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ABSTRACT
Terrestrial positioning systems are being investigated as the complement to the global navigation satellite systems (GNSS), to
provide precise and reliable positioning services in a GNSS-challenged environment. In this paper, we present the positioning
performance of a ground-based positioning system, in which a multiband OFDM burst is used as a ranging signal to estimate
carrier phase, and all transmitters are tightly synchronized by optically distributed time and frequency reference signals. The
receiver, like in GNSS, runs on its own clock. An experiment has been carried out in an outdoor living lab environment
to demonstrate the flexibility of precise positioning using carrier phase with the proposed ground-based system. During the
experiment, the receiver was moved over a trajectory of 17 m forth and back, and acquired the ranging signal for 71 seconds.
Without calibrating the different initial phase offsets among the transmitters, we keep the carrier phase cycle ambiguities as
float numbers and compute the so called float position solutions. The root mean-squared error (RMSE) of the position solution
in East and North direction are 4.22 cm and 4.63 cm, respectively, demonstrating the high-accuracy potential of the proposed
burst oriented hybrid optical-wireless terrestrial positioning system.

I. INTRODUCTION
Precise and reliable positioning services have recently become in high demand in various emerging applications, such as
autonomous driving and internet-of-things (IoT). Global Navigation Satellite Systems (GNSS) have been widely used and can
fulfill the required positioning performance in open areas. However, the performance deteriorates in urban canyons and indoor
environments, due to severe multipath and signal blockage. The relatively narrow signal bandwidth and the very low received
signal power levels of GNSS signals also make them vulnerable to jamming and spoofing attacks. Therefore, a terrestrial



positioning system has been investigated as a complement to GNSS, which can be deployed regionally to provide precise and
reliable terrestrial position, navigation and timing (PNT) services.

Terrestrial GNSS-like systems have recently been proposed as complements and augmentations of GNSS. The pseudolites,
which are ground-based, transmit navigation ranging signals as used in GNSS (e.g., a pseudo-random-noise (PRN) code). As
timing is crucial for precise positioning, and installation of a highly accurate atomic clock in each pseudolite is prohibitively
expensive, synchronization of the pseudolites needs to be arranged otherwise. The synchronization can be achieved based on
received wireless signals or based on commonly distributed time and frequency signal using cables. For example, in the Locata
system [1, 2], a so-called ‘Timeloc’ technology is implemented for wireless synchronization. As the performance of the wireless
synchronization depends on the wireless channel condition, the location of the pseudolites should be carefully selected to avoid
multipath. In [3], to avoid the impact of multipath on clock synchronization, the authors proposed to distribute the time and
frequency reference signals (i.e., 1 PPS (pulse-per-second) and 10 MHz) for synchronization through coaxial cables among
transmitters in a GNSS-like ground-based system. Due to these cable connections, such a system can only be implemented
within a relatively limited area.

The ground-based GNSS-like system uses a narrowband signal for ranging which typically occupies only a few MHz. Based
on such a system, the performance of both the wireless synchronization among the pseudolites and positioning is sensitive to
multipath. Therefore, an ultra-wideband (UWB) system [4], which uses a much larger signal bandwidth and thus offers a higher
time resolution, has recently been proposed for positioning, Nevertheless, all transmitters need to be synchronized, for example,
based on round-trip time estimation [5].

In [6], we proposed a hybrid optical-wireless terrestrial positioning system, which can support a large signal bandwidth (e.g.,
160-320 MHz). The radio transmitters (i.e., pseudolites) are synchronized with common reference signals (i.e., 10 MHz and
1 PPS) generated by a central atomic clock and distributed to each radio transmitter through an optical telecommunication
infrastructure using the White Rabbit precision time protocol (WR-PTP) [7, 8]. As the system is developed under the SuperGPS
project (funded by theDutchResearchCouncil, NWO), the prototype system is referred to as the “SuperGPS system” in this paper.
Using a relatively large radio signal bandwidth in this system improves the resolvability of reflections in a multipath channel.
In addition, using the optically distributed time and frequency reference signals through the existing optical communication
infrastructure provides flexibility to expand the system over a large area, and the synchronization, in case of wireless distribution
of the reference signals among the transmitters, is not affected by multipath which is prominently present in an urban area.

To be spectrum efficient and adaptable to existing telecommunication networks, a multiband orthogonal frequency division
multiplexing (OFDM) signal, which occupies a total of 160 MHz of virtual bandwidth, is used as a ranging signal in the system.
OFDM has been adopted in various telecommunication systems which also have been exploited as signal-of-opportunities for
positioning, such as in Wi-Fi [9], 4G/5G [10, 11, 12, 13], and DVB-T [14]. As indicated in [15], only a few signal bands,
sparsely located in the available signal spectrum, are needed to create a large virtual signal bandwidth to achieve a high ranging
precision.

In a terrestrial positioning system, the radio transmitters are generally fixed and static. As the radio receiver (e.g., carried by
pedestrians and ground-based vehicles) moves relatively slowly, it is unnecessary to continuously transmit the ranging signal for
tracking. Therefore, in the SuperGPS system, the ranging signal is transmitted as low duty-cycle bursts within a time division
multiplexing (TDM) scheme, which largely improves the time efficiency and leaves most of the spectral resources to other
telecommunication applications.

The time delay and the carrier phase are the most common observables for positioning. They can be jointly estimated from the
ranging signal through maximum likelihood (ML) estimation in a stepwise manner [16, 17]. Compared with the propagation
time delay, the carrier phase is much more spectrum efficient in providing an equivalent ranging precision, because of the short
wavelength of the central carrier. However, the phase cycle ambiguity should be resolved, either as a float number or fixed into
an integer number, in the positioning model. In this paper, we assess the positioning performance of the hybrid optical-wireless
SuperGPS terrestrial positioning system, based on the carrier phase estimated through the OFDM burst ranging signals.

This paper is organized as follows. First, the signal structure and the received signal model, as well as the impact of a sampling
frequency offset and a carrier frequency offset are provided in section II.. Then, a step-wise carrier phase estimation and
tracking of the multiband OFDM signal is introduced in section III.. In section IV., a positioning model is derived for an
asynchronous system, only based on the carrier phase. Afterwards, in section V., results from an outdoor experiment are
presented to demonstrate a centimeter level positioning accuracy with a moving receiver. Lastly, conclusions are drawn in
section VI..

Notation:

The superscript and subscript of a variable (e.g., ϕir) generally denote the index of the transmitter (e.g., i) and the receiver
(e.g., r), respectively. Uppercase boldface letters (e.g.,G) are used for matrices, and lowercase boldface letters (e.g., g) denote



column vectors. [·]i,j denotes the element in the i-th row and the j-th column of a matrix. IN stands for an identity matrix
of size N . 1N denote a N -by-1 vector of ones. (·)T, (·)* and (·)H denote transposition, conjugate and Hermitian operation,
respectively. j denotes the imaginary unit. A and u denote a design matrix and a vector which contains unknown parameters,
respectively.

II. SIGNAL MODEL
1. Received Multiband OFDM Burst
A burst signal packet, which consists of three multiband OFDM pilot symbols (i.e., training symbol), is currently implemented
for ranging in the SuperGPS system as shown in Fig. 1(a). The first two symbols are the normal pilot symbols, which are known
to the receiver and will be used for synchronization and channel estimation. A PRN sequence, as an example, is modulated on
all subcarriers in each signal band, and it is identical for all transmitters. The last symbol is a shortened Moose’s pilot symbol
[18], in which only every other subcarrier is used in an OFDM symbol, so that the first half of the symbol in time is equal to the
second half, excluding the cyclic prefix (CP). A Gold sequence is modulated on the activated subcarriers in the Moose’s symbol.
Each transmitter modulates a unique Gold sequence as an ID to allow for the identification by the receiver. In addition, as an
TDM scheme is applied in the current system, the burst ranging signal packet is transmitted with a period of TD, and different
transmitters occupy different time slots for the transmission (in the prototype system we have 6 transmitters).
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Figure 1: (a) Each transmitter transmits a burst ranging signal in a time-division scheme with a period of TD . Each burst ranging signal
packet consists of three OFDM symbols, (b) spectrum of multiband OFDM signal (in baseband), which consists ofM available signal bands
and N subcarriers in each signal band.

In addition, as shown in Fig. 1(b), there areM available bands in the allocated signal spectrum that can be used for positioning.
Given a medium total signal bandwidth (e.g., 100-200 MHz), all signal bands can be received simultaneously through a single
RF front-end and analog-to-digital converter (ADC). To preserve the characteristics of the shortened Moose’s symbol, the
number of subcarriers N in each signal band should be an even number.

In order to properly track the carrier phase for positioning without cycle-slips, the transmission period TD for each transmitter
should be carefully determined. The faster the receiver is moving, the shorter the transmission period shall be, in order to avoid
the occurrence of cycle-slips in the phase. For example, given a central frequency of 3960MHz (as in our system), and a receiver
moving with a speed of 80 km/h (i.e., 22.22 m/s), the maximum Doppler frequency offset is about 293.51 Hz. Considering a
transmission period TD of 1 millisecond, the maximum phase rotation will be already about 0.29 cycle within this period.

Given the baseband OFDM signal sbb,m(t) for the m-th signal band, the passband multiband OFDM signal modulated on the
carrier fc is given by

spb(t) = <


∑
m

sbb,m(t) exp(j2πfmt)︸ ︷︷ ︸
sbb(t)

exp (j2πfct+ ϑt)

 , (1)

in which < denotes the real part of a complex value, fm denotes the central frequency of them-th signal bands, fc denotes the
central frequency of the entire multiband OFDM signal, ϑt denotes the initial phase offset at the transmitter, the subscript ‘bb’



and ‘pb’ denote ‘baseband’ and ‘passband’, respectively.

Apart from the Doppler frequency offset due to receiver motion, a frequency offset will be introduced by the receiver itself as it
runs on its own clock, which is not synchronized to the time-frequency reference of the transmitters. In an asynchronous system,
due to the sampling frequency offset (SFO) ∆fs(t) and the carrier frequency offset (CFO) ∆fc(t), the sampling frequency f ′s
and the central frequency f ′c generated by the receiver, are given by

f ′s(t) = (1 + η(t)) fs = fs + ∆fs(t), f ′c(t) = (1 + η(t))fc = fc + ∆fc(t), (2)

where fs and fc respectively denote the sampling frequency and the central frequency generated in the transmitter, and η(t)
denotes the normalized frequency offset

η(t) =
∆fs(t)

fs
=

∆fc(t)

fc
. (3)

Note that the frequency offset is defined with respect to the frequency generated by the transmitter. Therefore, the argument t is
not present in the frequencies generated by the transmitter.

As the normalized frequency offset η is typically small (e.g., a few ppm (part-per-million)), one can have

T ′s(t) =
1

(1 + η(t))fs
≈ (1− η(t))Ts, (4)

where Ts and T ′s denotes the sample interval generated in the transmitter and receiver, respectively. In this paper, all signal
bands are assumed to be acquired through a single RF front-end, thus the sampling frequency should cover the entire virtual
signal bandwidth B. As shown in Fig.1(b), consideringM signal bands and N subcarrier in each signal band, one has

Ts =
1

B
=

1

MN∆f
, ∆f =

1

NMTs
, (5)

where ∆f denotes the subcarrier spacing.

At the receiver, the passband signal spb(t), perturbed by the channel and the noise, is down-converted to baseband with a locally
generated carrier f ′c. Thus, the received baseband signal is written as

rbb(t) = 2FL {(spb(t) ∗ h(t)) cos (2πfct+ ϑa(t) + ϑr)} − j2FL {(spb(t) ∗ h(t)) sin (2πfct+ ϑa(t) + ϑr)} , (6)

where FL denotes a low-pass filter operator, ∗ denotes convolution, h(t) denotes the channel impulse response, ϑr denotes the
initial phase offset at the receiver, and ϑa(t) denotes the accumulated phase offset, given by

ϑa(t) = 2π

∫ t

t0

∆fc(ν)dν. (7)

To analyse the impact of the frequency offset on the time delay and the carrier phase, and to keep the derivation mathematically
manageable, a direct or Line-of-Sight (LoS) path channel is considered,

h(t) = αδ(t− τ),

where α denotes the propagation gain of the LoS path, and τ denotes the LoS propagation time delay. Then, the received signal
(6) is rewritten by

rbb(t) = αsbb(t− τ) exp(−j(2πfcτ + ϑa(t))) exp(j(ϑt − ϑr)), (8)

where ϑt denotes the initial carrier phase offset in the transmitter as used in (1).

As the CFO and SFO are assumed to be invariant at least within one OFDM symbol, with a duration typically in the order of
microseconds, the sample interval T ′s ≈ (1− η)Ts is presented without argument t in the following derivations. After the ADC,
the discrete received baseband OFDM symbol from the k-th packet with NM samples is given by

rbb[n; ∆tk] =αsbb(nT
′
s − τ − τa(∆tk)) exp (−j(2πfcτ + ϑa(∆tk) + 2π∆fcnT

′
s)) exp(j(ϑt − ϑr)),

=r
(1)
bb [n; ∆tk]r

(2)
bb [n; ∆tk], n = Ng, . . . , Ng +NM − 1,

(9)



where ∆tk is the elapsed time between the 1-st received packet and the k-th packet, and

r
(1)
bb [n; ∆tk] =

∑
m

∑
i

ci,m exp(−j2π(fi + fm)(τ + τa(∆tk))) exp (−j2π(fi + fm)(n−Ng)T ′s) ,

r
(2)
bb [n; ∆tk] =α exp(−j2πfcτ) exp (−j(ϑa(∆tk) + 2π∆fc(n−Ng)T ′s)) exp(j(ϑt − ϑr)),

(10)

with

τa(∆tk) =

∆tk/Ts−1∑
v=0

η[v]Ts,

and N is assumed to be an even number, fi = i∆f denotes the frequency of the i-th subcarrier in each band, n denotes the
sample index in the current symbol, ci,m denotes the pilot data modulated on the i-th subcarrier in the m-th band, Ng denotes
the number of samples in the cyclic prefix and τa(∆tk) denotes the accumulated time offset due to the SFO.

2. Coarse Carrier Frequency Offset Estimation

In (9), the discrete received signal has been split into two parts (i.e., r(1)
bb [n; ∆tk] and r(2)

bb [n; ∆tk] ).We first analyse the term
r

(1)
bb [n; ∆tk] in (9), and show that the first half of the shortened Moose’s symbol will be approximately the same as the second
half, and the impact of CFO will be reflected in the term r

(2)
bb [n,∆tk]. Finally, based on the correlation between the first half of

the symbol and the second half, the CFO is estimated [19].

Using the second half of the shortened Moose’s symbol with n = Ng, . . . , Ng +NM/2− 1, we have

r
(1)
bb [n+NM/2; ∆tk] =

∑
m

∑
i=even

ci,m exp(−j2π(fi + fm)(τ + τa(∆tk))) exp (−j2π(fi + fm)(n−Ng)T ′s)

exp (−j2π(fi + fm)(NM/2)(1− η)Ts)

=
∑
m

∑
i=even

ci,m exp(−j2π(fi + fm)(τ + τa(∆tk))) exp (−j2π(fi + fm)(n−Ng)T ′s) exp (−j(i+mN)π(1− η))

≈
∑
m

∑
i=even

ci,m exp(−j2π(fi + fm)(τ + τa(∆tk))) exp (−j2π(fi + fm)(n−Ng)T ′s) = r
(1)
bb [n; ∆tk].

(11)

As only every other subcarrier is used in the shortened Moose’s symbol, i is an even number in (11). Also because the
normalized frequency offset η is typically small and i + mN is an even number, the term r

(1)
bb [n; ∆tk] is approximately equal

to r(1)
bb [n+NM/2; ∆tk]. To remove the common phase offset in r(2)

bb [n; ∆tk] and r(2)
bb [n+NM/2; ∆tk], one has

r∗bb[n; ∆tk]rbb[n+N/2; ∆tk] =|rbb[n; ∆tk]|2 exp

(
−j2π∆fc

NM

2
(1− η)Ts

)
≈|rbb[n; ∆tk]|2 exp

(
−j2π∆fc

NM

2
Ts

)
=|rbb[n; ∆tk]|2 exp (−jπ∆fcNMTs) .

(12)

Therefore, using the shortened Moose’s symbol, the CFO can be estimated by

∆f̌c(∆tk) = − ψ̌

πNMTs
, ψ̌ = arg


NM/2+Ng−1∑

n=Ng

r∗bb[n; ∆tk]rbb[n+NM/2; ∆tk]

 , (13)

where the check-symbol (i.e.,ˇ) is used to denote the coarse estimate.

The CFO will cause a change in carrier phase as time elapses, even when the receiver is static. As a burst signal is used for
ranging and positioning, if the carrier phase rotates more than one cycle within the transmission period of the burst ranging
signal, a cycle-slip will be introduced in the carrier phase measurement. To reduce the extra phase rotation due to CFO, one can



estimate and compensate the CFO based on the shortened Moose’s symbol with (13),

řbb[n; ∆tk] =rbb[n; ∆tk] exp(jϑ̌a(∆tk))

=αsbb[nT
′
s − τ − τa(∆tk)] exp

(
−j
(

2πfcτ + ϑ̃a(∆tk)
))

exp(j(ϑt − ϑr))
(14)

where

ϑ̃a(∆tk) = ϑa(∆tk)− ϑ̌a(∆tk) = 2π

∫ ν=∆tk

ν=0

(
∆fc(ν)−∆f̌c(ν)

)
dν. (15)

The extra rotation of the carrier phase ϑ̃a(∆tk) caused by the residual CFO, is referred to as the clock error in this paper, and
will be estimated along with the position coordinates in a positioning model introduced in section IV.

Generally, the CFO can be assumed to be relatively stable for a certain period (e.g., for a few seconds), and the CFO estimate
for the compensation does not need to be updated for every ranging signal packet (i.e., with an update rate of TD). The coarse
CFO can be determined by the Moose’s symbol from all received signal packets within a certain period together to improve the
precision.

As shown in (13), the CFO is estimated in the range of ±∆f (over a period of MNTs/2). Later, the clock error ϑ̃a(∆tk),
computed along with the position solution in a positioning model, which will be introduced in section IV., can also be used for
CFO estimation within a range of ±1/2TD (i.e., over a period of TD). As the transmission period TD is much longer than the
OFDM symbol time, the CFO estimated based on the clock error can provide a much finer frequency range than the one based
on the shortened Moose’s symbol. Therefore, in this paper, CFO estimation based on the shortened Moose’s symbol is referred
to as coarse CFO estimation ( the estimate is denoted by ∆f̌c), and the one based on the positioning model is referred to as fine
CFO estimation (the estimate will be denoted by ∆

ˆ̃
fc).

III. CARRIER PHASE
In this section, the propagation time delay and the carrier phase will be jointly estimated based on the ML method. This
procedure is implemented in a step-wise manner to reduce the computational complexity.

To simplify notation, we drop the variable of the elapsed time ∆tk in the following derivations. Given an L-path channel, the
sampled complex channel impulse response [20] is given by,

h(n) =

L∑
l=1

xlδ (nTs − (τl + τa,l)) , xl = αl exp
(
−j(2πfcτl + ϑ̃a,l)

)
, (16)

where τl denotes the propagation delay of the l-th path, xl stands for the complex gain, αl denotes the modulus of xl and is a
real number, τa,l and ϑ̃a,l denote the clock error in time delay and carrier phase for the l-th path, respectively. The phase in the
complex gain xl, which contains the ambiguous ranging information, is defined as carrier phase in this paper. By default, l = 1
represents the LoS path.

After packet synchronization and FFT, the channel frequency responseH is estimated from the first two pilot symbols of the
multiband OFDM signal that consists ofM signal bands andN subcarriers in each band. Now the measurement model is given
by

H̄ = F {h(n)} =

 a1(τ1 + τa,1) a1(τ2 + τa,2) . . . a1(τL + τa,L)
...

...
...

aM (τ1 + τa,1) aM (τ2 + τa,2) . . . aM (τL + τa,L)



α1 exp

(
−j(2πfcτ1 + ϑ̃a,1)

)
α2 exp

(
−j(2πfcτ2 + ϑ̃a,2)

)
...

αL exp
(
−j(2πfcτL + ϑ̃a,L)

)

 = A(τ )x

(17)
where

[am(τl + τa,l)]i = exp (−j2π(fm + fi)(τl + τa,l)) , xl = αl exp
(
−j(2πfcτl + ϑ̃a,l)

)
,

am(τl + τa,l) ∈ CN×1, A(τ ) ∈ CMN×L, x ∈ CL×1,



F denotes the FFT. The carrier phase of the LoS path is of interest for positioning. In (17), except for the complex gain x, the
unknown parameter is also present in the design matrix A(τ ), due to the delay τ .

The maximum likelihood (ML) method can be applied to jointly estimate the time delay and the complex gain. Assuming
complex Gaussian noise with zero mean in the channel frequency responseH , we have

H ∼ CN
(
H̄, QH

)
, QH = σ2INM , (18)

with mean H̄ and variance matrixQH . The time delay and the carrier phase can now be jointly estimated through minimizing
the following cost function

τ̂ , x̂ = arg min
τ ,x

||H −A(τ )x||2
Q−1

H

. (19)

If τ̂ and x̂ are the global minimizers of (19), x̂ must satisfy [17]

x̂ =
(
A(τ̂ )HQ−1

H A(τ̂ )
)−1

A(τ̂ )HQ−1
H H, (20)

where the variance matrix QH is a diagonal matrix as defined in (18). In order to construct the design matrix A(τ ), the time
delay can be estimated by [17, 21]

τ̂ = arg min
τ

∥∥∥P⊥A(τ )H
∥∥∥2

Q−1
H

= arg min
1

σ2
tr
{
P⊥A(τ )HH

H
}
, (21)

where
P⊥A(τ ) = INMa − PA(τ ), PA(τ ) = A(τ )

(
A(τ )HQ−1

H A(τ )
)−1

A(τ )HQ−1
H .

Afterwards, the carrier phase is determined by computing the angle of the LoS complex gain,

φ = arg (x1) . (22)

Thus, one can first estimate the time delay τ̂ , construct the design matrixA(τ̂ ), and then estimate the complex gain, from which
the carrier phase of the LoS path can be computed for positioning [16].

To unbiasedly estimate the time delay and the complex gain, one should first determine the number of paths (i.e., L) in the
multipath channel, and then consider both the LoS and all reflections in the design matrix A(τ ) in (21) and (20). However,
considerable computational resources are required to obtain the unbiased solution. In the current system, a 160 MHz signal
bandwidth is used for ranging, which largely improves the resolvability of multipath. Therefore, we can simply reduce the
dimension of the design matrix to 1 (i.e., only one column in (17)), which means that only the LoS path is considered in the
model. Consequently, the computational complexity can be largely reduced, but the time delay and the carrier phase become
biased. For the carrier phase, the resulting bias is generally much smaller that one cycle. Due to the small wavelength of the
central carrier (in our case 7.6 cm), the bias, which propagates into the position solution, is typically acceptable for the user.

As the carrier phase φ from (22) varies from −π and π and is ambiguous, each carrier phase estimate carries its own integer
phase cycle ambiguity. Directly using the carrier phase estimates in the positioning model will lead to a rank deficiency, because
of too many unknown parameters. Therefore, the carrier phase φ should be properly unwrapped, so that only an initial integer
carrier phase ambiguity is preserved, and the change of the carrier phase cycle due to the movement of the receiver and the
residual CFO will be absorbed in the unwrapped carrier phase measurements ϕ.

IV. POSITIONING IN ASYNCHRONOUS SYSTEM
In this section, a positioning model is presented only based on the carrier phase. All transmitters are synchronized through the
optically distributed time and frequency reference signals, but the receiver runs on its own clock.

1. Positioning Model
Unlike in GNSS where the medium earth orbit (MEO) satellites are constantly moving, the radio transmitters in a terrestrial
positioning system are fixed and static. In order to use carrier phase for positioning, receiver motion is required to create a
change in the positioning geometry. Therefore, the change of the carrier phase estimates is caused by the change in the clock
error and the Doppler frequency offset (movement, i.e., change in position).



The properly unwrapped carrier phase estimates in units of length obtained from an asynchronous system is given by

ϕi
r
(t) = ρir(t) + cτh,r + λ

(
ϑ̃a(t) + ϑi − ϑr

2π
−N i

r

)
+ eir(t), (23)

where the superscript i denotes the index of the transmitter, λ denotes the wavelength of the central carrier at fc, ρir(t) denotes
the propagation distance between the i-th transmitter and the receiver, N i

r denotes the integer carrier phase cycle ambiguity,
τh,r denotes the sum of the hardware delay in the transmitter and the receiver, ϑ̃a(t) denotes the clock error introduced by the
residual CFO, ϑi denotes the initial phase offset from the i-th transmitter (i.e., ϑt used in section II.). In addition, eir(t) contains
the thermal noise and likely also includes an additional multipath error as not all reflections are considered in (20).

As every transmitter-receiver link carries its own integer carrier phase cycle ambiguity, measurements taken from at least two
different time epochs with a change in geometry are required in the positioning model. Moreover, the carrier phase cycle
ambiguities N i

r are linearly dependent on the clock error ϑ̃a(t) (expressed in radians), which is a receiver-dependent and time-
variant parameter. Therefore, the design matrix of the positioning model is still not a full-rank matrix. It becomes a rank-defect
least-squares (LS) problem, which, however, can be solved by applying the S-system theory [22, 23]. The phase ambiguities
and the clock error cannot be separated, only their combination is estimable. We can select one of the transmitters as the pivot
transmitter, and combine the clock error and the phase ambiguity of the pivot transmitter as one unknown parameter. Then,
the carrier phase ambiguities for the rest of the transmitters can be estimated as the difference with respect to the ambiguity
of the pivot transmitter. Therefore, the positioning model based on the carrier phase obtained at two different epochs from K
transmitters is given by

[
ϕr(t1)
ϕr(t2)

]
=

[
Gr(t1) 0 −λ1K 0 Ω

0 Gr(t2) 0 −λ1K Ω

]
∆x(t1)
∆x(t2)

δ̃pr (t1)

δ̃pr (t2)

Ñr

 = Au, (24)

where

ϕr(t) =
[
ϕ1
r(t) . . . ϕKr (t)

]T
,

Gr(t) =
[
g1
r(t)T . . . gKr (t)T

]T
,

δ̃pr (t) =Np
r −

ϑ̃a(t) + ϑp − ϑr
2π

− cτh,r
λ

,[
Ñr

]
i

=N i
r −Np

r +
ϑp − ϑi

2π
, i 6= p, and i = 1, . . . , K,

(25)

and ∆x(t) contains the unknown coordinates of the receiver at time instant t, gir(t) is the transmitter-receiver geometric unit
direction vector, superscript p denotes the pivot transmitter, Ω denotes a matrix λIK with its first column removed (hence
Ω ∈ RK×(K−1)). To obtain the solution of (24), linearization based on Taylor expansion and Gauss-Newton iteration are
applied here to solve this nonlinear model. As δ̃pr (t) contains the time-variant clock error ϑ̃a(t), it could be used to analyze the
behavior of the clock, and potentially be used as well for synchronization. However, as δ̃pr (t) also contains the carrier phase
ambiguity of the pivot transmitter and the hardware delay, δ̃pr (t) in (25) is referred to as the relative clock error in this paper.

Based on the positioning model (24), the formal error of the solution can be determined by

Qû =
(
ATQ−1

ϕ A
)−1

, (26)

whereQϕ denotes the variance matrix of the carrier phase measurements. According to [16], the variance of the carrier phase
(with unit of m2) can be determined by

σ2
ϕ ≈

1

2NMSNR

(
λ

2π

)2

, (27)

where SNR denotes the signal-to-noise ratio (SNR).



Note that due to the initial carrier phase offset and the hardware delay, the carrier phase ambiguities in Ñr are no longer integer
parameters. Without a calibration or correction, the carrier phase ambiguities should be treated as constant float numbers, and
one will consequently obtain a so-called float solution. However, as the transmitters in a terrestrial positioning system generally
are deployed densely in a certain area, with rather short distances to the receiver, a relatively small displacement of the receiver
(e.g., a few meters) can already create a sufficient change in geometry to allow the float position solution to quickly reach a good
precision, down to the level of a few centimeters.

2. Fine Carrier Frequency Offset Estimation

As the time-variant clock error is included in ˆ̃
δpr (t2) (cf. (25)), one can estimate the residual CFO based on a series of ˆ̃

δpr (t2).
Given a TD = 1 ms update interval of the position solution, we assume that the CFO is constant not only within one OFDM
symbol, but also during the transmission period for the following analysis. Therefore, according to (25) and (15), one has

ˆ̃
δpr (kTD)− ˆ̃

δpr ((k − 1)TD) =
ˆ̃
ϑa(kTD)− ˆ̃

ϑa((k − 1)TD) ≈ 2π∆
ˆ̃
fc(kTD)TD, (28)

where
∆f̃D(kTD) = ∆fc(kTD)−∆f̌c(kTD). (29)

As the residual CFO is estimated based on δ̃pr (t2) through the carrier phase-based positioning model, the range of the residual
CFO is determined by the update rate of the relative clock error ˆ̃

δpr (kTD) (i.e., ±1/2TD), and is much finer than the one using
the shortened Moose’s symbol, which depends on the subcarrier spacing (i.e., ±∆f ). Thus, combining the coarsely estimated
CFO ∆f̌c, based on the shortened Moose’s symbol, with the fine CFO estimate ∆

ˆ̃
fc, the ultimate CFO is given by

∆f̂c(kTD) = ∆f̌c(kTD) + ∆
ˆ̃
fc(kTD). (30)

V. EXPERIMENTAL RESULTS
An outdoor experiment has been carried out to assess the positioning performance of the SuperGPS system, using the carrier
phase estimated through the OFDM burst ranging signal.

1. Experimental Setup
As presented in [6], each transmitter and the receiver is implemented based on the Ettus X310 Universal Software Radio
Peripheral (USRP), which supports a maximum sampling frequency of 200 MSps with an effective bandwidth of 160 MHz.
Time-frequency reference signals, in the form of a 10MHz and 1 PPS are generated by a central atomic clock, which is located at
VSL (the Dutch national metrology institute), a few kilometers away, and distributed to so-called timing nodes of the SuperGPS
demonstration system on-site through an existing optical network. By connecting the USRPs to the timing nodes, which extract
the time and frequency reference signals from the optical fiber, all radio transmitters in the SuperGPS system are synchronized
at the 100 picoseconds level. The ranging burst signal for each transmitter occupies a time-slot of 21.6 microseconds as shown
in Fig. 1.

In this project, the frequency band with a central carrier fc at a frequency of 3960 MHz and a bandwidth of 160 MHz has been
licensed for experiments and demonstration of the proof-of-concept of the SuperGPS system. In practice, other available central
frequencies can be used, and it may not be necessary to occupy a contiguous band of 160 MHz [15]. It should be noticed that
with a higher carrier frequency, the carrier phase becomes more sensitive to errors, as the same small offset or displacement
will cause a larger phase rotation, which could be larger than one cycle and potentially lead to a cycle-slip.

The test site is located at The Green Village, which is a living outdoor lab on the TU Delft campus. Six transmitters are installed
in lampposts along the road in an area of about 20-by-50 meters. Fig. 2(a) shows the layout of the experimental positioning
system. The position of each transmitter antenna has been determined by using a land-surveying Total Station. The receiver was
moved along a track of about 17 m forth and back, and the experiment lasted for about 71 seconds (while driving very slowly).

In the experiment, the receiver antenna is mounted on the roof of a ground-based vehicle as shown in Fig. 2(b). In addition,
two 360-degree optical prisms are also mounted sideways on the vehicle, and they are tracked separately by two robotized Total
Stations to reconstruct the ground truth values for the receiver. In this way, the ground-truth positions of the moving receiver
antenna can be reconstructed, and used to evaluate the positioning performance of the SuperGPS system.

Due to the limitation of the existing infrastructure at the test-site, for example the height of the lamppost is generally about 3.5
meters above the ground, and given the height of the vehicle (about 2 meters), there is little height difference among different
transmitters and the receiver. Consequently, the position-precision in the vertical direction will be poor. However, the ground
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Figure 2: (a) Layout for the transmitters, trajectory of the interpolated ground-truth for the receiver (in blue), at The Green Village (photo
from Google Earth) (b) the receiver antenna is mounted on the roof of a car, and two 360◦ optical prisms are also mounted sideways on this
vehicle. Two prisms are tracked separately by two Total Stations to interpolate the ground-truth of the moving receiver.

vehicle generally moves smoothly on a straight and flat road without a significant variation in the vertical direction in this
experiment. Therefore, a 2D positioning scenario is considered in this paper, and the height of the receiver antenna is measured
by the Total Station, and assumed to be known a priori.
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Figure 3: 2D positioning geometry, the interpolated trajectories of the two prisms and the moving receiver.

The 2D positioning geometry of the test site is presented in Fig. 3, and the horizontal dilution of precision (HDoP) values are
typically around 1. To track a moving prism, the Total Station measures the angle and the distance with an update rate typically
between 1 Hz to 10 Hz. In order to provide the ground truth with the same update rate of the position solutions (i.e., 1 kHz),
interpolation is required for the location of the prisms. Here, a piece-wise linear least-squares estimation (LSE) with a moving
window over 5 points, is applied to estimate the offset and the slope. Afterwards, the locations of the prisms are interpolated
based on the linear model determined by piece-wise linear LSE with an update rate of 1 kHz. The interpolated trajectories of
the two prisms are shown in Fig. 3.

Once the trajectories of the prisms are determined, one can reconstruct the trajectory of the receiver antenna. However, the two
Total Stations shown in Fig. 2(b) are not synchronized in time. Cross-correlation between the time series of the trajectories of
the two prisms is applied to determined the time lag. After aligning the trajectories in time, one can estimate the corresponding
location of the receiver antenna, as the distances between the prisms and the receiver antenna are determined a priori. The
interpolated ground-truth of the receiver antenna is also shown in Fig. 3 by a yellow dashed line.



2. Coarse Frequency Offset Estimation
As presented in section II., the rotation of the carrier phase is caused not only by the movement of the receiver (i.e., Doppler
frequency offset), but also by the CFO. Generally, the CFO is much larger than the Doppler frequency offset. In the current
SuperGPS system, the burst signal packet is used for ranging. If the phase rotation is more than a cycle within the transmission
period, a cycle slip will occur in carrier phase tracking. To avoid such an issue, the CFO can be coarsely estimated and
compensated based on the shortened Moose’s symbol, as explained in equations (13)-(15).

Assuming that the CFO does not vary significantly within a certain period (e.g., a few seconds), the CFO is estimated for every
received Moose’s symbol in the received packets within 1 second, and its mean value over this 1 second time span is used to
compensate the CFO for the received signal packets in the next second.

0 20 40 60 80

measurement time (second)

-200

0

200

400

600

800

-0.05

0

0.05

0.1

0.15

0.2
coarse CFO: shortened Moose's symbol

Figure 4: Coarse CFO estimates ∆f̌c based on the shortened Moose’s symbol and shown on the left vertical-axis, with an update interval of
1 second. As the transmission period TD of each transmitter is 1 ms as shown in Fig.1(a), and there are 6 transmitters in the current prototype
system, 6000 packets are used for coarse CFO estimation. The coarse CFO is determined by averaging over 6000 estimates per second. In
addition, based on (3), the equivalent normalized frequency offset η̌ is shown on the right vertical-axis with a unit of ppm.

Fig. 4 shows the averaged coarse CFO estimates based on the shortened Moose’s symbol, with an update rate of 1 Hz. After
powering on the receiver device (i.e., USRP), it requires about 20 seconds to provide a relatively stable carrier frequency f ′c.
The CFO is about 500 Hz and is much larger than the Doppler frequency offset, which, for example, is about 293 Hz when the
receiver moves with a speed of 80 km/h. Therefore, it becomes necessary to compensate the CFO before estimating the carrier
phase for positioning, so that any cycle slip can be avoided when using the burst ranging signal for carrier phase tracking.

Equivalently, the normalized frequency offset η̌ is computed based on the coarse CFO estimate ∆f̌c (c.f. (3)), and also presented
in Fig. 4 at the right vertical-axis. According to the results, the normalized frequency offset η is generally less than 1 ppm,
which validates the assumption used in (4).

3. Positioning Performance
After compensating the coarsely estimated CFO in the received signal packets, the carrier phase is estimated based on (20) for
all transmitters, where only the LoS path is considered in the design matrixA(τ ). The unwrapped carrier phase, in which only
the initial carrier phase ambiguity is preserved, is shown in Fig. 5(a). Although the CFO has been coarsely compensated, the
residual CFO still dominates the change in the carrier phase (while the car drove only about 17 meters, the change in the carrier
phase went up to 60 meter).

In addition, Fig. 5(b) shows the formal standard deviation versus the measurement time (i.e., t2 − t1), which evaluates the
impact of the positioning geometry on the performance of the solutions in (24). Here, for simplicity, the SNR is assumed to be
10 dB for all transmitters. The variance matrix Qϕ is determined by (27), and consequently the formal standard deviation is
determined by the square root of the formal errorQû (26).

The formal standard deviation converges to a sub-centimeter level after about 20 seconds, during which the car had moved
1.77 m in East direction and 4.57 m in North direction, which creates a sufficient change in the geometry. Here the averaged
formal standard deviation is computed for the position solution and the relative clock error, for measurement times larger than
20 seconds. The averaged standard deviation of the position solution in East and North direction are 0.2 cm and 0.17 cm,
respectively, and 5.6× 10−3 cycle for the relative clock error δ̃pr (t1).
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Figure 5: (a) Unwrapped carrier phase measurement in unit of length. As the receiver runs on its own clock, the change of the carrier phase
is caused by the clock error, and the movement of the receiver, (b) formal standard derivations of the position solution in East and North
direction σ∆x(t2) (in m), the relative clock error σδ̃pr (t1) and σδ̃pr (t2) (in cycle).

As presented in section IV., the carrier phase estimated for two different time epochs with a change in geometry, is required to
avoid rank deficiency in the positioning model (24). Two epochs of carrier phase measurements are used, where t1 is kept fixed
all the time to the starting epoch of the experiment, and epoch t2 will be varied, up to 71 seconds past t1 (i.e., t2 can be replaced
by kTD, where k denotes the packet index).

By solving the positioning model (24), in which Tx-1 is selected as the pivot transmitter (i.e., p = 1), the position solutions and
the interpolated ground truth values are presented in Fig. 6(a). To evaluate the positioning performance, the difference between
the interpolated ground truth and position solution is computed and referred to as the position error. The position errors in the
North and East direction are presented in Fig. 6(b). At the beginning of the experiment, the position solution has a large error
and is poorly estimated, because there is only a little change in geometry. As time elapses, the difference between t2 and t1 in
(24) gets bigger.
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Figure 6: (a) 2D float position solutions in the East and North direction and the interpolated ground truth, (b) the position error versus the
measurement time in the East and North direction.

Based on the experimental results shown in Fig. 6, the root-mean-square error (RMSE) of the float position solution in the



North-direction and the East-direction are 4.22 cm and 4.63 cm, respectively. It should be noted that these figures include the
uncertainty in measuring the ground-truth with the Total Station, for instance identifying the phase center of the antenna for
both the transmitters and the receiver (as shown in Fig. 2(b)) which has a height of 13.8 cm and a diameter of 16.75 cm.

The empirical mean, the empirical standard deviation of the position error, and the RMSE, for the measurement time larger than
20 second, are shown in Table. 1. Due to the uncertainty of the measured ground-truth, the empirical standard deviation of the
position error is slightly larger than the formal standard deviation of the position solution shown in Fig. 5(b).

4. Fine Frequency Offset Estimation
Fig. 7 shows the relative clock error δ̃pr (t) which contains the ambiguity of the pivot transmitter Tx-1. As the carrier phase
measurement for the first epoch (i.e., at t1 in (24)) is kept the same in the positioning model as time elapses, the clock error
δ̃pr (t1) should be a constant value. As shown in Fig. 7(a), with a little change in geometry, at the beginning there are relatively
large errors in the estimates of the clock error ˆ̃

δpr (t1). However, it converges after about 20 seconds, as the ground vehicle is
continuously moving which improves the geometry. Fig. 7(b) shows the relative clock error ˆ̃

δpr (t2). Each time only two epochs
of measurements are used for positioning, t1 and t2 in (24), where the second epoch t2 (i.e., kTD) is varied from taken close to
t1 to about 71 seconds later. The change of ˆ̃

δpr (t2) is caused by the change of the clock error (i.e., the residual CFO).
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Figure 7: (a) Relative clock error ˆ̃
δpr (t1) for the first epoch of the pivot transmitter Tx-1, (b) relative clock error ˆ̃

δpr (t2) of Tx-1.

Here, the empirical standard deviation is also computed for the relative clock error ˆ̃
δpr (t1), when the measurement time is larger

than 20 seconds. As shown in Table. 1, the empirical standard deviation of the relative clock error is 0.65 cm, which is close to
the formal standard deviation as shown in Fig. 5(b), and indicates the quality of the carrier phase measurements.

Table 1: Empirical mean value and empirical standard deviation of the position error in East and North direction, and the relative clock
error, as well as 2D position RMSE, based on the 51000 estimates when the measurement time t2 − t1 ≥ 20 seconds in (24) (i.e., 51 second
measurements with an update interval TD = 1 ms).

unit: cm (empirical) mean (empirical) std. RMSE
position error-East 2.64 2.06 3.52
position error-North 2.06 3.57 4.12

relative clock error (λˆ̃
δpr (t1)) n/a 0.65 n/a

Using (28), Fig. 8(a) shows the fine CFO estimate ∆
ˆ̃
fc based on the clock error obtained in the positioning model. Similarly,

due to a limited change in geometry, there are relatively large errors at the beginning. Then, using (30), Fig. 8(b) shows the
CFO ∆f̂c(kTD) constructed from the coarse CFO using the shortened Moose’s symbol and the fine CFO using the carrier
phase-based positioning model with an update interval of TD = 1 ms, which can be used for frequency synchronization. This
provides a better precision than only using the shortened Moose’s symbol.
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Figure 8: (a) Fine CFO estimate ∆
ˆ̃
fc based on the positioning model, (b) ultimate CFO estimate ∆f̂c, which is the sum of the coarse CFO

estimate based on the shortened Moose’s symbol ∆f̌c and the fine CFO estimate, with an update interval of TD = 1 ms.

VI. CONCLUSION
This paper presents the carrier phase-based positioning performance in a terrestrial positioning system, in which all transmitters
are tightly synchronized through optically distributed time and frequency reference signals. As each transmitter uses a burst
packet as the ranging signal, the carrier phase cannot be continuously tracked. To avoid cycle slips between transmission periods,
the carrier frequency offset (CFO) is coarsely estimated and compensated based on the shortened Moose-symbol. Next, based
on the carrier phase, a positioning model is proposed using the measurements acquired at two time epochs, which should have
different geometry, and in which the carrier phase cycle ambiguities are kept as float numbers due to the uncalibrated initial
phase offset in the transmitters. According to the experimental results, when the transmitters are densely deployed within a small
area, the accuracy of the float position solutions converges to centimeter level within a short period of time. In addition, the
clock error, which is computed along with the position solutions in the positioning model, can be used for fine CFO estimation
and frequency synchronization. Using the carrier phase, the proposed SuperGPS terrestrial positioning system supports precise
positioning with a centimeter level accuracy.
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