

TUDelft

Requirements for DIC for Light Damage

- Achieve highest possible resolution:
- $\ ^{\bullet} \ Small \ subsets \rightarrow Optimised \ pattern, limited \ search-zone \ algorithm; \\$
- \bullet Look at discontinuities in displacements, not smooth strains:
- Independency between subsets,
- Insight into overlap of grid point information;
- Crack detection and characterisation
- Full Automation:
- \bullet Load images \to Results + Graphs

TUDelft

Pattern and Hardware

- Computer-optimised pattern painted on the white masonry surface with laser-cut moulds,
- Smaller pattern consisted of graded sand sprayed on wet paint.
- DSLR with 51 MPx, sharp and distortion-free* lens. Up to 5 fps,
- Flash for even and consistent lightening, and zero image blur,
- Computer-triggered setup.

TUDelft

Software - Sdic

- Pearson-correlation search of subset positions,
- Self-coded in Matlab language,
- Tailored for specific needs, adaptable, automatic, GUI or programatic,
- Crack characterisation algorithms,
- Stand-alone app (does not require Matlab by the user), deployable on all platforms

TUDelft

Limitations

- Only 2D surfaces and 2D displacements,
- No 3D or out-of-plane;
- Small displacements and no significant rotations;
- Not focused on strains but on displacements and cracks;
- Solving in parallel multi-threaded Matlab code is not as fast as parallel C,
- Speed is compensated by automation and lack of user interaction requirements.
- Slow live-view

TUDelft