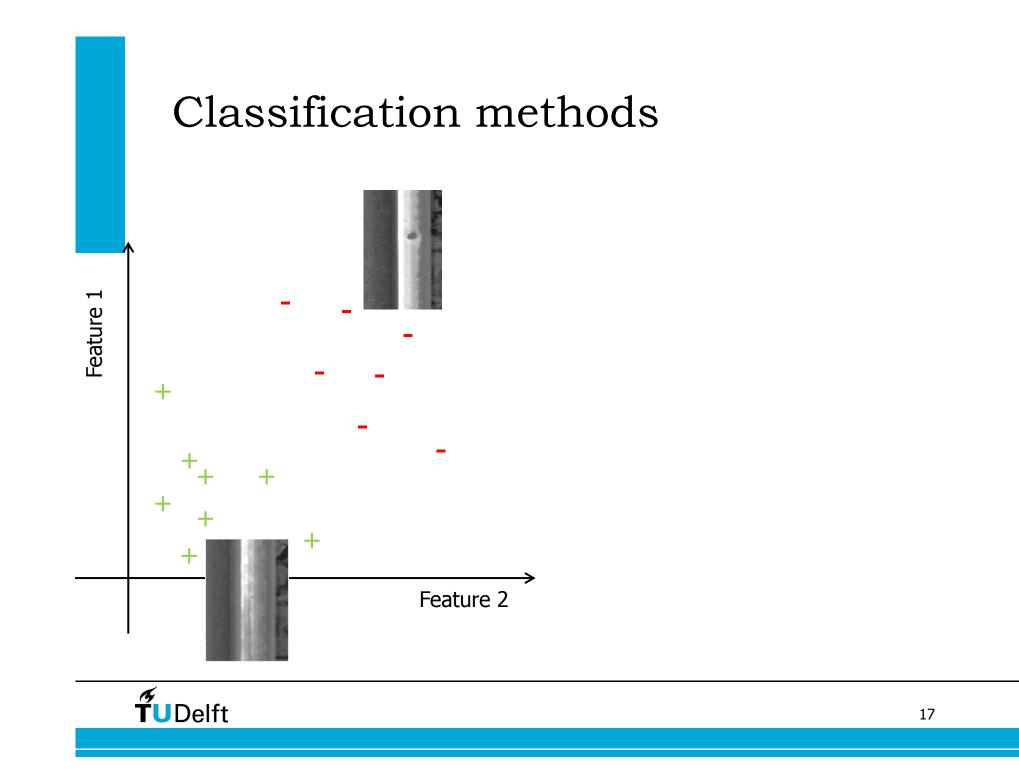
13

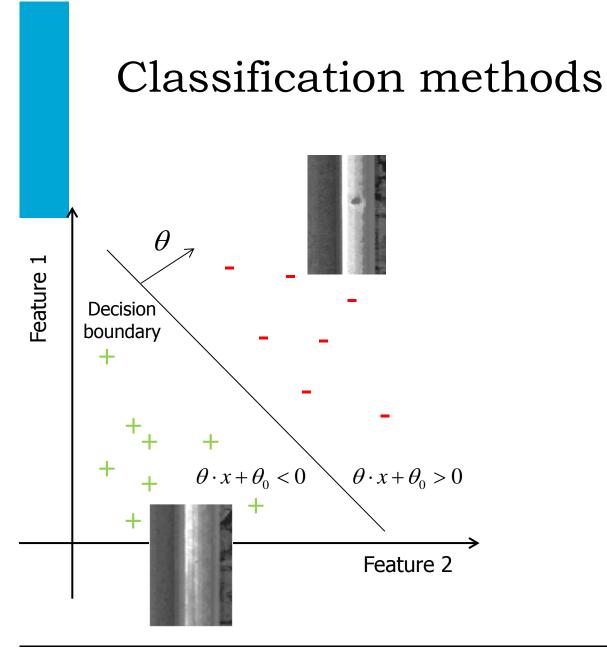


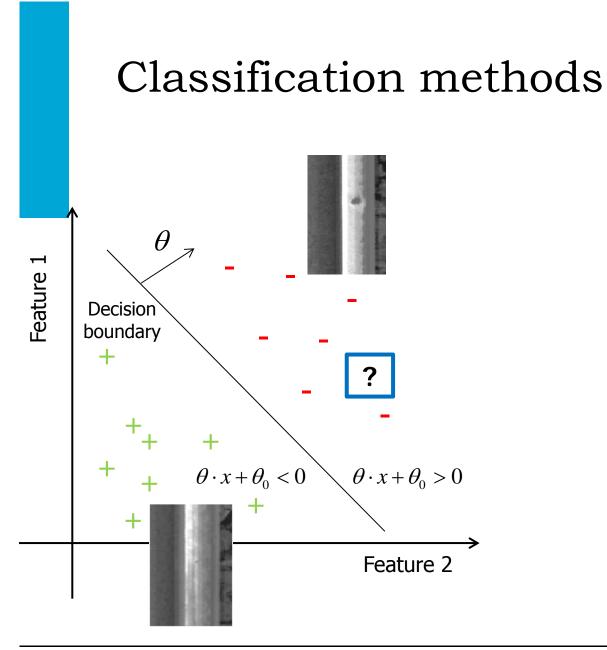
Features hierarchy

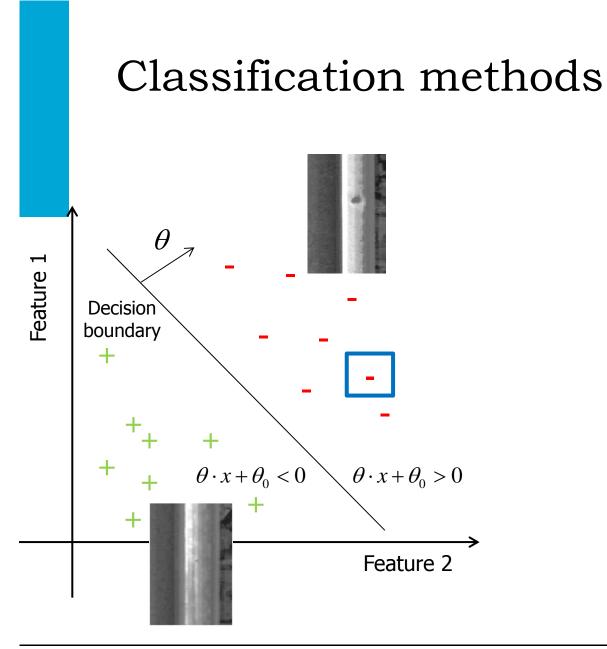


Smaller Dimensions

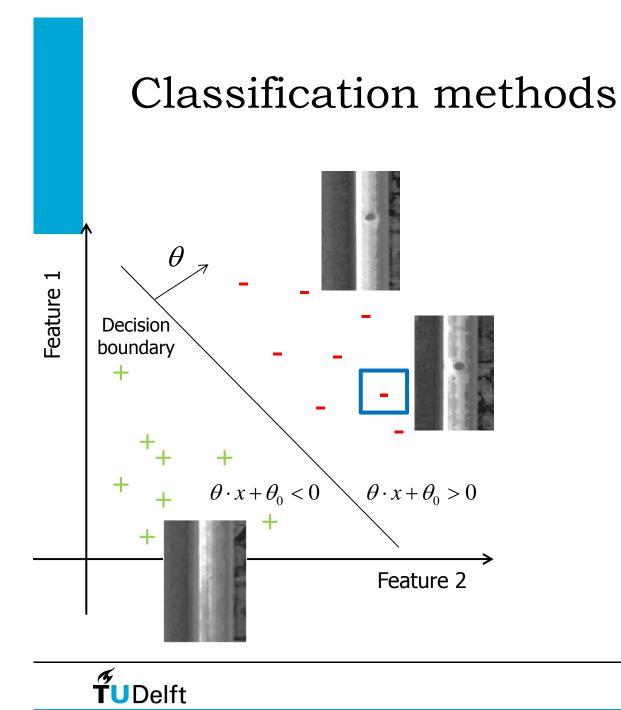


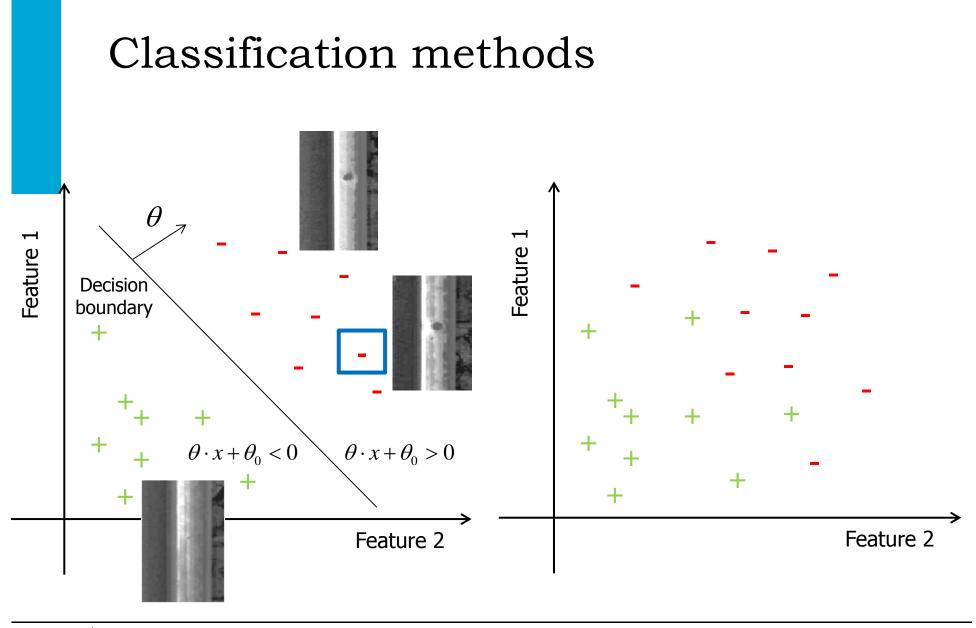


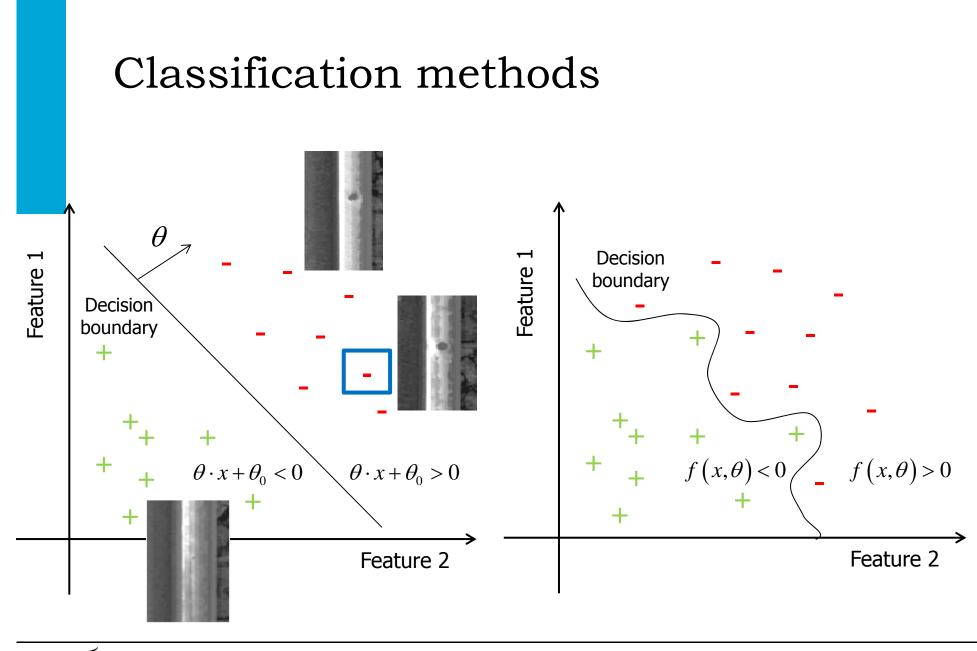




20

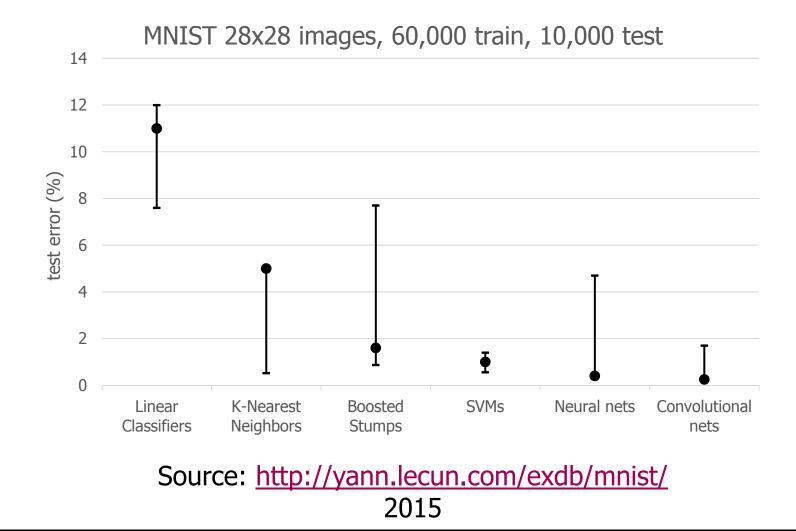


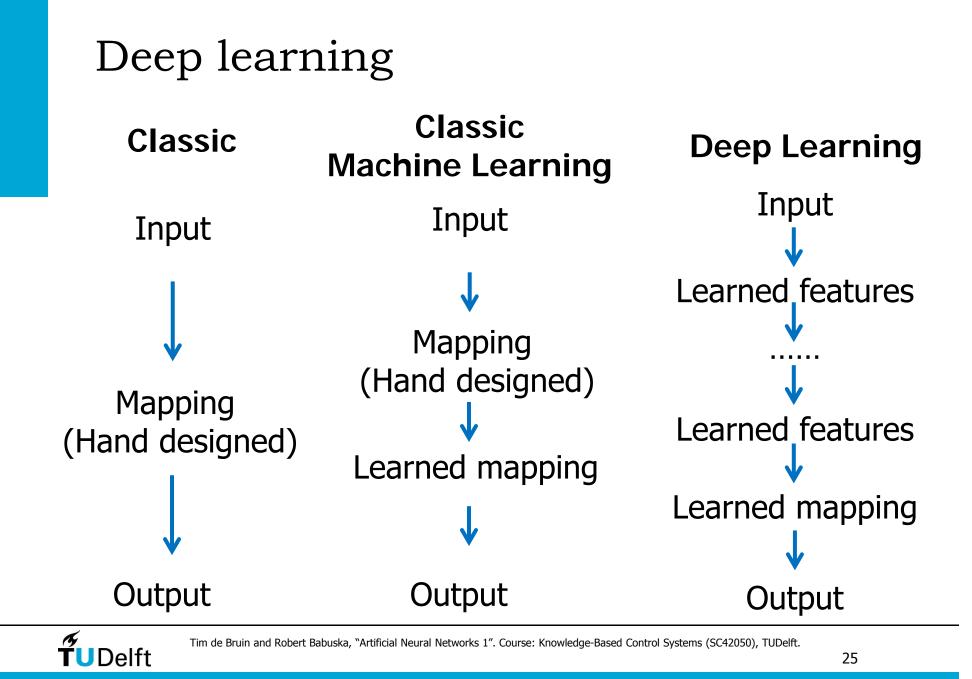




23

Possible methods





Deep learning: learned features

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layer mixed4b,c)

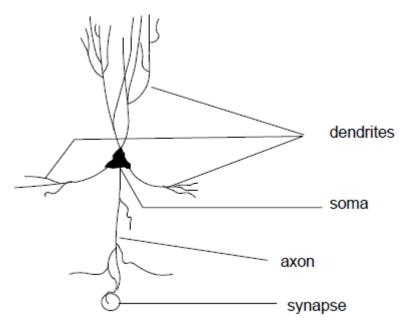
Objects (layer mixed4d,e)

https://ai.googleblog.com/2017/11/feature-visualization.html

Deep learning: learned mapping

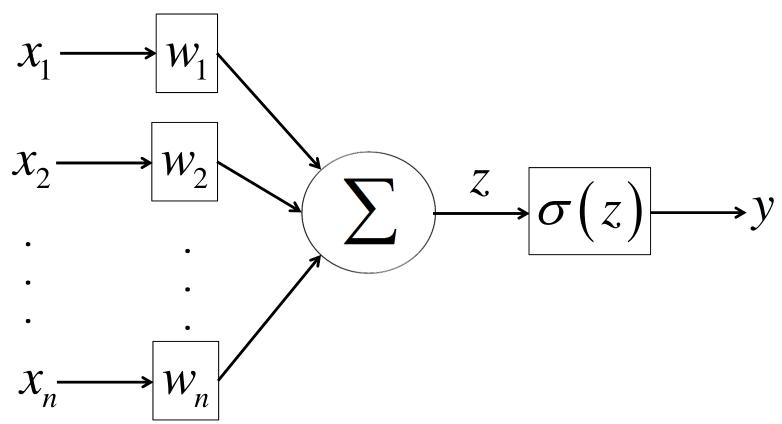
McCulloch and Pitts modelled the behavior of a single neuron in 1943. They called this mathematical model a Perceptron.

TUDelft

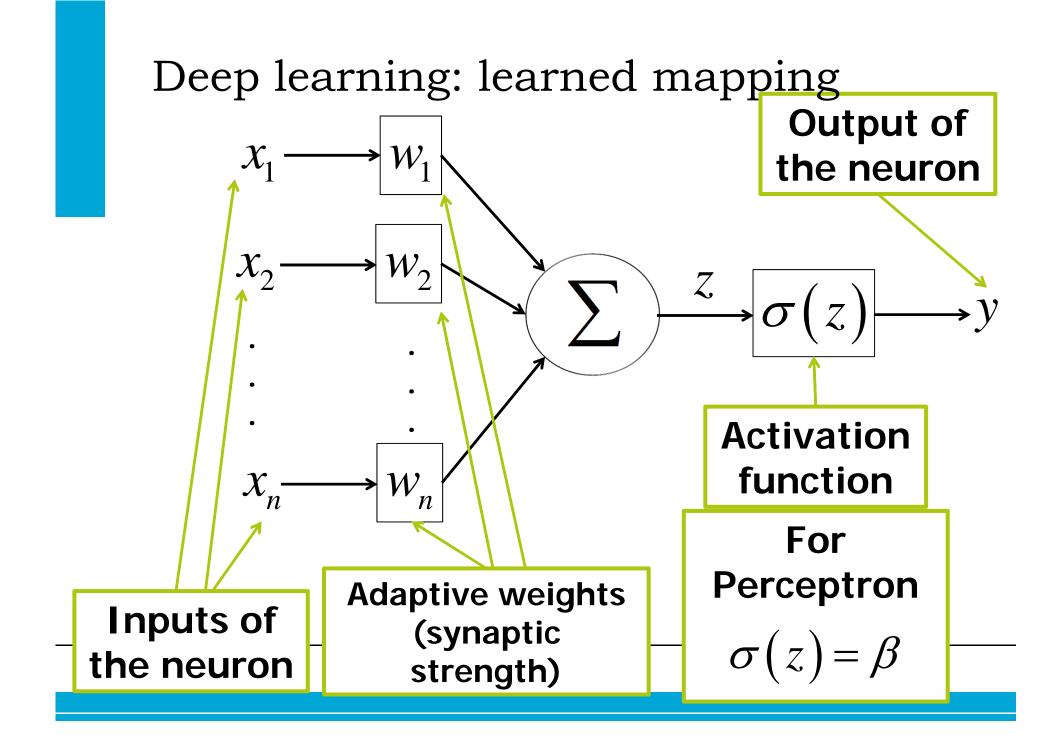


R. Babuska, Knowledge based Control Systems, Lecture notes.

Deep learning: learned mapping

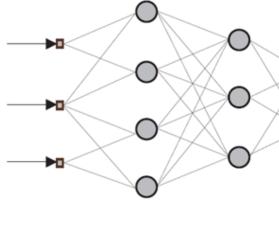


Artificial neuron

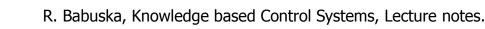


Deep learning: learned mapping

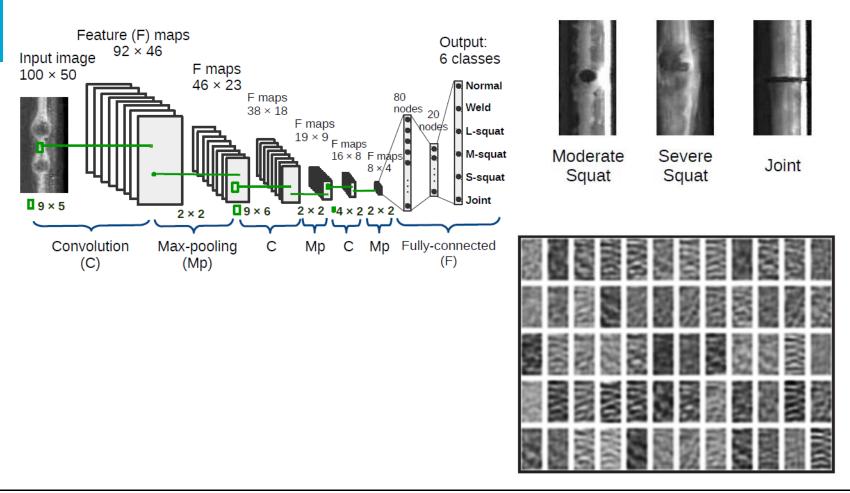
Multi-layer ANN



Paul Werbos, the father of backpropagation, since 1974 we can train neural networks



Detection of rail defects



S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska, and B. De Schutter, "A deep learning approach for detection of rail defects". Proceedings of the IEEE World Congress on Computational Intelligence, IEEE WCCI 2016, 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 25-29 July, 2016, pp. 2584-2589.

Image data

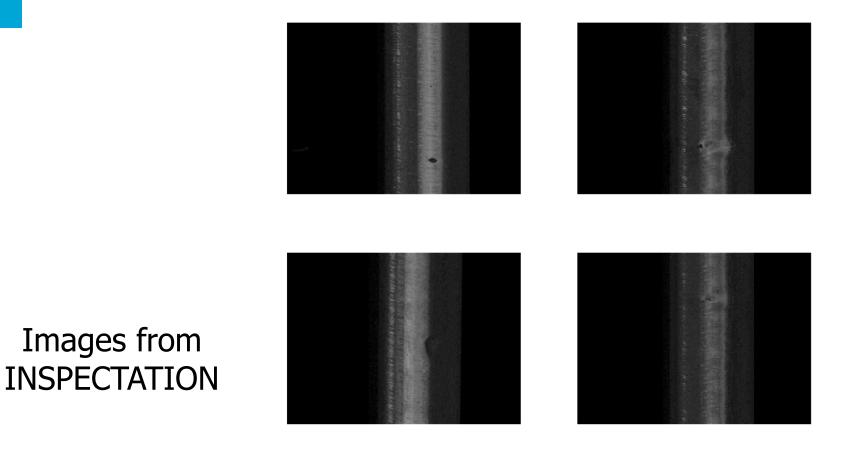
- The dataset consists of 4220 samples, of which 3170 are normal, and roughly 1000 are defects.
- We train a **convolutional neural network** model with 80% of the data, and test with the remaining 20% (in 5 folds). Here is the averaged result of the test:

	Predicted normal	Predicted defect
Normal samples	635	1
Defects	10	197

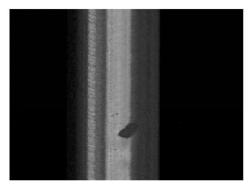
Accuracy = 0.9870

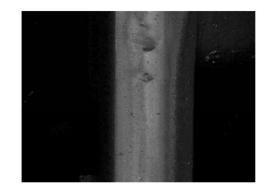
False detections (image data)

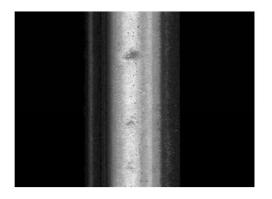
Defects not detected

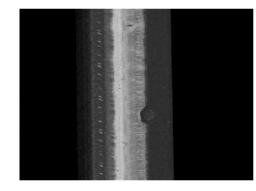


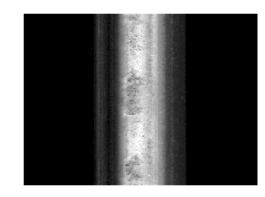
Hits 1 (image data) True Positive





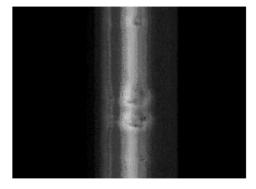


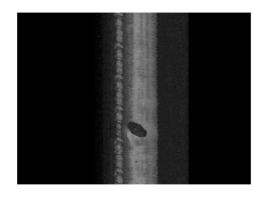


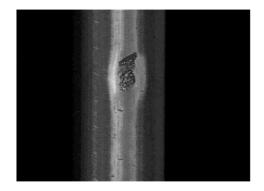


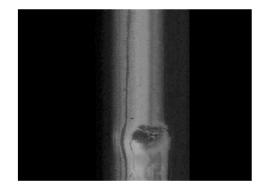
Images from INSPECTATION

Hits 2 (image data) True Positive





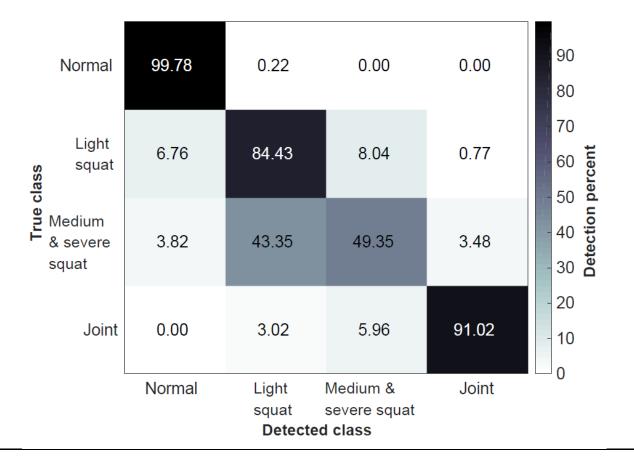




Images from INSPECTATION

Classification of types

• We also tried to classify the defects into 2 categories of spots/light vs. medium/severe.



Outline

1) Video Image based Monitoring of Rail

2) Deep Neural Networks for Rail Monitoring

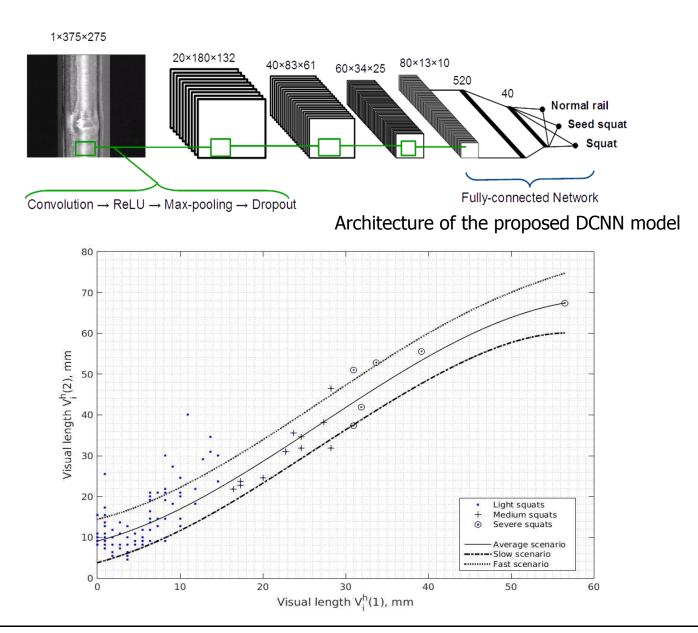
3) Making use of the data: Risk analysis

4) Conclusions



- A big data analysis approach is used to automatically detect squats from rail images.
 - ✤ A Bayesian model is employed to estimate the failure probability.

A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuška, R. Dollevoet, Z. Li and B. De Schutter, "A big data analysis approach for rail failure risk assessment". Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507.



A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuška, R. Dollevoet, Z. Li and B. De Schutter, "A big data analysis approach for rail failure risk assessment". Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507.

Outline

1) Video Image based Monitoring of Rail

- 2) Deep Neural Networks for Rail Monitoring
- 3) Making use of the data: Risk analysis
- 4) Conclusions

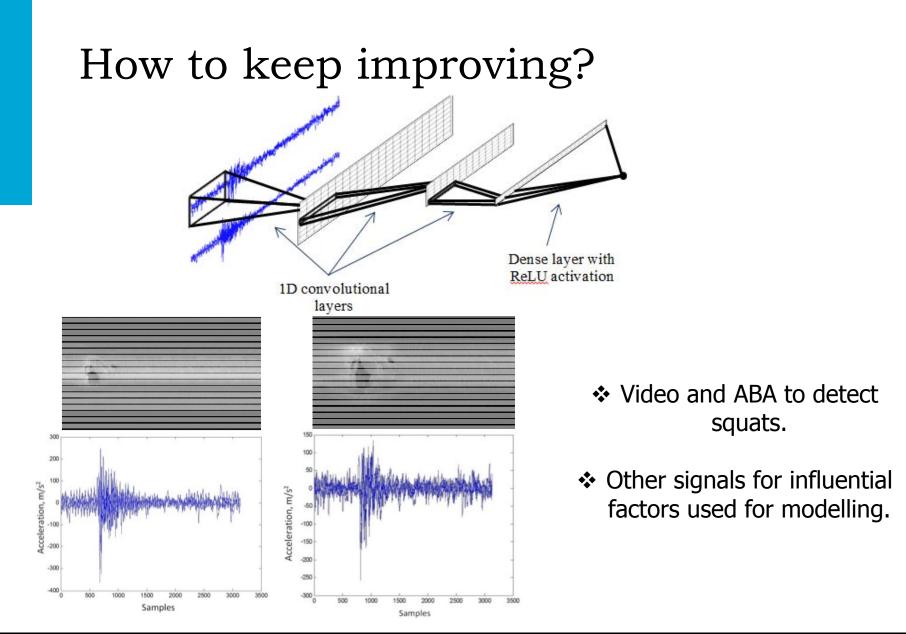
Conclusions

- "Fancy" algorithms will not perform 100% if the knowledge of the railway system is not included explicitly.
- Purely data-based methods do not guarantee physical meaning. A combined approach, data-based with physical modelling would be preferred.
- There is a great potential for using Deep Learning to facilitate maintenance decisions on Dutch railways. Further research: head-checks, corrugation, wheel-burns, indentations.

Conclusions

- Self-learning, transfer learning and new architectures could be tested.
- Higher resolutions cameras, including 3D measurements, can allow a complete digitalization of the railways assets.

• Many open challenges: Fusion of data, velocity, etc.



A. Jamshidi, S. Hajizadeh, Z. Su, M. Naeimi, A. Núñez, R. Dollevoet, B. De Schutter and Z. Li, "A decision support approach for condition-based maintenance of rails based on big data analysis". Transportation Research Part C: Emerging Technologies, Volume 95, October 2018, Pages: 185-206. Deep learning: learned features

Just for fun:

https://affinelayer.com/pixsrv/index.html

https://playground.tensorflow.org/

Automatic detection of rail surface defects using video image: A case study in the Dutch railways

Lunch lecture series of Monitoring Community 10th May 2019

Dr. Alfredo Núñez Vicencio Assistant Professor, TU Delft Section of Railway Engineering

