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Preface

This hand-out on the calculus of observations and mathematical geodesy has originally been
compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BSc-program
for Civil Engineering.

Mathematical Geodesy provides us with the ‘data-processing engine’ for land-surveying.
Basically it addresses the question of how to go from measurements to information. In prac-
tice, surveying equipment is used for instance to measure distances. But, typically one is not
interested in knowing these distances. Instead, one is interested in the position of a certain
object, which can be determined using these measured distances. And, being aware that in
reality measurements are never perfect, one would like to know the quality of the resulting
position, for instance, what is the uncertainty in the outcome one can expect under ordinary
circumstances, or, to phrase it differently, how close can one expect the obtained outcome to
be to the actual true position?

This hand-out keeps a quite informal and introductive style. The subjects are not treated
with full mathematical rigor. This hand-out has been written with an educational goal in
mind. The idea is to give students in Civil Engineering a first insight in the area of calculus
of observations (in Dutch: waarnemingsrekening). The approach to ‘handling measurement
data’ in this hand-out is widely applicable in engineering.

It is assumed that students have completed a course in Linear Algebra as well as an
introductory course in Statistics (Kansrekening en Statistiek), for instance by using the text-
book [1].

Chapters and sections marked with a [*] contain material which is optional for the course
CTB3310.

Colleague Roderik Lindenbergh provided the original outline for the chapter on Interpola-
tion, and colleague Marc Schleiss carefully reviewed this chapter. Colleague Siavash Shakeri is
acknowledged for a first proof-reading of this primer and for providing some of the graphs and
exercises. Colleague Davide Imparato designed the front cover. The author does welcome
notifications of corrections and suggestions for improvement, as well as feedback in general.

Delft, November 2014 / March 2018
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1
Introduction

The development of mathematical theory, together with its implementation and use, needed
to process, analyze, integrate and validate geodetic data, such as measurements for land-
surveying, is referred to as the discipline of Mathematical Geodesy. It is about the calculus
of observation, the validation of measurements and mathematical models, and the analysis of
spatial and temporal phenomena in geosciences, i.e. about parameter estimation, testing and
reliability, and about interpolation and prediction.

An important step in this discipline was made with the discovery of the method of least-
squares in the 18th century. It occurred in the fields of astronomy and geodesy, as scientists
and mathematicians sought to provide solutions to the challenges of navigation the Earth’s
oceans.

The German Carl Friederich Gauss (1777-1855) proposed the method of least-squares,
which allows to make an optimal combination of redundant measurements for the purpose of
determining values for parameters of interest. It provided an optimal solution to an incon-
sistent system of equations. The French mathematicien Adrien-Marie Legendre (1752-1833)
published in 1805 on the method of least-squares (a translation of the French term ‘méthode
des moindres carrés’) in the context of the determination of the orbits of comets (Nouvelles
Méthodes pour la Détermination des Orbites des Comètes). Later, in 1809, in a volume on
celestial mechanics, Gauss published the least-squares method, and claimed he had been
using this method already back in 1795, hence earlier than Legendre, but who published it
first. Many thoughts, studies and investigations have been spent in the meantime on this
dispute between Legendre and Gauss, but generally it is believed that Gauss should indeed
be regarded as the first inventor of the method of least-squares. Legendre came to the same
method, independently, and delivered it in a clear publication. Later, Gauss provided a prob-
abilistic justification of the method of least-squares, and proposed the normal, or Gaussian
distribution. Today, more than 200 years later, the least-squares method is frequently applied
in a wide variety of scientific and engineering applications.

Further developments in mathematical geodesy followed on advances — in the early 20th
century — in the field of statistical inference, which is about drawing conclusions from data
which are subject to random variation, for example, observational errors or sampling variation.
Statisticians R.A. Fisher (1890-1962), and J. Neyman (1894-1981) and E. Pearson (1895-1980)
introduced concepts as statistical confidence and hypothesis testing.

Delft University of Technology professors J.M. Tienstra (1895-1951) and W. Baarda (1917-
2005) founded the ‘Delft School’ of Mathematical Geodesy. World-reknown contributions have
been made on the subject of statistical hypothesis testing, and theory was developed, for
instance leading to the reliability theory, and applied to land surveying networks, enabling

1



2 1. Introduction

design and analysis of these networks. Later — by professor P.J.G. Teunissen — extensions
have been made to the quality control of dynamic measurement systems in navigation and
satellite navigation (GPS) applications.



2
Random variable

2.1. Introduction
Suppose we would like to measure the inner-width of a pre-fab tunnel-element, just delivered
to the construction site, in order to check whether it has been built according to requirements.
To measure the distance in-between the two concrete side-walls, we use a decent laser-disto-
meter. We take a measurement and the result reads 7.451 m. We ask a colleague to do
the same, and when he does so, the outcome is 7.453 m. When a second colleague does,
we get 7.454 m, and a third colleague gets 7.452 m, and so on. The point is that such a
measurement is not perfect. If a series of measurements is carried out, even under unchanged
circumstances, we will see a certain spread in the results; the outcomes do not give all the
same, exactly true, answer. This is for a number of reasons. First of all, the instrument is an
electronic device, with (free) electrons moving around in its circuits (as we are not operating
at zero Kelvin temperature); they will cause (small) errors in the reading of the distance.
Second, the concrete wall on one side to which we hold the instrument will not be perfectly
smooth, and so will be the other wall, which has to reflect the laser-pulse, used for measuring
the distance. This may cause small differences between two measurements when we hold
the instrument, take a measurement, remove the instrument, and put the instrument again
etc. In addition, you may not hold the instrument completely still during the measurement.
Finally, there are external circumstances which can cause errors in the measurement process,
such as reduced visibility in the tunnel, due to dust and smoke, and motions and vibrations
of the tunnel element itself. Generally, conditions at a construction-site are sub-optimal … for
carrying out accurate measurements. A measurement does not give exactly the true answer;
but, hopefully, its value is close though.

2.2. Random variable
The whole exercise of using a certain instrument, carrying out the measurement in a certain
way (e.g. holding the instrument here, or there) and obtaining the result, is captured - in
a mathematical sense - in a random variable. The bottom-line is that the outcome of our
measurement (generally) will be close to the desired, true value (which we do not know), but
it will not be perfect - it will contain some amount of error. In the sequel, we will use the
following notation: 𝑦 for the measurement value, 𝑥 for the unknown (true) distance, and 𝑒
for the (random) measurement error, so that we have

𝑦 = 𝑥 + 𝑒 (2.1)

3



4 2. Random variable

A random variable is a mathematical concept, it is denoted by a symbol with an under-
score, such as 𝑦. We can obtain a realization of this random variable, by actually taking a
measurement, a sample 𝑦, or with an index 𝑦 , where the index denotes that this is the first
measurement. We can repeat the measurement a number of times to obtain 𝑦 , 𝑦 , ...., 𝑦 .
Later, we refer to 𝑦 as the observable, the ’thing which can be observed’, and 𝑦 is one of
the observations (𝑦 has a single, fixed value, namely the numerical outcome of that specific
measurement, for example 𝑦 =7.450 m).

Then (2.1) can be written as

𝑦 = 𝑥 + 𝑒 (2.2)

The observable 𝑦 equals the true, but unknown 𝑥 (distance, for instance), plus a random
measurement error 𝑒, and 𝑒 is referred to as an un-observable statistical error (we will
never know this error in practice). We typically assume that the random measurement error
𝑒 is — on average — equal to zero. Individual realizations 𝑒 , 𝑒 , … , 𝑒 are not equal to zero,
but the average over a large number of realizations of 𝑒 will be close to zero.

The parameters we are trying to measure in this course are of the continuous type. The
unknown inner-width of the tunnel-element 𝑥 is a distance, which can have any real-value,
hence 𝑥 ∈ 𝑅. To allow for automated processing of the measured distance, the observation
available to the user is presented and stored using a finite number of decimals. The observa-
tion has been digitized and actually become discrete, though we will not address the subject
of quantization here. By approximation, it still is a continuous quantity.

2.3. Histogram
When the measurement has been repeated a number of times, all measurements together
can be presented in terms of a histogram. The range (or a part of it) of variable 𝑦 is divided
into 𝑘 intervals (bins or classes) of equal length ℎ, the bin width. With a chosen origin 𝑦 , we
have the following intervals around 𝑦

𝑗 = 1 [𝑦 − ℎ, 𝑦 − ( − 1)ℎ⟩
⋮ ⋮
⋮ [𝑦 − 2ℎ, 𝑦 − ℎ⟩
𝑗 = [𝑦 − ℎ, 𝑦 ⟩
𝑗 = + 1 [𝑦 , 𝑦 + ℎ⟩
⋮ [𝑦 + ℎ, 𝑦 + 2ℎ⟩
⋮ ⋮
𝑗 = 𝑘 [𝑦 + ( − 1)ℎ, 𝑦 + ℎ⟩

(2.3)

where we assumed 𝑘 to be even.
The 𝑁 samples, assumed to be all in [𝑦 − ℎ, 𝑦 + ℎ⟩, are divided over the bins. The

observed (absolute) frequencies (or cell counts) in the 𝑘 bins are denoted by 𝑓 , with ∑ 𝑓 =
𝑁.

The histogram, see also chapter 17 in [1], is now created by plotting

̂𝑓(𝑦) =
𝑓
𝑁ℎ with 𝑦 ∈ interval 𝑗 (2.4)

as a function of 𝑦; ̂𝑓(𝑦) = 0 outside the 𝑘 intervals.
The function ̂𝑓(𝑦) is an interval-wise (width ℎ) constant function. Figure 2.1 gives an exam-

ple. The are the relative frequencies, and ℎ in the denominator assures that ∫ ̂𝑓(𝑦)𝑑𝑦 = 1,
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Figure 2.1: Histogram with binsize . m, bins, and center . m. The vertical-axis gives
the standardized relative frequency. The data, with sample size , were generated here from a normal
distribution with . m and . m. The curve of this theoretical probability density function is
imposed.

that is, the area under the histogram equals 1. This enables direct comparison of histograms
of different data sets (with different bin widths ℎ, and sample sizes 𝑁).

For the set of distance measurements, most of the measurements are close to the value
of 7.452 m. The further we go away from 7.452 m, the fewer observed values we see. This
is typical behaviour in practice. This behaviour is formalized in a probability density function
(PDF) of the random variable. The PDF is a mathematical formula, describing the uncertain
outcome of our distance measurement. It gives the probability density as a function of the
value of the observed parameter 𝑦. The PDF describes the distribution of the random variable,
and it is a mathematical model for the histogram.

The theoretical probability density function 𝑓(𝑦) can—for comparison—be directly imposed
on the histogram ̂𝑓(𝑦), as is done in Figure 2.1.

The bin width ℎ controls the amount of ‘smoothing’. In practice one has to match the
interval [𝑦 − ℎ, 𝑦 + ℎ⟩ with 𝑦min and 𝑦max, and as a rule of thumb one often sets the
number of bins to 𝑘 = √𝑁. Also in practice, in order to focus on the core of the distribution in
case there are outlying measurements, one may want to match the interval with e.g. 𝑞. and
𝑞. , the 1-st and 99-th (empirical) percentiles respectively, see (2.20), rather than 𝑦min and
𝑦max.

The histogram is useful for presentation of the data. It gives a first impression of the
probability density which lies at the basis of the samples. One might for instance visually
judge — preliminary — whether normality is not unlikely. One must however, be very careful.
The picture can be manipulated, certain features can be masked or over-emphasized, by the
choice of the origin 𝑦 and the bin width ℎ.

2.4. Probability Density Function
A histogram is useful to visualize a (big) set of repeated measurements. In practice, where
‘time is money’, one does not want to repeat measurements. Though one still would like to
have some measure about the uncertainty that can be expected in the outcome, in particular,
how big the chance is that the outcome is off from the truth, by more than a certain amount.
Therefore, the histogram is captured by a Probability Density Function (PDF), denoted by 𝑓(𝑦),
for the random variable 𝑦. It gives a mathematical expression for the probability density, as a
function of the value 𝑦 of the random variable.
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Figure 2.2: Standard normal, or Gaussian distribution, ∼ ( , ) with and . On the left the probability
density function ( ). On the right the cumulative probability distribution function ( ); as variable runs from

to , the probability runs from 0 to 1.

A probability density function 𝑓(𝑦) has to satisfy two general requirements:

𝑓(𝑦) ≥ 0 ∀ 𝑦 and ∫ 𝑓(𝑦)𝑑𝑦 = 1

The (cumulative) probability distribution function is denoted by 𝐹(𝑦) and can be found by

𝐹(𝑦) = ∫ 𝑓(𝑦)𝑑𝑦 (2.5)

or the other way around

𝑓(𝑦) = 𝜕𝐹(𝑦)
𝜕𝑦 (2.6)

𝐹(𝑦) is a monotonic non-decreasing function, and provides a mapping from the 𝑅 into [0, 1].
It holds that the probability 𝑃[𝑦 ≤ 𝑘] = 𝐹(𝑘).

2.4.1. Normal distribution
When 𝑦 has a normal or Gaussian distribution, the probability density function reads

𝑓(𝑦) = 1
√2𝜋𝜎

𝑒
( )

(2.7)

where 𝑥 is the mean, and 𝜎 the standard deviation (𝜎 the variance); a proof can be found
in Appendix A.1; the function is completely specified by these two parameters 𝑥 and 𝜎. The
density is a (unimodal) bell-shaped curve, see Figure 2.2 on the left. Often this distribution is
denoted as 𝑦 ∼ 𝑁(𝑥, 𝜎 ), where 𝑥 represents the mean, and 𝜎 the variance.

In practice, the manufacturer of the equipment (e.g. of the laser-disto-meter), has ana-
lyzed histograms of numerous repeated measurements, in the field, and in the lab, and pro-
vides users with information, stating that the error in the measurements will follow a normal
distribution, with zero mean (hence on average, the measurement is correct), and a certain
standard deviation, e.g. 𝜎=0.002 m. With the random variables in (2.2) we have 𝑦 = 𝑥 + 𝑒
and hence, 𝑒 ∼ 𝑁(0, 𝜎 ), and 𝑦 ∼ 𝑁(𝑥, 𝜎 ).

When random variable 𝑧 has the following distribution 𝑧 ∼ 𝑁(0, 1), it is said to be standard
normally distributed, see Figure 2.2. The cumulative probability distribution function (CDF) 𝐹
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of 𝑧 is also denoted as Φ. Appendix B provides a table of the standard normal distribution.
Given are the probabilities 𝛼, as the right tail probabilities 𝛼 = 1 − Φ(𝑟 ), where 𝑃[𝑦 ≤ 𝑟 ] =
Φ(𝑟 ).

In practice not all observables are normally distributed. There are actually many differ-
ent probability density functions — the normal one is certainly not the only one. Later, in
section 5.5, the Chi-squared distribution will be introduced.

2.5. Moments: mean and variance
In this section we present several characteristic measures of probability density functions.
Most common are the mean and the variance. We will consider them from a theoretical
(formal) point of view (section 2.5.1), as well as from a practical (empirical) point of view
(section 2.5.2).

2.5.1. Formal moments
The expectation of 𝑦 about some constant 𝜗 reads

𝐸 (𝑦) = ∫ (𝑦 − 𝜗)𝑓(𝑦)𝑑𝑦 (2.8)

When we take, as usual, the expectation about zero (𝜗 = 0), we obtain the well known first
moment, or mean,

𝐸(𝑦) = ∫ 𝑦𝑓(𝑦)𝑑𝑦 (2.9)

and it holds that 𝐸 (𝑦) = 𝐸(𝑦) − 𝜗.
When 𝑦 is distributed as 𝑦 ∼ 𝑁(𝑥, 𝜎 ), as in (2.7), it can be shown that 𝐸(𝑦) = 𝑥, see

Appendix A.1. It gives the location (the center) of the normal curve.
The second central moment, or variance is

𝐷(𝑦) = 𝐸((𝑦 − 𝐸(𝑦)) ) = ∫ (𝑦 − 𝐸(𝑦)) 𝑓(𝑦)𝑑𝑦 (2.10)

The word ‘central’ refers to the fact that the moment is taken about the mean 𝐸(𝑦). We denote
the variance by 𝐷(.) (dispersion), rather than 𝑉𝑎𝑟(.) as done for instance in [1], and often the
symbol 𝜎 is used for the variance of a random variable (and 𝜎 for standard deviation). Later,
we will use the index 𝑦 to denote the variance of 𝑦, hence 𝜎 .

When 𝑦 is distributed as 𝑦 ∼ 𝑁(𝑥, 𝜎 ), as in (2.7), it can be shown that indeed the variance
equals 𝐷(𝑦) = 𝜎 , see Appendix A.1. The standard deviation 𝜎 describes the width of the
normal curve. It presents the spread in the result; the standard deviation is a numerical
measure of the uncertainty.

2.5.2. Empirical moments
We will now consider the empirical equivalents of the moments discussed above. Therefore
we assume to have 𝑁 realizations of the random variable 𝑦. The measurement has been
repeated (under unchanged conditions), and as a result we have 𝑁 outcomes 𝑦 , 𝑦 , … , 𝑦 .
These 𝑁 measurements are used to come up with estimates for the mean and variance, i.e to
come up with the sample mean and sample variance.
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The average deviation from some known constant 𝜗 reads

�̂� = 1
𝑁 ∑(𝑦 − 𝜗) (2.11)

and all outcomes 𝑦 , 𝑦 , … , 𝑦 are first ‘corrected for’ 𝜗 , and then the average is taken. The
well known first sample moment is the (arithmetic) mean about zero (𝜗 = 0)

�̂� = 1
𝑁 ∑𝑦 (2.12)

which is denoted by 𝑥 with a ‘hat’-symbol, meaning that it is an estimate for the unknown true
mean 𝑥 of the random variable 𝑦, and this estimate is based on data/measurements; (2.12)
is the empirical counterpart of (2.9). It holds that �̂� = �̂� − 𝜗.

The expectation (or mean) of 𝑦, 𝑥, is unknown, and will remain unknown forever; we can
only come up with an estimate �̂� for this parameter.

The second central sample moment (hence second sample moment about the mean) reads

̂𝜎 = 1
𝑁 ∑(𝑦 − �̂�) (2.13)

which is an unbiased estimate for the variance, once the mean 𝑥 is known (a-priori), and
substituted for �̂� in the above equation. Unbiasedness is generally a desirable property for
an estimator, meaning that on average the result is spot-on (see also section 4.3). When the
mean is not known (a-priori), estimate (2.13), with �̂� from (2.12) inserted, is not unbiased,
meaning that on average it is ‘somewhat off’. If the mean is unknown, we generally use the
following estimate for the variance instead

�̂� = 1
𝑁 − 1∑(𝑦 − �̂�) (2.14)

which is unbiased. Generally (2.14) is referred to as the sample variance; it is the empirical
counterpart of (2.10). The square root of estimate (2.14) will be our default estimate, the
sample standard deviation.

The difference of 𝑁 and 𝑁 − 1 in the denominator in (2.13) and (2.14) is negligible in
practice, when 𝑁 is large.

Note that in the second case with (hypothetically) only one observation 𝑦 (𝑁 = 1), the
mean (2.12) becomes �̂� = 𝑦 and the variance (2.14) is undefined — from one sample it is
not possible to estimate both mean and variance. Estimate ̂𝜎 would give zero in this case.

The difference 𝑦 − �̂� in the above equations will later be denoted by �̂�, and referred to as
the measurement residual

�̂� = 𝑦 − �̂� (2.15)

see section 6.1. Where 𝑒 is the unknown measurement error, cf. (2.1), �̂� is the estimated
error. Residual �̂� = 𝑦 − �̂� equals the difference of the observation 𝑦 and the estimated mean
�̂� (or, the average fitted to the observations).
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In the context of section 6.1.1, the second sample moment about the mean (2.13) can be
regarded as the mean of the squared residuals, see also section 6.1.4, as ∑ (𝑦 − �̂�) is the
sum of squared residuals.

The estimates for the mean and variance (2.12) and (2.13) can be shown to result as
Maximum Likelihood (ML) estimates from the model 𝐸(𝑦) = 𝐴𝑥, with 𝐴 = (1,… , 1) , and
𝐷(𝑦) = 𝜎 𝐼 , with 𝑦 normally distributed, cf. chapter 4 (4.2). Also, it can be shown that the
estimator �̂� (2.13)/(2.14) is not correlated with �̂� (2.12).

As the estimates �̂� for the mean, and �̂� for the variance are based on the measurements
(which are not perfect), we can expect these estimates to be not perfect either. The estimators
are unbiased, meaning that 𝐸(�̂�) = 𝑥 and 𝐸(�̂� ) = 𝜎 . The variances of the estimators in
(2.12) and (2.14) are given (without proof) by

𝜎 ̂ =
𝜎
𝑁 (2.16)

and

𝜎 ̂ =
2𝜎
𝑁 − 1 (2.17)

The more measurements we take (bigger 𝑁) the smaller these variances get, which is intu-
itively appealing. The more data you use, the more precise these estimators (for mean and
variance) get. The expression for 𝜎 ̂ holds only for normally distributed observables.

Typically one is interested in the standard deviation rather than the variance, hence with

�̂� = 𝐺(�̂� ) = √�̂� (the standard deviation is a non-linear function of the variance, through the

square-root) and through the first-order approximation ̂ = √ ̂
, one can use (3.12), and

obtain 𝜎 ̂ ≈ ̂
√ ̂

= ̂
̂ (the standard deviation of the estimator for the standard deviation),

and use in this case 𝜎 ̂ = √
√

.

2.6. Mean square error: accuracy
In practice, a measurement may be biased. This means that on average it does not deliver
(the value of) the parameter which we hope it delivers. The bias is another (typically un-
desired) parameter 𝜗, which enters the equation: 𝑦 = 𝑥 + 𝜗 + 𝑒. Here, 𝑥 is the unknown
parameter in which our interest lies, 𝑦 is the observable (which is a random variable), 𝑒 is the
random measurement error (for which we assume that it has zero mean, hence, it will cause
individual measurements (samples) to be off from the true value, but, taking the average over
a large number of (repeated) measurements, will provide an outcome close to the true and
wanted value), and 𝜗 represents the bias, or (constant) offset in the measurement, which is
a systematic effect.

In terms of the laser-disto-meter, one can think of an unwanted time delay of the signal in
the electronic circuitry of the device, which translates into a certain fixed error (offset) in the
travel-time of the laser-pulse, and hence into the measured distance — the effect is there all
the time (also in repeated measurements).

Systematic errors also include scaling effects, e.g. 𝑦 = 𝜆𝑥 + 𝑒, with 𝜆 as a scale factor, but
this is beyond the scope of this primer.

In this section, we present a measure of the spread in the uncertain outcome of the
measurement, which includes also the unwanted bias-part. In the end, we would like to have
a measure of how close our observation is to the true (wanted) distance. Instead of the
variance, we consider the mean squared error (MSE), cf. also section 20.3 in [1].
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In the previous section there was no bias and the expectation of the observable was
𝐸(𝑦) = 𝑥, as 𝑦 = 𝑥 +𝑒. Now, with 𝑦 = 𝑥 +𝜗+𝑒, we have instead 𝐸(𝑦) = 𝑥 +𝜗. The variance
is the second moment about the mean of the observable 𝐸(𝑦) = 𝑥 + 𝜗. But — as an all-in
measure — we are now interested in the second moment about 𝐸 (𝑦) = 𝑥, (2.8), namely
about the true distance 𝑥.

One can define the Mean Squared Error (MSE)

𝐷 (𝑦) = ∫ (𝑦 − 𝐸 (𝑦)) 𝑓(𝑦)𝑑𝑦 = 𝐸((𝑦 − 𝐸 (𝑦)) )

instead of the variance (2.10), and the mean 𝐸(𝑦) (2.9) has been replaced by 𝐸 (𝑦) (2.8).
We will show that the MSE can be written as 𝐷 (𝑦) = 𝜎 + 𝜗 . Therefore we develop the

MSE into

𝐷 (𝑦) = 𝐸((𝑦 − 𝐸 (𝑦)) ) = 𝐸((𝑦 − 𝐸(𝑦) + 𝐸(𝑦) − 𝐸 (𝑦)) )

= 𝐸((𝑦 − 𝐸(𝑦)) + (𝐸(𝑦) − 𝐸 (𝑦)) + 2(𝑦 − 𝐸(𝑦))(𝐸(𝑦) − 𝐸 (𝑦)))

= 𝐸((𝑦 − 𝐸(𝑦)) + (𝐸(𝑦) − 𝐸 (𝑦)) )

as the factor (𝐸(𝑦)−𝐸 (𝑦)) is just a constant, and taking it out of the expectation operator in
the cross-term, we are left with 2(𝐸(𝑦) − 𝐸 (𝑦))𝐸(𝑦 − 𝐸(𝑦)), which is just zero as 𝐸(𝐸(𝑦)) =
𝐸(𝑦). Hence,

𝐷 (𝑦) = 𝐸((𝑦 − 𝐸(𝑦)) + (𝐸(𝑦) − 𝐸 (𝑦)) ) = 𝜎 + 𝜗

the MSE equals the variance plus the squared bias. The MSE accounts for the spread in the
result, as well as a bias, when present. When there is no bias 𝜗 = 0, the MSE simply equals
the variance 𝜎 .

The name of Mean Squared Error (MSE) explains by recognizing that we take the error (in
our case, by how much 𝑦 deviates from the true value 𝐸 (𝑦) = 𝑥), square it, and eventually
take the mean (expectation), as the observable 𝑦 is a random variable (in general we have
no knowledge or control about the random error 𝑒 included in 𝑦). The MSE provides us with
a general, overall measure of the deviation we can expect in the outcome; the MSE measures
accuracy.

According to the New Oxford Dictionary of English accuracy is ‘the quality or state of being
correct or precise’, with the specialized technical subsense as ‘the degree to which the results
of a measurement, calculation, or specification conforms to the correct value or a standard’; it
represents the degree of closeness of a measurement of a certain quantity to the actual true,
or reference value of that quantity.

The spread in the outcome of a repeated experiment is referred to as repeatability; the
degree to which repeated measurements, under unchanged conditions, show same results.
The formal notion of repeatability is precision. The standard deviation 𝜎, or variance 𝜎 ,
is a measure of precision. For a common uni-modal Probability Density Function (PDF), the
standard deviation measures the width of this formal function.

Loosely spoken, one could say that: ‘accuracy equals precision plus bias’.

2.6.1. Empirical MSE
The Mean Squared Error (MSE) can be used in practice for instance in a calibration or verifica-
tion campaign. With the laser-disto-meter, the manufacturer may have a calibration test-range
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available, for which actual distances are known already (known with a much higher accuracy,
better by orders of magnitude than what the laser-disto-meter will deliver, for instance by
using different equipment). Then, the laser-disto-meter is employed on the test-range, and
the spread of the (repeated) measurements 𝑦 , 𝑦 , … , 𝑦 is quantified by the second moment
about the true distance 𝑥, which is known in this case (and not about the mean). If — unex-
pectedly — a bias is present in the measurements, it will be reflected in the resulting mean
squared error (MSE).

Also, one could correct the obtained measurements beforehand for the known distance,
therefore be dealing with samples of (𝑦 − 𝑥) = 𝜗 + 𝑒, which are assumed to present a zero
mean error, as we are initially not aware of the bias 𝜗. Next, taking the second moment about
zero yields the Mean Squared Error (MSE).

𝑀𝑆𝐸 = 1
𝑁 ∑(𝑦 − 𝑥) (2.18)

In practice one often takes the square root of the MSE, leading to the Root Mean Squared
Error (RMS) or (RMSE), which is in units of the observed quantity.

The above expression for the empirical MSE looks very much like the second sample mo-
ment about the mean (2.13), and (2.14), but carefully note that in (2.18) the true value 𝑥 is
involved, whereas in (2.13), and (2.14), it is the estimated mean �̂�.

2.6.2. Example on bias, precision and accuracy
With a large bias, the observable can be very precise (small random error), but it will not be
accurate. With a big spread (large standard deviation), the observable is neither precise, nor
accurate.

Suppose a laser-disto-meter is being tested on an accurately known distance, with 𝑥=7.452 m.
Five measurements are taken (𝑁=5), and the MSE is computed, based on the known distance
𝑥, hence (2.18) can be rewritten (by subtracting and adding the term �̂� in between the brack-
ets) into

𝑀𝑆𝐸 = 1
𝑁 ∑(𝑦 − �̂�) + 1

𝑁 ∑(�̂� − 𝑥)

in a way much similar to the variance plus bias decomposition of the MSE. The first term is the
second sample moment ̂𝜎 (2.13), which is approximately equal to the (estimated) variance
(when 𝑁 is large), and the second term, with �̂� in (2.12), equal to just (�̂� − 𝑥) , is the square
of the estimated bias, as �̂� is the (ordinary) mean of the observations, which now includes the
bias 𝜗, and 𝑥 is the true distance.

We consider three different cases. They are listed in table 2.1. In the first case the distance
observable is obviously both precise (small standard deviation) and accurate (small MSE). In
the second case the observable is not precise (big standard deviation) and not accurate (big
MSE). In the first two cases there is no bias. In the third case, the observable is again precise
(small standard deviation), but it is not accurate (big MSE), due to a bias in the measurements,
the sample mean deviates a lot from the known distance (7.459 m versus 7.452 m).

Figure 2.3 displays the three cases, and table 2.2 presents the summary in terms of the
distance observable being precise or not, and accurate or not. In some sources, you may find
that case 2 is not precise, but, surprisingly, is accurate. The cause of this confusion may lie
in the fact that in case 2 the distance observable is not biased, and thereby averaging can be
used to reduce the uncertainty. According to (2.16), the standard deviation of the mean is
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case 𝑦 𝑦 𝑦 𝑦 𝑦 �̂� �̂� 𝑅𝑀𝑆𝐸

1 7.452 7.454 7.450 7.453 7.451 7.452 0.001 0.001
2 7.452 7.462 7.442 7.457 7.447 7.452 0.007 0.007
3 7.459 7.461 7.457 7.460 7.458 7.459 0.001 0.007

Table 2.1: Three different cases of testing a laser-disto-meter on a calibrated distance. The true distance is
=7.452 m. Each time =5 measurements have been taken. The sample mean (2.12), the (square root of the)
second order sample moment (2.13), as an approximation to the sample standard deviation, and the Root Mean
Squared Error √ (2.18) have been computed (in the latter, has been replaced by ̂ ). All values are in [m].

7.448 7.452 7.456

case 1

7.4547.4507.4467.4447.442 7.458 7.4627.460

7.448 7.452 7.456

case 2

7.4547.4507.4467.4447.442 7.458 7.4627.460

7.448 7.452 7.456

case 3

7.4547.4507.4467.4447.442 7.458 7.4627.460

x

x

x

Figure 2.3: Three different cases of testing a laser-disto-meter on a calibrated distance. The true distance is
. m, indicated in green. Each time measurements have been taken, shown by blue circles.

case precise accurate

1 yes yes
2 no no
3 yes no

Table 2.2: Summary on the precision and accuracy of the distance observable in three different cases of testing a
laser-disto-meter on a calibrated distance.
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x y

f(y)

1.96 σ 95%

σ

Figure 2.4: Normal probability density function (PDF) ( ). The width of this function represents the uncertainty
in measured outcomes of the observable . When the experiment could be repeated many times, the width of the
PDF would reflect the spread in the outcome, for instance the observed distances. When the distance observable is
normally distributed, the 1-sigma ( ) interval to both sides about the mean contains about 68% of the samples
(it is referred to as the 68% interval), and 95% of the samples (in yellow) will lie in the interval [-1.96 , 1.96 ]
about the mean.

smaller by a factor √𝑁, when the mean is taken over 𝑁 samples. In case 2, a single distance
observable is not precise, but the mean over all five together could be, and hence, all together
they could provide a result which is close to the truth (and thereby — confusingly — rated
accurate).

In case 3, the measurements are biased. This bias is preserved, when taking the average
over all five measurements. The result will stay far off from the true value.

2.7. Probabilities and intervals
The Probability Density Function (and hence, also the Cumulative Distribution Function (CDF))
are mathematical concepts, which are very useful in practice, once one would like to compute
probabilities, specifically, probabilities that a certain random variable lies in a certain interval.

𝑃[𝑎 ≤ 𝑦 ≤ 𝑏] = ∫ 𝑓(𝑦)𝑑𝑦 = 𝐹(𝑏) − 𝐹(𝑎) (2.19)

A normal probability density function 𝑦 ∼ 𝑁(𝑥, 𝜎 ) is shown in Figure 2.4.
Through the PDF (and CDF), probabilities and interval-bounds are intimately related. The

𝑝-th quantile (with 𝑝 a number between 0 and 1), or the 100𝑝-th percentile of the distribution
of 𝑦 is the smallest number 𝑞 such that

𝐹(𝑞 ) = 𝑃[𝑦 ≤ 𝑞 ] = 𝑝 (2.20)

Quantiles and percentiles can also be obtained empirically, from the observed data. Sup-
pose that we have 𝑁 samples of a certain random variable, then we order the samples as-
cendingly, and each sample basically represents a probability of . When a proportion 𝑝 is
less than a certain number 𝑘 (i.e. 100𝑝% of the samples have all values less than 𝑘), and a
proportion 1 − 𝑝 is greater than this number, this number 𝑘 is the 100𝑝-th empirical quantile,
or the 100𝑝-th sample percentile.

For realizations of a random variable (error), which is (or can be) assumed to have zero
mean, one is generally interested in just themagnitude of the error. Then typically the absolute
value is taken of the samples, they are ordered ascendingly, and then the empirical percentile
is determined. In that case, the corresponding formal 100𝑝-th percentile is defined as

𝑃[|𝑦| ≤ 𝑞 ] = 𝑝
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2.8. Exercises and worked examples
This section presents a number of problems and worked answers.

Question 1 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1. You could think of this random variable as the measurement error 𝑒, for
instance of an observable with the laser-disto-meter, and units in millimeters. Compute the
probability that a single sample of this random variable will have a value of 1.27, or less. This
is, compute the probability 𝑃[𝑒 < 1.27].

Answer 1 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which
is tabulated in Appendix B. We need 𝑃[𝑒 < 𝑟 ] = Φ(𝑟 ), with 𝑟 = 1.27. The table gives
probabilities 𝛼, as the right tail probabilities 𝛼 = 1−Φ(𝑟 ), rather than left tail. With 𝑟 = 1.27,
we obtain 𝛼 = 0.1020, hence the requested probability is 𝑃[𝑒 < 𝑟 ] = Φ(𝑟 ) = 1−𝛼 = 0.8980.

Question 2 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. Compute the probability that a single sample
of this random variable will have a value of -1.27, or less. This is, compute the probability
𝑃[𝑒 < −1.27].

Answer 2 The random variable has again a standard normal distribution, 𝑒 ∼ 𝑁(0, 1),
which is tabulated in Appendix B. We need 𝑃[𝑒 < −𝑟 ] = Φ(−𝑟 ), with 𝑟 = 1.27. The
table gives probabilities 𝛼, as the right tail probabilities 𝛼 = 1 − Φ(𝑟 ), but only for positive
arguments. However, the normal distribution is symmetric about its mean. Hence, when the
mean is zero, we have Φ(−𝑟 ) = 𝑃[𝑒 < −𝑟 ] = 𝑃[𝑒 > 𝑟 ] = 1 − 𝑃[𝑒 < 𝑟 ] = 1 − Φ(𝑟 ). With
𝑟 = 1.27, we obtain 𝛼 = 0.1020, hence the requested probability is 𝑃[𝑒 < −𝑟 ] = 𝛼 = 0.1020.

Question 3 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. Compute the probability that a single sample
of this random variable will have a value of -1.23, or more. This is, compute the probability
𝑃[𝑒 > −1.23].

Answer 3 The random variable has again a standard normal distribution, 𝑒 ∼ 𝑁(0, 1),
which is tabulated in Appendix B. We need 𝑃[𝑒 > −𝑟 ] = 1 − Φ(−𝑟 ), which is 1 − Φ(−𝑟 ) =
1 − (1 − Φ(𝑟 )) = Φ(𝑟 )), with 𝑟 = 1.23. The table gives probabilities 𝛼, as the right tail
probabilities 𝛼 = 1 − Φ(𝑟 ). With 𝑟 = 1.23 we obtain 𝛼 = 0.1093, hence the requested
probability is Φ(𝑟 ) = 1 − 𝛼 = 0.8907.

Question 4 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. Compute the probability that a single sample of
this random variable will have a value lying in between -2.00 and 1.50. This is, compute the
probability 𝑃[−2.00 < 𝑒 < 1.50].

Answer 4 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix B. We need 𝑃[−𝑟 , < 𝑒 < 𝑟 , ] = Φ(𝑟 , ) − Φ(−𝑟 , ) = Φ(𝑟 , ) − (1 −
Φ(𝑟 , )), with 𝑟 , = 2.00 and 𝑟 , = 1.50. With the table we obtain 𝑃[−2.00 < 𝑒 < 1.50] =
(1 − 0.0668) − (1 − (1 − 0.0228)) = 0.9104.

Question 5 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. For what boundary value 𝑟 holds that the
probability that a single sample of this random variable will have a value of 𝑟 , or less, equals
0.975? This is, solve the probability statement 𝑃[𝑒 < 𝑟 ] = 0.975, for 𝑟 .

Answer 5 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix B. We need 𝑃[𝑒 < 𝑟 ] = Φ(𝑟 ) = 0.975, or 𝛼 = 0.025, given in the
table. This yields 𝑟 = 1.96.

Question 6 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. For what boundary value 𝑟 holds that the
probability that a single sample of this random variable will have a value in between −𝑟 and
𝑟 , equals 0.95? This is, solve the probability statement 𝑃[−𝑟 < 𝑒 < 𝑟 ] = 0.95 for 𝑟 .
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Answer 6 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix B. We need 𝑃[−𝑟 < 𝑒 < 𝑟 ] = Φ(𝑟 )−Φ(−𝑟 ) = Φ(𝑟 )− (1−Φ(𝑟 )) =
0.95. This equals Φ(𝑟 ) − (1−Φ(𝑟 )) = 2Φ(𝑟 ) − 1 = 0.95, or Φ(𝑟 ) = . . With 𝛼 = 1− . ,
given in the table, this yields 𝑟 = 1.96.

Question 7 A random variable is normally distributed, and has mean equal to 2 (unlike
previous questions), and standard deviation equal to 1. Compute the probability that a single
sample of this random variable will have a value in between 1.27 and 2.00. This is, compute
the probability 𝑃[1.27 < 𝑒 < 2.00].

Answer 7 The random variable now does not have a standard normal distribution. Though,
it can be turned into a standard normally distributed variable by subtracting the mean (this is a
linear operation and the new random variable is normally distributed as well), 𝑒 ∼ 𝑁(2, 1), and
(𝑒−2) ∼ 𝑁(0, 1), which is tabulated in Appendix B. We need 𝑃[𝑟 , < 𝑒 < 𝑟 , ] = 𝑃[(𝑟 , −2) <
(𝑒 − 2) < (𝑟 , − 2)] = Φ(𝑟 , − 2) − Φ(𝑟 , − 2), with 𝑟 , = 1.27 and 𝑟 , = 2.00. With the
table, we obtain 𝑃[1.27 < 𝑒 < 2.00] = (1 − 0.5000) − (1 − (1 − 0.2327)) = 0.2673.

Question 8 Random variable 𝑒 is normally distributed, and has mean equal to 1, and
standard deviation equal to 2. Compute the probability that a single sample of this ran-
dom variable will have a value in between -1.00 and 1.00. This is, compute the probability
𝑃[−1.00 < 𝑒 < 1.00].

Answer 8 The random variable now does not have a standard normal distribution. Though,
it can be turned into a standard normally distributed variable by subtracting the mean, and
dividing by the standard deviation (these are both linear operations and the new random
variable is normally distributed as well), 𝑒 ∼ 𝑁(1, 4), and ∼ 𝑁(0, 1), which is tabulated in
Appendix B. We need 𝑃[−𝑟 , < 𝑒 < 𝑟 , ] = 𝑃[ , < < , ] = Φ( , )−Φ( , ),
with 𝑟 , = 1.00 and 𝑟 , = 1.00. With the table, we obtain 𝑃[−1.00 < 𝑒 < 1.00] =
(1 − 0.5000) − (1 − (1 − 0.1587)) = 0.3413.

Question 9 For the error 𝑒 in a distance observable 𝑦, with 𝑦 = 𝑥+𝑒, and 𝑥 the unknown
true distance, is given that it is distributed as 𝑒 ∼ 𝑁(0, 𝜎 ), with standard deviation 𝜎 =
3 mm. What is the probability that — when we take a distance measurement in practice —
the magnitude of the measurement error is bigger than 6 mm?

Answer 9 The required probability is 𝑃[|𝑒| > 6]. The absolute sign (because of the word
‘magnitude’) can be removed through: 𝑃[|𝑒| > 6] = 𝑃[𝑒 < −6] + 𝑃[𝑒 > 6], which equals
2𝑃[𝑒 > 6], as the normal distribution is symmetric here about zero (given zero mean). Then
we convert into a standard normal distribution through 2𝑃[ > ], which, with the table in
Appendix B (𝑟 = 2.00), yields 2𝑃[ > ] = 2 ⋅ 0.0228 = 0.0456.

Question 10 A laser disto meter is deployed on an accurately calibrated test-range (hence
the true distance 𝑥 is known). Suppose that the distance observable 𝑦 has a standard devi-
ation of 2 mm, and that the instrument has a bias 𝜗 of 1 cm (hence all measured distances
are systematically too long by 1 cm). The distance observable is normally distributed. The
manufacturer analyses, by measuring the known distance repeatedly, the magnitude of the
error 𝑦 − 𝑥, where he presumes the error to be zero mean (as a-priori he is not aware of the
presence of the bias). Can you give — based on the above given data — a good estimate for
the 95th-percentile that the manufacturer is going to find?

Answer 10 The deviation in the observable from the known distance 𝑦 − 𝑥 = 𝜗 + 𝑒 is
distributed as 𝜗 + 𝑒 ∼ 𝑁(𝜗, 𝜎 ), in this case with 𝜗=10 mm, and 𝜎=2 mm. We need to find
the value for 𝑞 in 𝑃[−𝑞 < 𝜗 + 𝑒 < 𝑞 ] = 𝑝, which is an interval symmetric about zero,
with 𝑝=0.95. Transformation of the random variable yields 𝑃[ < < ] = 𝑝, or
Φ( ) − Φ( ) = 𝑝, as the random variable has a standard normal distribution. This
has to be solved iteratively, by numerical search, i.e. trying different values for 𝑞 until we
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obtain the desired 𝑝 = 0.95. Specifically, we start with value 𝑞 = 0, and increase it each step
by 0.01, until we reach the desired 95% probability, i.e. find the first occurrence where the
above equation yields a probability of 95% or more. The result is 𝑞 =13.29. In this case the
left tail does actually not contribute to the exceedance probability, it is below 10 ; the 5%
of the samples beyond the bounds [−𝑞 , 𝑞 ] will typically all lie at the right hand side, that is,
beyond 𝑞 . Suppose the bias would be 𝜗=1 mm, then the bound is found to be 𝑞 =4.37. In
the left tail we have an exceedance probability of 0.0036, and in the right tail 0.0460. Please
verify these figures yourself, with the table in Appendix B.

Question 11With a laser-disto-meter four times the same distance has been measured on
a calibration test-range. The distance is known, with very high accuracy, and equals 2.894 m.
The four observed distances are: 𝑦 = 2.890 m, 𝑦 = 2.899 m, 𝑦 = 2.875 m, and 𝑦 =
2.886 m. Compute the (empirical) Mean Squared Error (MSE).

Answer 11 The empirical MSE follows from equation (2.18). In this case 𝑥 = 2.894 m,
there are four observations, hence 𝑁 = 4, and the four observations 𝑦 , 𝑦 , 𝑦 and 𝑦 are
given. Substituting this in equation (2.18) yields 116.5 mm .



3
Multi-variate: random vector

So far, we have been dealing with a single random variable. With two laser-disto-meters in
place, there are two random variables in parallel, denoted by 𝑦 and 𝑦 respectively, as we
have two separate processes of taking measurements; a sample of 𝑦 is denoted by 𝑦 , and
a sample of 𝑦 by 𝑦 . In this chapter we treat the multi-variate case.

From now on, the notion 𝑦 will refer to a random vector. By default, we assume that this
vector has 𝑚 elements, hence

𝑦 = ⎛⎜

⎝

𝑦
𝑦
⋮
𝑦

⎞
⎟

⎠

(3.1)

and a sample of this vector is a set of one sample of each of the 𝑚 random variables in this
vector

𝑦 = ⎛

⎝

𝑦
𝑦
⋮
𝑦

⎞

⎠

In the second part of this chapter we address the question of what happens to random
variables upon mathematical manipulation. Suppose the two random variables 𝑦 and 𝑦 are

independent, and have variances 𝜎 and 𝜎 respectively, what will be the variance of the
sum of the two 𝑦 + 𝑦 ? Propagation laws are a crucial concept to be able to assess the
uncertainty in a result, which is computed from a set of measurements.

3.1. Probability density function and moments
The mean of 𝑦, the vector with random variables, is obviously a vector as well. Similar to (2.9)
we have

𝐸(𝑦) = ∫ 𝑦𝑓(𝑦)𝑑𝑦 (3.2)

17
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which now is a multiple integral expression; for instance for the element 𝑖 of this vector we
have

𝐸(𝑦 ) = ∫ ∫ …∫ …∫ 𝑦 𝑓(𝑦 , 𝑦 , … , 𝑦 , … , 𝑦 )𝑑𝑦 𝑑𝑦 …𝑑𝑦 …𝑑𝑦

The mean, or expectation of vector 𝑦 is

𝐸(𝑦) = ⎛⎜

⎝

𝐸(𝑦 )
𝐸(𝑦 )
⋮

𝐸(𝑦 )

⎞
⎟

⎠

(3.3)

Instead of a single variance 𝜎 , we now get a full 𝑚 × 𝑚 variance matrix 𝑄 . Formally
the second central moment of the vector 𝑦 reads

𝐷(𝑦) = 𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦)) ) = ∫ (𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦)) 𝑓(𝑦)𝑑𝑦 (3.4)

which is a multiple integral expression (the superscript (⋅) denotes the transpose of a vector
or matrix). In case vector 𝑦 consists of just a single random variable (𝑚=1), the above form
reduces again to (2.10). The variance matrix is

𝐷(𝑦) = 𝑄 = ⎛

⎝

𝜎 𝜎 ⋯ 𝜎
𝜎 𝜎 ⋯ 𝜎
⋮ ⋮ ⋱ ⋮

𝜎 𝜎 ⋯ 𝜎

⎞

⎠

(3.5)

On the diagonal we find the variances for the individual random variables 𝑦 through 𝑦 ,
and on the off-diagonals, we find the covariances, each time pertaining to a pair of random
variables, hence 𝜎 is the covariance between 𝑦 and 𝑦 , in textbooks on statistics often
denoted as 𝐶𝑜𝑣(𝑦 , 𝑦 ). The covariance is

𝜎 = 𝐸((𝑦 − 𝐸(𝑦 ))(𝑦 − 𝐸(𝑦 )))

and the correlation coefficient is defined as

𝜌 =
𝜎
𝜎 𝜎

and can be regarded as a normalized covariance, as |𝜌 | ≤ 1, [1]. When 𝜎 = 0, and
thereby 𝜌 = 0, the two random variables 𝑦 and 𝑦 are said to be uncorrelated.

One could regard the variance 𝜎 as the covariance of 𝑦 with itself (𝜎 = 𝜎 ); the
square denotes the variance, in order to distinguish it from the standard deviation 𝜎 .

As 𝜎 = 𝜎 , matrix 𝑄 (3.5) is symmetric. The variance matrix 𝑄 is a positive
(semi) definite matrix, just like the variance (2.10) by definition is a non-negative quantity,
meaning that for any vector 𝑢 ∈ 𝑅 , it holds that the quadratic form 𝑢 𝑄 𝑢 ≥ 0 in case it is
positive semi-definite, and 𝑢 𝑄 𝑢 > 0 in case it is positive definite.
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3.1.1. Multi-variate normal distribution
In case all random variables in vector 𝑦 are normally distributed, their joint distribution is a
multi-dimensional, or multi-variate normal distribution, and the PDF 𝑓(𝑦) = 𝑓(𝑦 , 𝑦 , … , 𝑦 ) is
given by

𝑓(𝑦) = 1
√|2𝜋𝑄 |

𝑒 ( ) ( ) (3.6)

= 1
(2𝜋) √|𝑄 |

𝑒 ( ) ( )

where |𝑄| denotes the determinant of matrix 𝑄, and vector 𝑥 denotes the mean of 𝑦, hence
𝑥 = 𝐸(𝑦).

3.2. Mean and variance propagation laws
We often transform one random vector into another one. When this transformation is linear,
the mean and variance matrix of the new random vector can be fairly easily computed, once
the mean and variance matrix of the original random vector are available; this takes place
through the so-called propagation laws.

We consider the following linear transformation

𝑣 = 𝑅𝑦 + 𝑠 (3.7)

where vector 𝑣 has 𝑛 elements, and consequently matrix 𝑅 has 𝑛 rows and 𝑚 columns, and
vector 𝑠 is an 𝑛-vector.

The mean of 𝑣 is easily obtained through

𝐸(𝑣) = 𝐸(𝑅𝑦 + 𝑠) = 𝑅𝐸(𝑦) + 𝑠 (3.8)

where 𝐸(𝑣) is an 𝑛-vector. The 𝑛 × 𝑛 variance-matrix of 𝑣 follows as

𝑄 = 𝑅𝑄 𝑅 (3.9)

In practice, (3.9) is also referred to as the error propagation law.
Proofs of the above two propagation laws can be found in Appendix A.2.
Finally we state that when vector 𝑦 is normally distributed, then through a linear transfor-

mation as (3.7), vector 𝑣 is also normally distributed. Hence, if 𝑦 ∼ 𝑁 then through (3.7) also
𝑣 ∼ 𝑁.

3.3. Example
The height 𝑥 of a benchmark — monumented in the outer wall of a church tower — has
been previously surveyed. The surveyed height of this point 1 is available and denoted as
observable 𝑦 , with standard deviation 𝜎 = 𝜎 (e.g. with 𝜎 = 3 mm); the surveyed height
will be a good estimate for the unknown height 𝑥 , but not be perfect.

Next, we level from point 1 to 2, and eventually from point 2 to 3, see Figure 3.1. The
measured height difference 𝑦 , equals the difference of the height of point 2 and the height of
point 1, hence 𝑦 , = 𝑥 − 𝑥 , apart of course, from a measurement error; and 𝑦 , = 𝑥 − 𝑥 .
In order to properly account for random errors in these measurements, they are regarded as
random variables: observables 𝑦

,
and 𝑦

,
, with standard deviations 𝜎 , = 𝜎 , = 𝜎 (and
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1 2 3

y
1,2

y
2,3

Figure 3.1: Levelling from point 1, via point 2 to point 3.

zero mean measurement error 𝑦
,
= 𝑥 − 𝑥 + 𝑒 , and 𝐸(𝑦 ,

) = 𝑥 − 𝑥 , as 𝐸(𝑒 , ) = 0 is
assumed zero).

The surveyed height 𝑦 , and the height difference observables 𝑦
,
and 𝑦

,
are uncorre-

lated.
With the given surveyed height and the measured height differences we can determine

the heights of points 2 and 3. The question now is, what uncertainty can be expected in these
figures? So, what will be the variability in the determined height for point 3 for instance?
Therefore, we need to compute the variance (or standard deviation) of the height (parameter)
we determine for this point.

We handle this problem in a structured and systematic way. First the height of point 1 can
be estimated; the estimator is trivial

�̂� = 𝑦

From the second paragraph of text above we can deduce that

�̂� = 𝑦 + 𝑦
,

and that

�̂� = 𝑦 + 𝑦
,
+ 𝑦

,

We see that there is only one straightforward way to get to know the heights of points 2 and
3. The above three equations can be cast in matrix-vector form

(
�̂�
�̂�
�̂�
) = (

1 0 0
1 1 0
1 1 1

)
⏝⎵⎵⎵⏟⎵⎵⎵⏝

⎛

⎝

𝑦
𝑦
,

𝑦
,

⎞

⎠

and now resembles (3.7) with the 𝑅-matrix as the above 3 × 3-matrix 𝑀. We basically have
�̂� = 𝑀𝑦. We are concerned here with a linear transformation.

In order to determine the variances (or standard deviations) of the height estimators (we
want to compute 𝑄 ̂ ̂), we would like to apply (3.9). Therefore, we still need the variance
matrix of the observables 𝑄 . The third paragraph of text says that all 𝑦’s are uncorrelated,
and we know that they all have standard deviation equal to 𝜎. Hence variance matrix 𝑄 is
just an identity matrix, scaled by 𝜎 . Applying (3.9) yields

𝑄 ̂ ̂ = 𝑀𝑄 𝑀 = 𝜎 (
1 1 1
1 2 2
1 2 3

)

and the requested variances can be obtained from the diagonal, hence 𝜎 ̂ = 𝜎 , 𝜎 ̂ = 2𝜎 ,
and 𝜎 ̂ = 3𝜎 .
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What we see here is an accumulation of uncertainty, when you add together observables
each with associated uncertainties. The estimator for the height of point 2 has a variance
which is double the one for point 1, where we started. And for point 3, this is even a factor
of three. We return to this phenomenon with Figure 5.13 on the so-called open levelling line.
You can also see that the three height-estimators are correlated, the off-diagonal elements
are not equal to zero; this also makes sense as they share part of the information they are
based on; for instance, the surveyed height 𝑦 appears in all three equations (for �̂� , �̂� , and
�̂� ).

3.4. Non-linear mean and variance propagation laws
In section 3.2 we considered a linear relation in equation (3.7). In practice, we may also face
a non-linear relation:

𝑣 = 𝐺(𝑦) (3.10)

where 𝐺 is a mapping from 𝑅 to 𝑅 ; vector 𝑣 has 𝑛 elements (random variables), and vector
𝑦 has 𝑚 elements (random variables).

Theory is available to propagate the probability density function of 𝑦, 𝑓(𝑦), into the one of
𝑣, 𝑓(𝑣). In this section we restrict to just the expectation and the variance matrix of random
vector 𝑣.

An approximation for the expectation of 𝑣 is given by

𝐸(𝑣 ) ≈ 𝐺 (𝐸(𝑦)) + 12trace(
𝜕 𝐺
𝜕𝑦𝑦 |

( )
𝑄 ) (3.11)

for 𝑖 = 1,… , 𝑛, and where tracemeans taking the sum of the diagonal elements, in this case of
the matrix product |

( )
𝑄 , which is an𝑚×𝑚 matrix. Matrix ( ) is the so-called Hes-

sian matrix (in this case with dimensions 𝑚×𝑚), and contains the second order partial deriva-
tives of the non-linear function 𝐺 (𝑦). This equation shows that 𝐸(𝑣 ) ≠ 𝐺 (𝐸(𝑦)); supplying
the mean or expectation of 𝑦 in the non-linear function 𝐺, does not yield the mean/expectation
of 𝑣! With approximation (3.11), there is already an extra term, which depends on the variance
matrix of 𝑦. The proof of (3.11) can be found in Appendix A.3.

An approximation for the variance matrix of 𝑣 is given by

𝑄 ≈ 𝜕𝐺
𝜕𝑦 |

( )
𝑄 𝜕𝐺

𝜕𝑦 |
( )

(3.12)

where ( ) is an 𝑛×𝑚matrix, containing, as rows, the gradient vectors of non-linear functions
𝐺 (𝑦), with 𝑖 = 1,… , 𝑛, all evaluated at 𝐸(𝑦). Defining the matrix 𝑀 = |

( )
, the above

variance propagation law becomes 𝑄 ≈ 𝑀𝑄 𝑀 , which is then very similar to (3.9), though
(3.12) is an approximation. The proof of (3.12) can be found in Appendix A.3.

In practice, the expectation of the observable vector 𝑦 may not be known, hence the
derivatives ( ) and ( ) are evaluated at a sample value instead.

3.5. Exercises and worked examples
This section presents a problem with a worked answer on error propagation.
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Figure 3.2: Levelling from point 1, via point 2 to point 3.

Question 1 As shown in Figure 3.2, the height-difference between point 1 and point 2
has been leveled, and the height-difference between points 2 and 3 has been leveled. Both
observables have a standard deviation of mm. The two observables are uncorrelated. Based
on these two observed height-differences, the height-difference between point 1 and point 3
is determined. What is the standard deviation of this height-difference?

Answer 1 The height-difference between point 1 and point 3 follows as 𝑦 , = 𝑦 , + 𝑦 , .
Or, in terms of a matrix and a vector (and random variables)

𝑦
,
= ( 1 1 )⏝⎵⎵⏟⎵⎵⏝(

𝑦
,

𝑦
,
)

With the variance matrix of 𝑦
,
and 𝑦

,
being

𝐷(
𝑦
,

𝑦
,
) = ( 0

0 )

application of equation (3.9) yields

𝜎 , = ( 1 1 ) ( 0
0 )( 11 ) =

18
4

Hence, the requested standard deviation becomes 𝜎 , = √2 mm. By adding two equally
precise observables, the result has a standard deviation which is worse by a factor of √2.

Question 2 Given is a random variable 𝑦 with mean equal to 𝐸(𝑦) = 40 mm, and a
standard deviation of 𝜎 = 3 mm. Compute the expectation and standard deviation of 𝑣, with
𝑣 = 𝑦 .

Answer 2 The given transformation 𝑣 = 𝑦 is non-linear, hence the propagation laws
for a linear transformation can not be applied. We have to use (3.11) and (3.12) instead.
With 𝐺(𝑦) = 𝑦 , we obtain ( ) = 2𝑦 and ( ) = 2 (which have to be evaluated at
𝐸(𝑦) = 40 mm), and this results into

𝐸(𝑣) ≈ 40 + 122 ⋅ 9 = 1609mm

𝜎 ≈ 80 ⋅ 9 ⋅ 80 = 57600mm

hence 𝜎 ≈ 240 mm . Mind that the expectation 𝐸(𝑣) deviates, though slightly, from
(𝐸(𝑦)) = 1600 mm . The larger the uncertainty in observation 𝑦, the larger its variance,
and hence the larger the effect of the second term of (3.11).



4
Observation modelling and

parameter estimation

4.1. Introduction
In this chapter we propose a structured way of dealing with measurements. For each mea-
surement we will formulate an equation, which expresses the observed quantity in terms of
parameters of interest. In chapter 2, we used a very simple example: we had a distance ob-
servable 𝑦, and related it to the unknown (true) distance 𝑥. The observation equation reads:

𝑦 = 𝑥 + 𝑒 (4.1)

This equation says that distance observable 𝑦 is equal to the unknown, true distance, plus a
random error term 𝑒 representing the measurement error. When the instrument is fine, and
the measurement is carried out properly, we can expect that the measurement (sample) 𝑦
is not perfect, hence we will not have 𝑦 = 𝑥, though 𝑦 should be close to 𝑥. The symbol 𝑒
accounts for the measurement error, which, due to uncontrolable effects, will be positive one
time, negative a next time, small, somewhat bigger etc. But, on average, the measurement
is expected to be spot-on, that is, on average the measurement error is zero, 𝐸(𝑒) = 0,
and therefore 𝐸(𝑦) = 𝑥. The spread we can expect once we would take many repeated
measurements, and the uncertainty present in a single measurement, is quantified by standard
deviation 𝜎. With a laser-disto-meter for instance, a value of 𝜎=0.002 m is a fair number. Then
we have 𝜎 = 𝜎 = 𝜎.

In this simple example, the unknown parameter of interest is the distance. In practice
survey-problems can be much more complicated. Measurements can be angles and distances,
and the unknown parameters are (position) coordinates of certain points of interest. An
observation equation is an equation, expressing the observed quantity in terms of the unknown
parameters. When you express a distance in terms of position coordinates (in a two or three
dimensional space), this equation may even be non-linear. Later we return to non-linear
observation equations, but first we address the linear model of observation equations.

4.2. Observation modelling
The model of observation equations is given by

𝐸(𝑦) = 𝐴𝑥 ; 𝐷(𝑦) = 𝑄 (4.2)

23
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where 𝑦 is the 𝑚-vector of observations, 𝑥 the 𝑛-vector of unknown parameters, 𝐴 the 𝑚×𝑛
design matrix (of full rank equal 𝑛) containing a total of 𝑚𝑛 known coefficients, and 𝑄 the
𝑚 ×𝑚 variance-matrix (rank equal 𝑚). The observation equations are assumed to be linear
here, so (4.2) is a linear system. The system can also be written with the measurement errors
occuring explicitly

𝑦 = 𝐴𝑥 + 𝑒 ; 𝐷(𝑦) = 𝐷(𝑒) = 𝑄 (4.3)

with 𝐸(𝑒) = 0.
The linear regression model in chapter 17 of [1], with offset 𝛼 and slope 𝛽 is indeed a

simple example of the above linear model of observation equations; these two parameters 𝛼
and 𝛽 would together constitute vector 𝑥.

4.2.1. Example
In the example on levelling in the previous chapter (Figure 3.1), the unknown parameters of
interest are the heights of certain points (as 𝑥 and 𝑥 ), and through levelling we measure
height-differences: e.g. 𝑦 , = 𝑥 − 𝑥 . The model of observation equations reads

𝐸⎛

⎝

𝑦
𝑦
,

𝑦
,

⎞

⎠⏝⎵⎵⏟⎵⎵⏝
( )

= (
1 0 0
−1 1 0
0 −1 1

)
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

(
𝑥
𝑥
𝑥
)

⏝⎵⏟⎵⏝

In this special case, 𝑚 = 𝑛 = 3, and matrix 𝐴 is a square and invertible matrix, and indeed
we had �̂� = 𝑀𝑦 which, with 𝑀 = 𝐴 , equals �̂� = 𝐴 𝑦. The above system of equations is
solved for by simply an inversion of matrix 𝐴, but this can be done only in the case with a
square and invertible matrix 𝐴.

4.2.2. Redundancy
When there are 𝑛 unknown parameters (in vector 𝑥) to determine, we need at least 𝑚 = 𝑛
observations (in vector 𝑦). In practice, typically (some) more measurements are done than
strictly necessary (for good reasons), and in this primer we will always consider the case
𝑚 ≥ 𝑛. The excess of 𝑚 over 𝑛 is referred to as redundancy.

4.3. Parameter estimation
Given a vector of observations 𝑦 we have to determine the values for the entries in vector
𝑥. In the simple example above (in section 4.1), computing the estimator for the unknown
distance is very simple: �̂� = 𝑦, once we have a sample for 𝑦, we simply equate the result for
𝑥 to this observation: �̂� = 𝑦. By the hat-symbol, we denote that this is an estimate for the
unknown distance. We will never know the actual true distance, but we can make a guess, or
estimate of it, based on our observation. The true distance 𝑥 is still unknown, but, the ‘best
to our knowledge’ guess of it is �̂� = 𝑦.

When, with multiple measurements and unknown parameters, we have 𝑚 = 𝑛, then
�̂� = 𝐴 𝑦, as 𝐴 was assumed a full rank matrix before (and with 𝑚 = 𝑛 it is also a square
matrix). This is still a fairly simple case to solve.

As said before, in practice we typically deal with the case 𝑚 > 𝑛, hence there are ’too
many’ measurements, and for the reason of measurement errors, the system 𝑦 = 𝐴𝑥 will not
be a consistent system; given the measurements, there will not be a solution for 𝑥 which
satisfies all equations in the system 𝑦 = 𝐴𝑥.
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4.3.1. Example
Suppose we measure the same distance twice. One time, we get 𝑦 =7.452 m, and next we
get 𝑦 =7.454 m. Though, these two measurements are close together, we can not make them
fit perfectly in the assumed measurement model. For both observables holds that they are
related to the same, unknown distance, hence

( 𝑦𝑦 ) = ( 11 ) (𝑥)

but we can never find a value for 𝑥 which satisfies 𝑦 =7.452 m=𝑥, and at the same time
𝑦 =7.454 m=𝑥. Therefore 𝑦 ≠ 𝐴𝑥.

4.3.2. Least-squares estimate
The least-squares principle provides a solution to a system of observation equations which is
redundant (𝑚 > 𝑛) and inconsistent (𝑦 ≠ 𝐴𝑥 due to measurement errors). The estimate for
the unknown parameter vector 𝑥 shall be computed according to

�̂� = (𝐴 𝐴) 𝐴 𝑦 (4.4)

The name least-squares explains, as we are trying to make the system 𝑦 = 𝐴𝑥 consistent, by
using — instead of the vector of observations 𝑦 — a vector of estimated, ‘slightly adapted’,
observation values �̂�, that is �̂� = 𝐴�̂� (properly said, �̂� is the estimate for the mean of the
observable 𝑦). Of course, one could choose very weird values for �̂� and consequently for �̂�,
and arrive at a consistent system, but, we would like to have �̂� close to 𝑦, as afterall, we
expect the measured values to be close to the true values (the measurements do contain
useful information). So, we are going to ‘change’, or ‘adjust’ the observed values not too
much.

The underlying criterion is, given vector 𝑦, to find 𝑥 such that the length (norm) of the
vector (𝑦 − 𝐴𝑥) is smallest

min ‖𝑦 − 𝐴𝑥‖ (4.5)

The solution �̂� to this minimization problem yields the smallest length, hence the vector (𝑦 −
𝐴�̂�) = (𝑦 − �̂�) is shortest (the norm is obtained by squaring all entries of the vector and
summing them, and this should be at minimum, hence the term least-squares). A proof that
solution (4.4) results from this minimization is provided in Appendix A.4.

4.3.3. Example
When we observe the same distance 𝑥 twice, then the least-squares estimator for the unknown
distance equals just the average of the two measurements:

( 𝑦𝑦 ) = ( 11 )⏝⎵⏟⎵⏝
𝑥

and using (4.4) we find that �̂� = (𝑦 + 𝑦 ).
In section 2.5.2 we actually used a model 𝑦 = 𝐴𝑥 with 𝑦 = (𝑦 ,… , 𝑦 ) and 𝐴 = (1,… , 1)

with 𝑚 = 𝑁 and 𝑛 = 1, just a single unknown parameter.
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4.3.4. Minimum variance estimator
With least-squares we have not used yet all available information. We used just the functional
relations between observations and unknown parameters cast in 𝑦 = 𝐴𝑥. In (4.2) we have also
available, the variance matrix of the observables 𝑄 (and it does not occur at all in (4.4)). The
parameter estimation process should use this information, to be optimal. Observables with
small variances should get more weight in the solution than observables with larger variances.
The first ones are more precise than the latter, and the resulting estimator should reflect this.
The information contained in the variance matrix 𝑄 is taken into account in an optimal way,
by the following estimator, which we state without proof:

�̂� = (𝐴 𝑄 𝐴) 𝐴 𝑄 𝑦 (4.6)

You can easily see that, when the variance matrix 𝑄 is a (scaled) identity matrix, we are
back at (4.4). Note that the above estimator �̂� for the vector of unknown parameters is a
random vector, as it is a function of the vector of observables 𝑦. The least-squares principle
is not concerned with statistical aspects, and therefore no ‘underscores’ are used in equation
(4.4).

The above estimator (4.6) has three distinct properties. The first one is that �̂� is a linear
function of the observables 𝑦, through matrix 𝑛×𝑚-matrix (𝐴 𝑄 𝐴) 𝐴 𝑄 . Second, the es-
timator is unbiased, that is, on average it delivers values which agree with the unknown true
values; taking the expectation of (4.6) and using (3.8) we get 𝐸(�̂�) = (𝐴 𝑄 𝐴) 𝐴 𝑄 𝐸(𝑦),
which, with 𝐸(𝑦) = 𝐴𝑥, yields 𝐸(�̂�) = (𝐴 𝑄 𝐴) 𝐴 𝑄 𝐴𝑥 = 𝑥, thus indeed 𝐸(�̂�) = 𝑥. And
finally the estimators in �̂� have minimum variance. The vector �̂� is a (linear) function of
vector 𝑦, which is a vector with random variables, hence all entries are subject to (random)
measurement errors. Therefore, the entries of vector �̂� will also be subject to uncertainty. By
using (3.9) on

�̂� = (𝐴 𝑄 𝐴) 𝐴 𝑄⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝𝑦

we obtain the 𝑛 × 𝑛 variance matrix for the estimator �̂� as

𝑄 ̂ ̂ = 𝐻𝑄 𝐻 = (𝐴 𝑄 𝐴) 𝐴 𝑄 𝑄 𝑄 𝐴(𝐴 𝑄 𝐴)

which simplifies into

𝑄 ̂ ̂ = (𝐴 𝑄 𝐴) (4.7)

It can be shown that this matrix — among the variance matrices of all possible linear and
unbiased estimators — has minimum trace, that is, this estimator is best in the sense that
the sum of all 𝑛 variances together is smallest. The least-squares solution (4.4) only shares
the first two properties with the minimum variance solution (4.6), hence being linear and
unbiased.

The estimator (4.6) is unbiased, and therefore minimum variance implies best accuracy,
cf. section 2.6. The estimator (4.6) is also known as the Best Linear Unbiased Estimator
(BLUE). It provides a generalization of the least-squares estimation of offset 𝛼 and slope 𝛽 in
chapter 22 of [1]. An example on regression, or line-fitting is presented in chapter 6. With the
above BLUE one can compute a properly weighted least-squares solution (for vector 𝑥) to any
proper linear problem. As the inverse of matrix 𝑄 is involved in (4.6), precise observables
(small variances) receive larger weights, and less precise observables (large variances) receive
smaller weights.
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4.3.5. Example
We repeat the example of observing the same distance twice. However in this case the first
measurement is made with a better instrument, and the standard deviation of 𝑦 is equal to

. The second measurement is carried out with the default instrument, as before, and the
standard deviation of 𝑦 equals 1. We have

𝐸 (
𝑦
𝑦 ) = ( 11 )⏝⎵⏟⎵⏝

𝑥 ; 𝐷 (
𝑦
𝑦 ) = 𝑄 = ( 0

0 1 )

and using (4.6) we find that �̂� = 𝑦 + 𝑦 , hence we arrive at the weighted mean, rather
than the ordinary mean. Observable 𝑦 has a variance which is four times smaller than the
variance of observable 𝑦 , and therefore the coefficient in the final estimator is four times
bigger, versus , and because + = 1 all information is taken into account (total weight
equals 1, and the estimator is unbiased).

Finally, with (4.7), one can see that the variance of the estimator is 𝜎 ̂ = , which is better,
and smaller than any of the two observables at the input!

Collecting redundant measurements typically leads to inconsistent systems of equations,
but eventually improves the precision of the estimator!

4.4. Non-linear observation equations
The chapter started off from a linear model of observation equations (4.2), and proposed
the least-squares estimate and the Best Linear Unbiased Estimator (BLUE). It provides a nice
theoretical framework. But, in practice there are hardly any measurements which carry a
linear relation with the unknown parameters. Indeed, a levelled height-difference is linear
in the (unknown) height-parameters of the two points. But a distance is clearly a non-linear
function of the coordinate differences, see (5.4).

The approach to systems of non-linear observation equations will be to approximate them
by linear equations. The originally non-linear equations will be linearized with respect to the
unknown parameters and the resulting system of linear(ized) equations will be treated using
(4.4) or (4.6) on (4.2). Of course, we need to make sure that the approximation we make, is
sufficiently good.

The model of observation equations

𝐸(𝑦) = 𝐹(𝑥) ; 𝐷(𝑦) = 𝑄 (4.8)

where matrix-vector product 𝐴𝑥 has been replaced by 𝐹(𝑥), a non-linear function, or mapping
from 𝑅 to 𝑅 ; it is a collection of 𝑚 non-linear functions of 𝑛 parameters.

The mapping 𝐹(𝑥) can be detailed as

𝐸⎛⎜

⎝

𝑦
𝑦
⋮
𝑦

⎞
⎟

⎠

= ⎛

⎝

𝑓 (𝑥 , 𝑥 , … , 𝑥 )
𝑓 (𝑥 , 𝑥 , … , 𝑥 )

⋮
𝑓 (𝑥 , 𝑥 , … , 𝑥 )

⎞

⎠

or in words, (the expectation of) each observable 𝑦 is a (scalar) function 𝑓 of 𝑛 parameters,
namely 𝑥 , 𝑥 , … , 𝑥 (𝑓 is a mapping from 𝑅 to 𝑅), and row-by-row we do have 𝑚 such
functions, 𝑖 = 1,… ,𝑚. Examples of function 𝑓 are given by (5.2) and (5.4).
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4.4.1. Linearization
The function 𝐹(𝑥) is approximated by the zero-order and first-order terms. Higher-order
terms are neglected. We rely on the Taylor series, using a point 𝑥 , which is presumed to be
reasonably close to the actual/true 𝑥; vector 𝑥 = (𝑥 , , 𝑥 , , … , 𝑥 , ) contains approximate
values for all 𝑛 unknown parameters. So,

𝐹(𝑥) ≈ 𝐹(𝑥 ) + 𝜕𝐹(𝑥)
𝜕𝑥 | (𝑥 − 𝑥 )

where the zero order term and the first derivative are evaluated at 𝑥 . To compute the first
order derivative, all 𝑚 non-linear functions, one by one, are differentiated with respect to
𝑥 , 𝑥 , until 𝑥 , hence this turns into an 𝑚 × 𝑛 matrix. The first row of this matrix reads

⋯ , with the partial derivatives evaluated at 𝑥 .
Substituting this approximation of 𝐹(𝑥) into (4.8) yields

𝐸(𝑦) ≈ 𝐹(𝑥 ) + 𝜕𝐹(𝑥)
𝜕𝑥 | (𝑥 − 𝑥 ) ; 𝐷(𝑦) = 𝑄

or

𝐸(𝑦 − 𝐹(𝑥 )⏝⎵⎵⏟⎵⎵⏝) ≈
𝜕𝐹(𝑥)
𝜕𝑥 |
⏝⎵⎵⏟⎵⎵⏝

(𝑥 − 𝑥 )⏝⎵⏟⎵⏝ ; 𝐷(𝑦 − 𝐹(𝑥 )) = 𝑄 (4.9)

Here, the first-order derivative (of dimensions 𝑚 × 𝑛) takes the role of the design matrix 𝐴.
The vector of observations 𝑦 is replaced by 𝑦 − 𝐹(𝑥 ), that is the observations minus the
observations as they are computed based on just the approximate value 𝑥 for the unknown
parameters: 𝑦 = 𝐹(𝑥 ). And through least-squares we will not be estimating the vector
of unknown parameters 𝑥, but (𝑥 − 𝑥 ) instead, the differences of 𝑥 with respect to the
approximate values 𝑥 that we already introduced.

4.4.2. Estimation
Accepting the approximation made in (4.9), the estimator for Δ𝑥 follows as

Δ�̂� = (𝐴 𝑄 𝐴) 𝐴 𝑄 (𝑦 − 𝐹(𝑥 ))

with

𝑄 ̂ ̂ = (𝐴 𝑄 𝐴)
and the eventual estimator for the vector of unknown parameter is obtained as

�̂� = 𝑥 + Δ�̂�
with

𝑄 ̂ ̂ = 𝑄 ̂ ̂

The model (4.9) is only an approximation of the actual non-linear model. For the approx-
imation to be good and valid, the approximate value 𝑥 should be close to the true unknown
value 𝑥. Therefore, the above procedure is repeated (iterated). One starts off with as good as
possible guess for 𝑥 , next one determines the estimate �̂�, and then takes this estimate as a
new approximate value, as likely it is closer to the true, unknown 𝑥 than 𝑥 was, and repeats
the above procedure (and on and on, if necessary). This iterative procedure is known as the
Gauss-Newton method. A further discussion of this method, its properties and convergence
behaviour is beyond the scope of this primer.

Concerns with regard to non linear estimation are briefly mentioned in Appendix A.5.
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Figure 4.1: Example of non-linear estimation problem, fitting a cosine with unknown amplitude and frequency
through a given set of data points, indicated by red asterisks (at left), and results of Gauss-Newton iterated
estimation (at right).

4.4.3. Example
A certain object moves harmonically, for instance a tall rise building vibrating under the load
of wind. The motion in one dimension, as a function of time, can be described by a cosine,
with zero phase offset (our assumption/simplification in this example), but with unknown
amplitude and frequency. The positions of the object are observed at times 𝑡 = 10, 𝑡 = 20,
𝑡 = 30, 𝑡 = 40, 𝑡 = 50, and 𝑡 = 60 seconds (timing is assumed to be perfect), and the
measurements are denoted by 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 and 𝑦 (and these position measurements are
subject to errors). The observation model reads

𝐸(𝑦 ) = 𝑥 cos(2𝜋𝑥 𝑡 ) (4.10)

for 𝑖 = 1,… , 6. Unknown parameters are the amplitude 𝑥 , and the frequency 𝑥 in Hertz.
The observation values are 𝑦 = 2.3, 𝑦 = −1.8, 𝑦 = −4.2, 𝑦 = −2.8, 𝑦 = 1.2 and

𝑦 = 4.1, and they are shown in Figure 4.1 by the red asterisks. The observation model
is non-linear in the unknown paramaters 𝑥 and 𝑥 , and will now be approximated by zero
and first order terms. In order to do so, one needs approximate values for the unknown
parameters. Our choice is to simply set the amplitude (𝑥 ) equal to the largest observed
value (in absolute sense) (𝑥 ) = |𝑦 |, and the data points in Figure 4.1 seems to show
roughly one period of the harmonic motion in a time span of 80 seconds, hence the frequency
is set to (𝑥 ) = (Hz). The dotted line in the graph on the left presents the harmonic wave
defined by these approximate values, hence 𝑦 (𝑡) = (𝑥 ) cos(2𝜋(𝑥 ) 𝑡).

The graph on the right in Figure 4.1 shows again the harmonic wave defined by the initial
approximate values, and also the results (estimates) of the first and second iteration (in thin
dotted lines), and eventually the result of the last step, the fifth iteration, as a solid line: �̂�(𝑡) =
�̂� cos(2𝜋�̂� 𝑡). One can clearly see that with the initial approximate values the harmonic wave
was a bit off, and that a few iterations quickly make the wave fit to the observated data points.
Numerical results are reported in table 4.1. The values 𝐹(𝑥 ) computed for the observations
in each iteration, directly follow from using the values for �̂� = (�̂� , �̂� ) obtained in the step
before.

It should be noted that the approximate values for the unknown amplitude and frequency
should be carefully chosen — not any value will do. The problem is in fact highly non-linear —
the cosinus is a highly curved function, in particular for high(er) frequencies. The approximate
values should be sufficiently close already to the true, but unknown values for the parameters
to be estimated.
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iteration 0 1 2 3 4 5

𝑦 = 2.3 2.9698 1.7446 2.2474 2.3027 2.3046 2.3046
𝑦 =-1.8 0.0000 -1.1066 -1.8431 -1.7699 -1.7729 -1.7729
𝑦 =-4.2 𝐹(𝑥 ) -2.9698 -2.9975 -4.2056 -4.2163 -4.2210 -4.2210
𝑦 =-2.8 -4.2000 -2.2871 -2.6249 -2.7887 -2.7898 -2.7898
𝑦 = 1.2 -2.9698 0.4080 1.4168 1.2011 1.2054 1.2054
𝑦 = 4.1 0.0000 2.7491 4.1302 4.0874 4.0928 4.0928

-0.6698 0.5554 0.0526 -0.0027 -0.0046 -0.0046
-1.8000 -0.6934 0.0431 -0.0301 -0.0271 -0.0271

𝑦 − 𝐹(𝑥 ) -1.2302 -1.2025 0.0056 0.0163 0.0210 0.0210
1.4000 -0.5129 -0.1751 -0.0113 -0.0102 -0.0102
4.1698 0.7920 -0.2168 -0.0011 -0.0054 -0.0054
4.1000 1.3509 -0.0302 0.0126 0.0072 0.0072

(𝑥 ) =4.2000 �̂� 3.0818 4.2308 4.2595 4.2641 4.2641 4.2641
(𝑥 ) =0.0125 �̂� 0.0154 0.0161 0.0159 0.0159 0.0159 0.0159

Table 4.1: Gauss-Newton iteration: the left column shows the observed values , , , , and , and the
two approximate values for the unknown parameters at bottom ( ) and ( ) . The columns 0 through 5 show
the results of the 5 iteration steps; on top the ( ), ( ) and the resulting estimate ̂ at bottom.



5
Land-surveying

Land-surveying is in support of Civil Engineering activities, as there is need for knowledge
about shape, attitude and location (position) of objects, topography and the Earth’s surface.
Measurements are done to gather this knowledge, and the knowledge is eventually presented
— most often — in terms of position coordinates. In this chapter we present the most common
types of measurements in land-surveying. The two basic measurement types are angle (or
azimuth, or direction), and distance. And they are actually closely related, as the angle —
expressed in radians — equals the quotient of the distance along the arc of a circle, and its
radius.

As Civil Engineering activities mostly concern local and regional areas, we use a two di-
mensional (Euclidean) geometry in the (local) horizontal plane. The height is used separately
as a third dimension. Azimuths, directions, angles, and distances are parametrized in terms
of two-dimensional coordinates. The coordinates of a certain point i read ((𝑥 ) , (𝑥 ) ).

Next, in section 5.5 we introduce the theory necessary to evaluate the precision of the
resulting position coordinate estimators. The last section of this chapter provides a review
of elementary measurement set-ups, together with an analysis of precision of the resulting
position coordinates.

5.1. Levelled height-difference
A height-difference 𝑦 obtained through levelling is simply the difference of the heights of the
two points involved:

𝐸(𝑦 ) = 𝑥 − 𝑥 (5.1)

This is a linear equation in the unknown parameters 𝑥 and 𝑥 , and has been dealt with before,
see section 3.3.

5.2. Azimuth and angle measurements
The azimuth 𝑎 is the argument of the line-segment from point i to (target) point j.

𝐸(𝑎 ) = arctan
(𝑥 ) − (𝑥 )
(𝑥 ) − (𝑥 ) (5.2)

see Figure 5.1. The azimuth provides the angle of the line-segment from point i to j, with
respect to a fixed reference direction, typically the 𝑥 -axis. For measurements of azimuth we
use the symbol 𝑎 rather than 𝑦; for distance we use 𝑙 in the next section, rather than 𝑦.

31
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Figure 5.1: Azimuth measurement .
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Figure 5.2: Measurement of direction , and measurement of angle .

For an observation of direction 𝑟 , the zero-reference — indicated by the dashed line in
Figure 5.2 — has an arbitrary offset (angle) with respect to the second coordinate axis 𝑥 . This
unknown offset parameter enters the observation equation (5.2); it should be subtracted from
the right-hand side. All observations of direction taken with a single set up of the instrument,
share the same orientation offset.

𝐸(𝑟 ) = arctan
(𝑥 ) − (𝑥 )
(𝑥 ) − (𝑥 ) − 𝑂

An angle observation 𝛼 is just the difference of two azimuths, hence the angle 𝛼 at
point i from point k to point j, is just 𝑎 − 𝑎 , see also Figure 5.2.

With section 4.4, linearization of (5.2) with azimuth 𝑎 expressed in radians, yields

𝐸(Δ𝑎 ) = −
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) +
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) +
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) −
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) (5.3)

where (𝑥 ) , = (𝑥 ) , −(𝑥 ) , , (𝑥 ) , = (𝑥 ) , −(𝑥 ) , , and 𝑙 , = (𝑥 ) , +(𝑥 ) , . The
above equation follows by using that 𝑑 arctan(𝑥)/𝑑𝑥 = 1/(1 + 𝑥 ).

5.3. Distance measurements
The Euclidean distance between points i and j is the length of the line-segment from point i
to point j.

𝐸(𝑙 ) = √((𝑥 ) − (𝑥 ) ) + ((𝑥 ) − (𝑥 ) ) (5.4)

see Figure 5.3.
Linearization of (5.4) yields

𝐸(Δ𝑙 ) = −
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) −
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) +
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) +
(𝑥 ) ,
𝑙 ,

(Δ𝑥 ) (5.5)
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Figure 5.3: Measurement of distance in two dimensions between points i and j.

where (𝑥 ) , = (𝑥 ) , − (𝑥 ) , , (𝑥 ) , = (𝑥 ) , − (𝑥 ) , , and the approximate value for
the distance 𝑙 , = √(𝑥 ) , + (𝑥 ) , .

In practice distance measurements can be subject to a scale factor and/or to an offset.
These aspects are beyond the scope of this primer.

5.4. Idealisation
In the mathematical model of observation equations 𝑦 = 𝐴𝑥 + 𝑒 (chapter 4), the parameters
𝑥, for instance representing position coordinates of a point, are deterministic quantities. Each
parameter represents a single — though unknown — numerical value.

Next, we should realize that — for the purpose of surveying and making maps — we are
modeling the Earth’s surface and its topography and objects by means of basic geometric
entities. The real world is reduced to points, lines and polygons/areas. For this reducation the
surveyor relies on his insight and experience.

Nevertheless we should realize that there is a random component involved in this process.
The corner of a brick-wall building can be identified quite well, though, looking at the millimeter
scale, you will see that not all bricks in a wall are perfectly aligned. For the center or border
line of a ditch, the reduction will be much more difficult; how can we identify the (shape of the)
ditch in rough terrain? Where does the ditch start and where does it end? The (additional)
uncertainty may increase to the centimeter or even decimeter level in this case. The additional
random component is referred to as the idealisation error.

Idealisation is about the question how well we can identify what we actually measure.
Upon concluding the surveying exercise, we can make for instance a statement about the
distance between two objects on Earth and when stating the precision of this distance, we
should account for the measurement precision, and also for the idealisation precision, in order
to present realistic figures. In this primer however, we will not account for this additional
random component in surveying. To say, our assumption is that we can identify the objects
of interest infinitely precise.

5.5. Analysis of measurement set-up: confidence ellipse
In this section we present the confidence ellipse as a concept for evaluating the precision of
a random vector, and this is instrumental to (performance) analysis of a survey measurement
set-up. The outcome of surveying (that is, taking measurements and carrying out their con-
sequent processing) is generally a set of position coordinates. We take measurements, and
we want to know where (a certain identified point on) an object is located. Observables are
turned into estimators for position coordinates, and the quality of these estimators needs to
meet requirements. An important aspect of quality is precision, and we present it in terms
of a confidence ellipse (for the estimators of the two position coordinates of the point under
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consideration).
The confidence ellipse is an area (in the two dimensional space) centered at the estimated

position, which contains the true, but unknown position, with a certain stated probability.
In case the position is described with just a single coordinate (for instance when we are
only interested in the height) the confidence ellipse turns into an interval. And for a three-
dimensional position coordinates vector, it is an ellipsoid. One can also use the general term
confidence region, rather than confidence ellipse, to suit any dimension. In the sequel we work
with two-dimensional position coordinate vectors. One can for instance think of the indicated
center of a pillar to support a future bridge-deck, and be concerned with the (horizontal)

coordinates of this point of interest: 𝑥 = ( 𝑥𝑥 ). We are about to analyze the precision of
the obtained position coordinate estimators �̂�, which typically is a function of the observables
�̂� = 𝐺(𝑦) (non-linear or linear), with variance matrix 𝑄 ̂ ̂ . The estimators are assumed to
be normally distributed here (remember that normally distributed observables yield normally
distributed estimators, with section 3.2 and equation (4.6)).

We repeat equation (3.6), but now applied to �̂�, rather than 𝑦 in (3.6).

𝑓(�̂�) = 1
√|2𝜋𝑄 ̂ ̂ |

𝑒 ( ̂ ( ̂ )) ̂ ̂ ( ̂ ( ̂ )) (5.6)

The peak of the PDF is centered at 𝐸(�̂�) = 𝑥, the true value (as we assume an unbiased
estimator here); �̂� ∼ 𝑁(𝑥, 𝑄 ̂ ̂). Mind, that in practice, we generally do not know the true
value …. What is actually of interest for precision analysis, is how close position estimates
can expected to be to the true value, therefore we consider the PDF of the difference 𝑧 = �̂�−𝑥,
which we temporarily denote by 𝑧; 𝑧 ∼ 𝑁(0, 𝑄 ), which is easily obtained using section 3.2
(subtracting a constant vector does not change the variance matrix, so 𝑄 = 𝑄 ̂ ̂)). Such a
PDF is shown in Figure 5.4. The PDF is specified by the mean vector and the variance matrix,
in this two-dimensional example:

𝐸 ( 𝑧𝑧 ) = ( 00 ) 𝐷 ( 𝑧𝑧 ) = ( 4 1
1 2 )

Figure 5.5 shows the histograms for 1000 samples, separately of �̂� and �̂� , and Figure 5.6
(on the left) shows the samples (�̂� ,�̂� ) in a two-dimensional scatter plot; in both cases they
have been corrected for their known true values (𝑥 ,𝑥 ). So, we had to know the true values
for the two coordinates, and we do so here for demonstration purpose.
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Figure 5.5: Histogram of on the left, and of on the right. The (theoretical) normal probability density function
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Figure 5.6: On the left: scatter plot of 1000 samples ( , ); that is, all samples ( ̂ , ̂ ) have been corrected
for their known true value ( , ). On the right: contour of PDF, ellipse of concentration, of position estimator,
corrected for true position ( , ), hence, centered at the origin; an estimated position ( ̂ , ̂ ), also corrected for
the true position, is inside the ellipse with probability . and ( , ) . .



36 5. Land-surveying

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T

f(
T

)

Chi−squared PDF

 

 

χ2(2,0)

χ2(5,0)

χ2(10,0)

Figure 5.7: Probability density function of a Chi-squared distributed random variable ; shown are the
central Chi-squared distributions for 2, 5 and 10 degrees of freedom respectively. The quadratic form ranges
from zero to infinity.

In practice it is not very convenient to draw — for each pair of coordinate estimators —
the PDF in a full three dimensional image, as done in Figure 5.4. Though one would like to
present the main feature of this function. This is done by considering a cross-sectional cut of
the bell-shaped curve, horizontally, at a certain height 𝑘; this cut provides an iso contour line.

𝑓(𝑧) = 1
√|2𝜋𝑄 |

𝑒 = 𝑘

hence

𝑧 𝑄 𝑧 = −2 ln(𝑘√|2𝜋𝑄 |) = 𝑘 (5.7)

where ln is the natural logarithm, and vector 𝑧 ∈ 𝑅 . By doing this, 𝑓(𝑧) = 𝑘, we obtain an
ellipse. The border of this ellipse represents all points 𝑧 (end-points of vectors 𝑧) with equal
probability density. The ellipse nicely captures the shape of the PDF, but still does not tell us
much about how much probability is actually contained. For this, we need another type of
probability density function, namely the Chi-squared distribution.

If random vector 𝑧, consisting of 𝑛 random variables, is distributed as 𝑧 ∼ 𝑁(0, 𝑄 ), then
𝑧 𝑄 𝑧 ∼ 𝜒 (𝑛, 0). The PDF is shown in Figure 5.7, and a table of the Chi-squared distribution
can be found in appendix C. Hence we have for the quadratic form

𝑇 = 𝑧 𝑄 𝑧 ∼ 𝜒 (𝑛, 0)

in practice typically with 𝑛 = 2.
In terms of �̂� we have (using 𝑧 = �̂� − 𝑥)

(�̂� − 𝑥) 𝑄 ̂ ̂ (�̂� − 𝑥) ∼ 𝜒 (𝑛, 0)

Hence, the above constant 𝑘 simply follows from the Chi-squared distribution. In the table
in appendix C values can be found for the one-minus-the Cumulative Distribution Function,
or to say, the exceedence probability 𝛼. The area 𝑃[(�̂� − 𝑥) 𝑄 ̂ ̂ (�̂� − 𝑥) ≤ 𝜒 (𝑛, 0)] = 1 − 𝛼
contains probability 1−𝛼, with the values for 𝛼 on the top-row in the table, and the 𝜒 (𝑛, 0)-
values tabulated. For the points in this area holds that 𝑓(�̂� − 𝑥) ≥ 𝑘.

Above we considered the probability that the difference of the position estimator with the
true position is inside an ellipse, which equals the probability that the true (and in practice,
unknown) position is inside the ellips, but centered at the estimate �̂�. The ellipse of identical
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Figure 5.8: The diagram on the left shows, centered at the true position , the area which contains the position
estimator ̂ with a certain probability (contour of the PDF). The diagram in the middle shows the confidence region
for the true position , centered at the position estimate ̂ . The diagram on the right shows the area for the
difference of the position estimator and the true position ̂ , it is centered at the origin (sometimes referred
to as the error-region). In these diagrams the area has simply been shown as a circle.

shape as in Figure 5.6 on the right, but centered at the obtained estimate for the position
coordinate vector, that is at (�̂� , �̂� ), is the confidence ellipse. It shows the area, which
contains the true (but unknown) position, with a certain, specified probability. After all, the
goal of surveying is to determine the position of a point of interest. We will never know the
actual, true value, but instead we come up with an estimate for it, and then we would like to
know, how close our estimate is to the actual, true position.

In the sequel, in section 5.7, we use the PDF contour ellipse to demonstrate the quality
of position solutions using several different measurement set-ups, for instance using solely
distance measurements, using solely azimuth measurements, and using a combination of
them. Such an analysis is typically done during the design-phase of the survey.

Finally we note that with an estimator for a one-dimensional quantity, we are considering
a single random variable, and the error region is just an interval, namely the √𝑘 -times-sigma
interval. In (5.7), the variance matrix then consists of just a single variance, (�̂� − 𝑥) 𝑄 ̂ ̂ (�̂� −
𝑥) = 𝑘 , and we have

(�̂� − 𝑥)
𝜎 ̂

= 𝑘

or

|�̂� − 𝑥| = √𝑘 𝜎 ̂

The corresponding confidence interval is centered at �̂�, and extends to both sides by √𝑘 𝜎 ̂
and contains the true 𝑥 with a probability 1−𝛼, where values for 𝑘 are tabulated in appendix C,
as a function of 𝛼, with 𝑛 = 1.

5.6. Example: resection with distances
For a simple example of measuring three distances (from three known points) to determine
the position of a fourth point, we will analyse quality (precision) of the coordinate estimators of
this fourth point. It is actually a ‘strength’-analysis of the geometric construction (or surveying
network in general).

As shown in Figure 5.9 distances are measured from points 1, 2 and 3, to the new/unknown
point 4. The coordinates of the points 1, 2 and 3 are known and indicated in the figure: point
1=(0,0), point 2=(100√3, 0), point 3=(50√3, 150). Approximate values for the coordinates of
point 4 are (50√3, 50). Units can be assumed to be in meters. The three distance observables
are uncorrelated and all have variance 𝜎 (for instance 𝜎 = 5 m; quite a large value, but done
for convenience here).



38 5. Land-surveying

x
1

x2

4

1 2

3

y2y1

y3

Figure 5.9: Geometric construction to determine position coordinates of new/unknown point 4 based on observed
distances to three neighbouring known points.

In the sequel we set up, and compute the design matrix as it occurs in the model of
linearized observation equations (using the approach of section 4.4). Next, we compute the
variance matrix of the coordinate estimators for point 4.

The three non-linear observation equations read:

𝐸(𝑙 ) = √((𝑥 ) − (𝑥 ) ) + ((𝑥 ) − (𝑥 ) )

𝐸(𝑙 ) = √((𝑥 ) − (𝑥 ) ) + ((𝑥 ) − (𝑥 ) )

𝐸(𝑙 ) = √((𝑥 ) − (𝑥 ) ) + ((𝑥 ) − (𝑥 ) )
There are 𝑚 = 3 observations, and only 𝑛 = 2 unknown parameters, namely (𝑥 ) and (𝑥 ) ;
the other coordinates are known. With equation (5.5), the given coordinates of points 1, 2
and 3, and (𝑥 ) , and (𝑥 ) , as the approximate values for (𝑥 ) and (𝑥 ) , the 3×2 design
matrix 𝐴 of the model of linearized observation equations (cf. equation (4.9)) becomes

𝐴 = (
√3

− √3
0 −1

)

The variance matrix is simply 𝑄 = 𝜎 𝐼 , a scaled identity matrix.
With (4.7) the variance matrix is obtained as

𝑄 ̂ ̂ = 𝜎 ( 0
0 )

With this particular geometry (a re-section of point 4 with three angles all nicely of 60
degrees), the two coordinate estimators are uncorrelated, and also happen to have equal
precision 𝜎( ̂ ) = 𝜎( ̂ ) . The contour ellipse of the PDF turns into just a circle, see Figure 5.10.
This figure also shows a scatter of 𝑁 = 1000 trials of this experiment; 975 of these trials should
lie inside the ellipse, and 25 should lie outside.

The above analysis of geometry and precision can be done once approximate values for
the unknown parameters are available. Actual measurements are not (yet) needed. As there
are no measuremements, we can not iterate as done in the example of section 4.4, hence we
obtain only a first approximation of the measures of precision.

5.7. Elementary measurement set-up
In this section we present six of the most elementary local measurement set-ups, three on
levelling, which is about positioning in just one-dimension, and three on tachymetry (with
angles and distances) in two-dimensional geometry. For these six set-ups we analyse the
precision of the coordinate estimators for the unknown points.
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Figure 5.10: Coordinates estimator of point 4 based on distance observables to three neighbouring known points.
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Figure 5.11: Open levelling line from (known) point 1 to point n.

5.7.1. Levelling
A height-difference 𝑦 , observed with an optical levelling-instrument in a local context, equals
the difference of two (orthometric) heights 𝑥 and 𝑥 (apart from a measurement error). The
observation equation 𝐸(𝑦 ) = 𝑥 −𝑥 is linear in the unknown parameters (coordinates) 𝑥 and

𝑥 . The coordinate system is one dimensional, and the direction of the axis (up) is determined
by gravity. The scale is provided by the marks on the levelling rod. With optical levelling, the
measurement precision is typically in the order of a few millimeter.

Figure 5.11 presents a so-called open levelling line. The height of point 1 is known from
an earlier survey, and one levels from 1 to 2, from 2 to 3 etc., until point n. The line consists
of (𝑛 − 1) stretches, also called level-runs.

In an open levelling line, the heights for the unknown points simply follow by adding
the observed height-differences to the height of the known point, just like we did in the
example with three points in chapter 3 (section 3.3). This set-up does not allow for an internal
consistency check. In case a gross error is present in one of the levelled height-differences,
it will go unnoticed (and spoil part of the results). Hence, such a set-up is not recommended
for critical applications!

When the height-difference observables 𝑦 have standard deviation equal to 𝜎 = 𝜎, and
also the given height of point 1 has standard deviation equal to 𝜎 = 𝜎 (and all observables
are uncorrelated), then the variances for the points along the line are

𝜎 ̂ = 𝑖𝜎 for 𝑖 = 1,… , 𝑛 (5.8)

This behaviour is shown as a straight line in Figure 5.13. The variance of the height increases
linearly with the number of the stretches (accumulation of errors).

What would be the variance of point 1, i.e. 𝜎 ̂ in case point n would be the known point
(instead of point 1)?
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Figure 5.12: Levelling line which terminates at (known) points, point 1 and point n — connected levelling line.

Figure 5.12 shows a so-called connected levelling line (or, closed level traverse). The
heights of both the first and last point are known from an earlier survey. The line connects
known points 1 and n, through a series of level runs, visiting unknown points 2, 3, …, n-1.

This set-up is more secure than an open levelling line, as there is now a check at the end
(the line is connected). There is now one more measurement than strictly needed (redundancy
equals one).

When the height-difference observables 𝑦 have standard deviation equal to 𝜎 = 𝜎, and
also the given heights of points 1 and n have standard deviation equal to 𝜎 = 𝜎 = 𝜎 (and
all observables are uncorrelated), then the variances for the points along the line are

𝜎 ̂ = 𝑖𝜎 [1 −
𝑖𝜎

(𝑛 + 1)𝜎 ] for 𝑖 = 1,… , 𝑛 (5.9)

Compared with the variance expression for the open levelling line, an additional factor shows
up, between the square brackets, and it is smaller than 1, hence the variances of the heights
in the connected line are smaller than those in the open line. This behaviour is shown as a
curved line in Figure 5.13. The curve (as a function of 𝑖) is actually determined by the parabola
−𝑖 + (𝑛 + 1)𝑖, which has its top at 𝑖 = . The curve starts at a (slightly) lower value for
point 1 than the straight line for the open line, and it is symmetric about 𝑖 = 5 .

The above expression for the variance can be checked for instance by considering an
example with 4 points, with points 1 and 4 given, and unknown points 2 and 3, and we have
three levelled height-differences. The model of observation equations (4.2) reads

𝐸
⎛
⎜
⎜
⎜

⎝

𝑦
𝑦
𝑦
𝑦
𝑦

⎞
⎟
⎟
⎟

⎠

=
⎛
⎜⎜

⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 1

⎞
⎟⎟

⎠

⎛

⎝

𝑥
𝑥
𝑥
𝑥

⎞

⎠

and the variance matrix is just a 5 × 5 identity matrix, scaled by 𝜎 . The expression for 𝜎 ̂
can be checked by computing the 𝑄 ̂ ̂ matrix, cf. (4.7).

Figure 5.14 shows a levelling loop, (or, closed loop level traverse). The levelling ‘line’ now
returns to the starting point, and the height of the first point is known from an earlier survey.

Also this set-up is more secure than an open levelling line, as there is a check: all observed
height differences added together need to yield just zero (return to the same point); this is the
loop-closure condition. There is now one more measurement than strictly needed (redundancy
equals one).

Suppose the levelling loop of Figure 5.14 consists of just four points, hence 𝑛−1 = 4. Then
there are𝑚 = 5 observations: 𝑦 , 𝑦 , 𝑦 and 𝑦 , and the height of point 1 is given and fixed -
this provides the fifth observation 𝑦 . There are three points with unknown heights: 𝑥 , 𝑥 , 𝑥 ,
they are to be determined, and 𝑥 is included in order to be able to relate ‘observation’ 𝑦 (the
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Figure 5.13: Variance of heights determined for points along open and connected levelling line of =10 points
(on the left), and along (closed) levelling loop of 9 points, where point 10 equals point 1 again, (on the right).
Variance was simply set to 1.

Figure 5.14: Levelling loop of ( ) points, where (known) point n equals point 1.
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given height). The model of observation equations (4.2) reads:

𝐸
⎛
⎜
⎜
⎜

⎝

𝑦
𝑦
𝑦
𝑦
𝑦

⎞
⎟
⎟
⎟

⎠

=
⎛
⎜⎜

⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎞
⎟⎟

⎠

⎛

⎝

𝑥
𝑥
𝑥
𝑥

⎞

⎠

With 𝑚 = 5 observations and 𝑛 = 4 unknown parameters (mind, 𝑛 now describes the number
of unknown parameters, no longer the number of points), there is a redundancy of 1; to say,
there is one measurement too much. This redundancy can be made explicit. The (expectation
of the) five observables can be described by four unknown parameters. This implies that there
should hold a condition (𝑚 − 𝑛 = 1 condition in this case) on the observations.

We multiply both left and right side by the same matrix

( 0 1 1 1 1 )⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝𝐸
⎛
⎜
⎜
⎜

⎝

𝑦
𝑦
𝑦
𝑦
𝑦

⎞
⎟
⎟
⎟

⎠

= ( 0 1 1 1 1 )
⎛
⎜⎜

⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎞
⎟⎟

⎠

⎛

⎝

𝑥
𝑥
𝑥
𝑥

⎞

⎠

resulting in

𝐸(𝑦 + 𝑦 + 𝑦 + 𝑦 ) = 0

and this is the above mentioned loop closure condition (the expectation operator is linear). It
implies that the sum of the levelled height-differences is (expected to be) equal to zero. We
need to return to the same point, and this provides us with a check. In practice, the sum of
the height differences 𝑦 + 𝑦 + 𝑦 + 𝑦 ≠ 0 (though hopefully close to zero), and this is
referred to as the misclosure. For the (𝑚−𝑛)x𝑚 matrix 𝐵 describing the condition(s), holds
that 𝐵 𝐴 = 0.

When the height-difference observables 𝑦 have standard deviation equal to 𝜎 = 𝜎, and
also the given height of point 1 has standard deviation equal to 𝜎 = 𝜎 (and all observables
are uncorrelated), then the variances for the points along the line are

𝜎 ̂ = 𝜎 + 𝜎
𝑛 − 1(𝑖 − 1)(𝑛 − 𝑖) for 𝑖 = 1,… , 𝑛 (5.10)

where 𝑛 is indicating the number of points, as in Figure 5.14. The variance shows a behaviour
similar as for the connected line, see Figure 5.13 on the right, driven by a similar parabola,
but at a higher level than for the connected line (as there is only one known point involved in
the loop, versus two with the connected line). Obviously the variance of point 10 equals the
variance of point 1.

5.7.2. Intersection with azimuths
In Figure 5.15 the position of an unknown point is determined (in two dimensions) by observing
the azimuths at two known points 1 and 2. For four possible locations of the unknown point
(all on the line 𝑥 = 5) the PDF contour ellipse is given.
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Figure 5.15: Precision of positioning in two dimensions using azimuths, measured at (known) points 1 and 2; PDF
contour ellipses ( =0.3935) for four possible locations of the unknown point. The standard deviation was set as

= 0.13 radian.
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Figure 5.16: Precision of positioning in two dimensions using azimuths and distances (polar coordinates at point 1);
PDF contour ellipses for four possible locations of the unknown point. The standard deviations were set as =
0.13 radian, and = 0.30.

When the unknown point is close to the line connecting the points 1 and 2 (dashed line,
which parallels the 𝑥 -axis here), the precision is good in the 𝑥 -direction (perpendicular to the
connection line), but very poor in the 𝑥 direction (along the connection line). This situation is
reversed when the point is located far away (to the top or bottom of the graph). An intersection
of the two azimuth-lines at the unknown point, at a right angle, delivers a homogeneous
precision (with the ellipse of concentration being close to a circle).

5.7.3. Polar coordinates
In two dimensions the position of an unknown point can be also be determined using one
measurement of azimuth and one measurement of distance, taken at a single known point.
This is the typical way of working with a tachymeter or a total station: measuring distances
and azimuths (or directions) to points to be determined. In Figure 5.16 PDF contour ellipses
are given again for the same four possible locations of the unknown point.

With the particular choice for the azimuth and distance observables’ standard deviations
as noted in Figure 5.16, a homogeneous precision is achieved for the two coordinates of the
unknown point (ellipse close to a circle), provided that the unknown point is not too far away
from the known station 1. For points far away, one has to realize that a fixed uncertainty
in the measurement of angle translates — at a larger distance — into a larger uncertainty in
the position, in the direction perpendicular to the line connecting the unknown point and the
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Figure 5.17: Precision of positioning in two dimensions using distance measurements at points 1 and 2; PDF
contour ellipses for four possible locations of the unknown point. The standard deviation was set as = 0.30.

instrument.

5.7.4. Intersection with distances
Finally we determine the position of an unknown point using two measurements of distance,
a set up which is pretty much similar to the example with azimuths in one of the previous
sections. From each of the two known points a distance is measured to the unknown point.
In Figure 5.17 PDF contour ellipses are given for the same four possible locations of the
unknown point. The standard deviation of the distance observable was kept fixed, whereas
in practice it may vary with distance (typically, larger standard deviation for larger distances).

When the unknown point is close to the line connecting the points 1 and 2 (dashed line,
which parallels the 𝑥 -axis), the precision is good in the 𝑥 -direction (the direction along the
connection line), but very poor in the other direction (perpendicular). This situation is reversed
when the point is located far away (to the top or bottom of the graph). An intersection of the
two distance-lines at the unknown point, at a right angle, delivers a homogeneous precision
(with the ellipse of concentration being close to a circle).
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In chapter 4 we introduced the mathematical model 𝑦 = 𝐴𝑥 + 𝑒, with 𝑚 ≥ 𝑛, where 𝑚 is
the dimension of vector 𝑦, and 𝑛 the dimension of vector 𝑥. The system 𝑦 = 𝐴𝑥 is generally
not consistent, hence, 𝑦 ≠ 𝐴𝑥. The least-squares estimate (4.4), and the minimum variance
estimator (4.6) were introduced, sections 4.3.2 and 4.3.4. Once an estimate �̂� for the unknown
parameters is available, one can compute an estimate for the observations: �̂� = 𝐴�̂�, and this
system is consistent. One could regard this parameter estimation as ‘changing’ (or adjusting)
the observed values from 𝑦 to �̂� in order to turn a non-consistent system into a consistent
one. As outlined with the least-squares criterion (4.5), one keeps vector 𝑦 − �̂� as short as
possible, the observed values should be ‘changed only as little as possible’.

In this chapter we introduce the least-squares residuals, and show how they can be used
in an overall consistency check, to answer the question whether the collected measurements
𝑦 and the assumed model 𝐴𝑥 can be deemed to be mutually consistent. Next we present a
worked example of line-fitting (regression). Eventually we briefly introduce the more advanced
subject of observation testing.

6.1. Least-squares residuals
Once an estimator �̂� is available for the vector of observables, the least-squares residuals
follow as

�̂� = 𝑦 − �̂� (6.1)

The least-squares residuals measure the difference between the observations (as measured)
𝑦, and the estimated, or adapted ones �̂� (see section 4.3.2, �̂� = 𝐴�̂�). The least-squares
residuals provide an estimate for the (unknown) measurement error 𝑒 (that is why also the
residuals are denoted with a hat-symbol). They carry important diagnostic information about
the parameter estimation process. When the residuals are small, the situation is looking good.
One does not need to ‘change’ the observed values by much, in order to make them fit into
the model 𝐴𝑥. However, when they are large, this might be a reason for reconsideration. It
could be that there are large outliers or faults present in the measurements (e.g. entering
an observed height-difference as 0.413 m, instead of 0.143 m), or that the assumed model
is not appropriate for the case at hand (in a dynamic system, with a moving object, we may
assume that the object is moving with constant velocity, but this may turn out not to be the
case). Small residuals tend to be OK — large ones are not. But what is small, and what is
big? Fortunately, we can devise an objective criterion to judge on their size.

45
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6.1.1. Overall consistency test
When the data are normally distributed, 𝑦 ∼ 𝑁(𝐴𝑥, 𝑄 ), under the working model (the null-
hypothesis), then also the residuals will be normally distributed (with zero mean). It can be
shown — though the proof is omitted here — that �̂� 𝑄 �̂� has — under the working model
(4.2) — a central Chi-square distribution with 𝑚 − 𝑛 degrees of freedom, hence 𝜒 (𝑚 − 𝑛, 0)
(from the 𝑚-vector of observations, 𝑛 unknown parameters in 𝑥 are estimated, and hence
only (𝑚−𝑛) degrees of freedom are ‘left’ for the residuals). The Chi-squared distribution was
introduced in section 5.5, and shown in Figure 5.7. The squared norm of the residuals-
vector �̂� 𝑄 �̂� is an overall consistency measure. It provides an objective criterion on judging
the amount by which we need to ‘change’ the observed values.

𝑇 = �̂� 𝑄 �̂� ∼ 𝜒 (𝑚 − 𝑛, 0) (6.2)

Now one can set a level of significance (probability) 𝛼, see chapter 26 in [1], e.g. 5%,
and not accept the residual vector �̂�, once its squared norm is located in the upper 5% of
the distribution (right tail); occurrence of such a value is deemed to be too unlikely to be true
under the working model.

In practice, one computes 𝑇 = �̂� 𝑄 �̂�, and retrieves threshold 𝑘 = 𝜒 (𝑚−𝑛, 0) from the
table and concludes (decides):

• model and data are consistent when 𝑇 < 𝑘

• model and data are not consistent when 𝑇 > 𝑘

For example with𝑚=5 and 𝑛=2,𝑚−𝑛=3, and with a 5% level of significance, the threshold
value for the above squared norm of the least-squares residuals is 7.8147, see the table in
Appendix C (𝜒 (3, 0) = 7.8147).

6.1.2. Simplification
In the simple case that the observables’ variance matrix is a diagonal matrix 𝑄 = diag(𝜎 , 𝜎 , … , 𝜎 )
(all observables are uncorrelated), the above overall consistency measure can be given a sim-
ple and straightforward interpretation. Namely

�̂� 𝑄 �̂� =∑
�̂�
𝜎 =∑(

�̂�
𝜎 ) (6.3)

and it compares — per observation — the residual �̂� with the standard deviation 𝜎 of, i.e.
the expected uncertainty in, the observable 𝑦 .

The overall consistency measure equals the sum of all those 𝑚 squared ratios. The overall
consistency test, as the name says, aims to detect in general sense any inconsistency between
model and data.

6.1.3. Discussion
As an example we consider the case in which the same unknown distance is measured twice,
cf. section 4.3.1. If one of these measurements is biased by a large amount (for instance
10 m), and the other is not, then the overall consistency test will likely detect that the two
measurements are not consistent with the model, namely, according to the model (measuring
the same distance twice) the numerical values of two measurements should be the same,
or close together. Intuitively, as the measurements are not close together, this gives rise
to suspicion (there might be something wrong with the measurements). Anomalies in the
measurements which cause the data to be (still) consistent with the assumed model can not



6.2. Example 47

be detected by this test. In our example, if both observations are biased in the same way, let
us say by 10 m, then the two observations are still consistent (with each other in the model;
they are both in error). Intuitively, as their values are the same or close together, this does not
raise any suspicion. Being able to detect all relevant anomaly scenarios is part of designing a
good measurement set-up.

6.1.4. Example: repeated measurements
Suppose 𝑚 measurements of the same unknown quantity are made. Then the general model
of observation equations 𝐸(𝑦) = 𝐴𝑥; 𝐷(𝑦) = 𝑄 (4.2) reads:

𝐸⎛⎜

⎝

𝑦
𝑦
⋮
𝑦

⎞
⎟

⎠

= ⎛

⎝

1
1
⋮
1

⎞

⎠

𝑥 ; 𝐷⎛⎜

⎝

𝑦
𝑦
⋮
𝑦

⎞
⎟

⎠

= 𝜎 𝐼

where we assumed that all observables have equal precision (all variances equal to 𝜎 ), and
there is no correlation. There are 𝑚 observations, and there is 𝑛 = 1 unknown parameter.

In this case, the minimum variance estimate �̂� for the unknown parameter 𝑥, equals just
the mean of the observations, similar to (2.12).

In this simple example �̂� = �̂�, and hence, the least-squares residuals �̂� = 𝑦 − �̂�. The
squared norm of the residuals vector becomes

𝑇 = �̂� 𝑄 �̂� = 1
𝜎 ∑�̂� = 1

𝜎 ∑(𝑦 − �̂�)

which shows that, in this case, this measure of consistency is closely related to the sample
variance (2.14), which you determine based on measurements taken.

6.2. Example
In this example we consider the classical problem of line fitting. This problem is frequently
encountered in science and engineering. One can think of measuring the extension of a
certain object (e.g. of steel) due to temperature, for which one assumes a linear behaviour,
so the length of the object is measured, at different temperatures, and next one would like
to determine the length of the object at some reference temperature and the coefficient of
extension, i.e. by how much it extends for every increase of one degree in temperature.
In literature, this subject is often referred to as regression analysis, see e.g. chapter 6 on
orthogonality and least-squares in [2], in particular section 6 with applications to linear models.
The subject can be seen much broader however, namely as curve fitting. The principle is not
restricted to just straight lines, one can also use parabolas and higher order polynomials for
instance.

In this example we consider a vehicle which is driving along a straight line, and we are
interested in the position along the road. Therefore, a laser-tracker is used, and this device
measures/reports the position of the vehicle every second. For convenience, the laser-tracker
is at the origin of this one dimensional coordinate system.

Over a period of four seconds, we take measurements: 𝑦 = (𝑦 , 𝑦 , 𝑦 , 𝑦 ) , hence the
vector of observations has dimension 𝑚 = 4. Correspondingly at times 𝑡 , 𝑡 , 𝑡 and 𝑡 , the
unknown positions are 𝑥(𝑡 ), 𝑥(𝑡 ), 𝑥(𝑡 ) and 𝑥(𝑡 ). The measurements equal the unknown
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positions, apart from measurement errors, i.e. 𝑦 = 𝑥(𝑡 ) + 𝑒 for 𝑖 = 1,… , 4.

𝐸
⎛
⎜⎜

⎝

𝑦
𝑦
𝑦
𝑦

⎞
⎟⎟

⎠

= ⎛

⎝

𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )

⎞

⎠

= ⎛

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎠

⎛

⎝

𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )

⎞

⎠

In case we determine these 𝑛 = 4 four unknown positions from the 𝑚 = 4 four observed
positions, estimation is pretty trivial, namely �̂�(𝑡 ) = 𝑦 for 𝑖 = 1,… , 4.

We have reasons however, to assume that the vehicle is driving at constant speed, and
thereby we can model the unknown motion of the vehicle, by just an unknown initial position
𝑥(𝑡 ), and its velocity �̇�.

⎛

⎝

𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )
𝑥(𝑡 )

⎞

⎠

= ⎛

⎝

1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )

⎞

⎠

( 𝑥(𝑡 )�̇� )

which we can substitute in the above system of observation equations, and hence

𝐸
⎛
⎜⎜

⎝

𝑦
𝑦
𝑦
𝑦

⎞
⎟⎟

⎠

= ⎛

⎝

1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 )

⎞

⎠⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

( 𝑥(𝑡 )�̇� )
⏝⎵⎵⏟⎵⎵⏝

Now there are still 𝑚 = 4 observations, but just 𝑛 = 2 unknown parameters in vector 𝑥. The
distance observables by the laser-tracker are all uncorrelated, and all have the same variance
𝜎 . Hence 𝑄 = 𝜎 𝐼 . Standard deviation 𝜎 can be taken here as 𝜎 = 1.

In the sequel we develop the example into a real numerical example. The observation
times are 𝑡 = 1, 𝑡 = 2, 𝑡 = 3 and 𝑡 = 4 seconds, and 𝑡 = 0 (and timing is assumed
here to be perfect — no errors; all coefficients of matrix 𝐴 are known — when this assumption
cannot be made, refer to Appendix A.6).

As can be seen in Figure 6.1, we try to fit a straight line through the observed data points.
Therefore we estimate the offset/intercept of the line 𝑥(𝑡 ), and its slope �̇�; in terms of regres-
sion, they are the (unknown) regression coefficients. In this example time 𝑡 is the explanatory
or independent variable (also called the regressor); the (observed) position depends on time
𝑡. And, the observation 𝑦 is the dependent (or response) variable. Least-squares estimation
will yield a best fit of the line with the observed data points, through minimizing (4.5).

The experiment was repeated the next day, and in the sequel we consider — simultaneously
— the outcomes of both experiments. The measurements on day 1 were 𝑦 = (14, 20, 20, 24) ,
and on day 2 𝑦 = (28, 20, 16, 36) . In Figure 6.1, the observed distances (in meters) are
shown, together with the fitted line, based on the least-squares estimates. Verify yourself
that, with (4.6), one obtains

�̂� = ( 123 ) for day 1, and �̂� = ( 202 ) for day 2

with units in meters and meters per second respectively.
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Figure 6.1: Line fitting on day 1 (left) and day 2 (right). Shown are the observed data points as dots, and the
straight line fitted by means of least-squares.

With �̂�(𝑡 ) = 12 and ̂�̇� = 3 on day 1, one can determine �̂� through �̂� = 𝐴�̂�, and eventually
obtain �̂� = 𝑦 − �̂�. And do this for day 2 as well.

�̂� = ⎛

⎝

−1
2

−1
0

⎞

⎠

for day 1, and �̂� = ⎛

⎝

6
−4
−10
8

⎞

⎠

for day 2

From these numbers, and also Figure 6.1, one can already conclude that for day 1 (on the left)
we have a pretty good fit, while on day 2 (on the right) the fit is pretty poor, likely a second
order polynomial would do here much better. It indicates that the motion of the vehicle on
day 2 has not really been at constant speed. For an objective criterion in judging a good and
poor fit, we use the squared norm of the residual vector.

�̂� 𝑄 �̂� = 6 for day 1, and �̂� 𝑄 �̂� = 216 for day 2

With the table in appendix C, we find that with 𝑚 − 𝑛 = 2 and 𝛼 = 0.01 the threshold value
equals 𝜒 = 9.2103, and hence the line fit of day 1 is not rejected (6 < 9.2103), but the line
fit of day 2 is rejected (216 > 9.2103)!

We have to keep in mind that the true motion of the vehicle is unknown. It is our assump-
tion that we can mathematically describe the motion through a constant velocity model. For
day 1 there is no indication that this is not working. But for day 2, a constant velocity model,
most likely, is not providing a proper description of the actual motion. Maybe a second order
model (constant acceleration) gives a better/acceptable fit.

𝐸
⎛
⎜⎜

⎝

𝑦
𝑦
𝑦
𝑦

⎞
⎟⎟

⎠

= ⎛⎜

⎝

1 (𝑡 − 𝑡 ) (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 ) (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 ) (𝑡 − 𝑡 )
1 (𝑡 − 𝑡 ) (𝑡 − 𝑡 )

⎞
⎟

⎠

(
𝑥(𝑡 )
�̇�(𝑡 )
�̈�

)

There are now 𝑛 = 3 unknown parameters, with still 𝑚 = 4 observations.
Mind that if we go for a third order polynomial, we will have 𝑛 = 4 unknown parameters,

and all information contained in the 𝑚 = 4 observations, will go into the unknown parameters,
and nothing will be left for the least-squares residuals, as 𝑚 − 𝑛 = 0. Without redundancy,
the overall consistency check gets void. In that case it looks like the observations perfectly fit
the assumed model, but you actually do not have any means to verify this.
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6.3. Observation testing and outlook
The squared norm of the residuals is an overall measure of consistency between measure-
ments and assumed mathematical model. The statistical test of �̂� 𝑄 �̂� being smaller or
larger than the critical value 𝑘 from the Chi-squared distribution is referred to as the over-
all consistency test, see section 6.1.1. In literature you may also encounter it as the F-test,
then �̂� 𝑄 �̂�/(𝑚 − 𝑛) ∼ 𝐹(𝑚 − 𝑛,∞, 0) under the working model (null-hypothesis), where 𝐹
represents the F-distribution.

The test can be derived from the principle of statistical hypothesis testing. More specific
statistical hypothesis tests exist, for instance tests to identify outliers, blunders, and anomalies
in single measurements. A true coverage of this subject is beyond the scope of this primer,
but we will introduce — without any derivation, or proof of optimality — a simple test which
aims to identify an outlier in a set of measurements (then only one measurement from this set
is affected by the outlier). Typically this test is used multiple times, namely to test each of the
𝑚 observations in vector 𝑦 = (𝑦 ,… , 𝑦 ) separately. It is based again on the least-squares
residuals �̂� = 𝑦 − �̂�. Using the error propagation law (3.9), with (4.6), and �̂� = 𝐴�̂�, one can
derive that

𝑄 ̂ ̂ = 𝑄 − 𝐴(𝐴 𝑄 𝐴) 𝐴 = 𝑄 − 𝐴𝑄 ̂ ̂𝐴

where 𝑄 ̂ ̂ was given by (4.7).
Under the working model the least-squares residuals have zero mean, hence �̂� ∼ 𝑁(0, 𝑄 ̂ ̂),

and the vector �̂� is normally distributed as it is a linear function of 𝑦, which is also taken to be
normally distributed.

The least-squares residuals �̂� is a vector with 𝑚 random variables �̂� = (�̂� , �̂� , … , �̂� ) . For
each of the residuals we have �̂� ∼ 𝑁(0, 𝜎 ̂ ) with 𝑖 = 1,… ,𝑚. Usually, if (just) observation 𝑦
contains a large error, the corresponding residual �̂� will deviate (substantially) from zero. We
use this to propose — valid only for the case when the observables have a diagonal variance
matrix 𝑄 — the w-teststatistic as

𝑤 =
�̂�
𝜎 ̂

(6.4)

and check whether it deviates from zero.
Division of the residual by the standard deviation 𝜎 ̂ (you may use (3.9) again) causes the

w-teststatistic to be standard normally distributed: 𝑤 ∼ 𝑁(0, 1). In fact, it is the normalized
residual. Setting a level of significance 𝛼, one can find the critical value. Mind that deviations
both in positive and negative direction may occur. Hence, the level of significance 𝛼 is split
into for the right tail, and for the left tail. The critical value �̃� = 𝑁 (0, 1) follows from
the table in Appendix B. The hypothesis ‘no outlier present in measurement 𝑦 ’ is rejected if
|𝑤 | > �̃�, i.e. if 𝑤 < −�̃� or 𝑤 > �̃�. The test is typically done for all measurements 𝑖 = 1,… ,𝑚.

In practice the largest of the w-teststatistics (in absolute sense) indicates the most likely
faulty measurement. This measurement is removed from the data, and estimation and valida-
tion is repeated with one less observation, until no more measurements are rejected, or until
redundancy runs low.

6.4. Exercises and worked examples
This section presents a problem with a worked answer on parameter estimation and validation.

Question 1 To determine the sea-level height in the year 2000, and also its rate of change
over time, five observations of the sea-level are available, for instance from a tide gauge
station. The observations are:
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• observation 𝑦 = 25 mm, in the year 1998

• observation 𝑦 = 24 mm, in the year 1999

• observation 𝑦 = 27 mm, in the year 2000

• observation 𝑦 = 26 mm, in the year 2001

• observation 𝑦 = 28 mm, in the year 2002

Based on these five observations, compute the least-squares estimates for the sea-level in the
year 2000 and the rate of change. All quantities are referenced to the start of the year. The
rate of change can be considered constant over the time span considered.

Answer 1 Similar to the example of section 6.2, the model reads

𝐸
⎛
⎜
⎜
⎜

⎝

𝑦
𝑦
𝑦
𝑦
𝑦

⎞
⎟
⎟
⎟

⎠

=
⎛
⎜⎜

⎝

1 −2
1 −1
1 0
1 1
1 2

⎞
⎟⎟

⎠⏝⎵⎵⎵⏟⎵⎵⎵⏝

( 𝑥(𝑡 )�̇� )
⏝⎵⎵⏟⎵⎵⏝

and basically we need to fit a straight line through five data points. In the above 𝑦 = 𝐴𝑥
model, 𝑥(𝑡 ) is the unknown sea-level height in the year 2000 (expressed in [mm]), and �̇� is
the (assumed constant) rate of change of the sea-level (and also unknown, and expressed in
[mm/year]). On the left hand side we have the five observations, of which the third, 𝑦 , is
the observed sea-level height in the year 2000 (in [mm]). For example, the last observation,
𝑦 , is related to the two unknown parameters as: 𝑦 equals (on average) the sum of the
sea-level in the year 2000 𝑥(𝑡 ), plus twice the yearly change �̇�. These two coefficients, 1
and 2, show up, as the last row, in the A-matrix. There is no information given with regard
to the precision of the observables (no matrix 𝑄 ), hence we use the basic least-squares
equation (4.4) �̂� = (𝐴 𝐴) 𝐴 𝑦.

𝐴 𝐴 = ( 5 0
0 10 ) (𝐴 𝐴) = ( 0

0 )

and �̂� = (𝐴 𝐴) 𝐴 𝑦 becomes

�̂� = ( 0
0 )( 1 1 1 1 1

−2 −1 0 1 2 )
⎛
⎜⎜

⎝

25
24
27
26
28

⎞
⎟⎟

⎠

= ( 26 )

The least-squares estimate for the sea-level height in the year 2000 is 26 mm, and the rate of
change is 0.8 mm/year. Note that the least-squares estimate for the height in the year 2000
does not equal the observed height (𝑦 ). The least-squares estimate is determined based on
all available observations.

Question 2With the model and observations of the previous question, determine whether
the overall consistency test is passed, when the level of significance is set to 10%. The
observables can be assumed to be all uncorrelated, and have a standard deviation of 1 mm.

Answer 2 The variance matrix of the observables reads 𝑄 = 𝐼 , and this does not
change anything to the computed least-squares estimates (see equation (4.6)). The overall
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consistency test is 𝑇 = �̂� 𝑄 �̂�, hence we need the vector of least-squares residuals (6.1)
�̂� = 𝑦 − �̂� = 𝑦 − 𝐴�̂�.

⎛
⎜⎜

⎝

�̂�
�̂�
�̂�
�̂�
�̂�

⎞
⎟⎟

⎠

=
⎛
⎜⎜

⎝

25
24
27
26
28

⎞
⎟⎟

⎠

−
⎛
⎜⎜

⎝

24.4
25.2
26.0
26.8
27.6

⎞
⎟⎟

⎠

=
⎛
⎜⎜

⎝

0.6
−1.2
1.0
−0.8
0.4

⎞
⎟⎟

⎠

Then the value for the overall consistency test becomes 𝑇 = �̂� 𝑄 �̂� = 3.6. The threshold,
with 𝛼 = 0.1, is 𝑘 = 𝜒 (𝑚 − 𝑛, 0), and 𝑚 = 5 and 𝑛 = 2, hence 𝑚 − 𝑛 = 3. With the table in
Appendix C we obtain 𝑘 = 𝜒 . (3, 0) = 6.2514, and hence 𝑇 < 𝑘 , and the overall consistency
test is accepted. There is no reason to suspect that something is wrong; the assumed model
and the made observations seem to be in agreement with each other; the fit is good.
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Interpolation [*]

In this chapter we cover the subject of interpolation. After the introduction we cover de-
terministic interpolation, and next stochastic interpolation, thereby focussing in particular on
Kriging.

7.1. Introduction
Interpolation is about determining the value of an attribute, like the height or water-depth, at
a certain position within a spatial domain, from a set of observations of that attribute in that
domain. For instance, with a hydrographic survey, by means of echo-sounding, the attribute
water-depth is measured, and the measurements 𝑦 ,… , 𝑦 are taken at specific discrete posi-
tions, for instance while the vessel is sailing along a regular pattern (forth and back) over the
water-way. Next, one is interested to know the water-depth 𝑧 at another position, where no
specific measurement is available, see Figure 7.1.

One of the most common techniques is linear interpolation. The value of the attribute 𝑧
at position 𝑝 (position coordinate vector) is estimated as a linear combination

�̂� = 𝑤 𝑦 +⋯+𝑤 𝑦 (7.1)

of observations 𝑦 ,… , 𝑦 at positions 𝑝 ,… , 𝑝 in the neighbourhood of 𝑝 . The coefficients
𝑤 to 𝑤 indicate the weights given to each of the observations. By stacking the observations
in vector 𝑦 = (𝑦 ,… , 𝑦 ) , and the weights in vector 𝑤 = (𝑤 ,… ,𝑤 ) , equation (7.1) can be
summarized into

�̂� = 𝑤 𝑦 (7.2)

Rudimentary interpolation could imply to copy just the nearest observation, in this case
𝑤 = 1, with 𝑝 being the observation position closest to 𝑝 , and all other 𝑤 = 0. This is
referred to as nearest neighbour interpolation.

Another simple alternative is to take the mean of all available observations in the domain.
Then we have 𝑤 =𝑤 =⋯=𝑤 = .

Figure 7.2 shows two interpolation configurations in a two-dimensional spatial domain.
Observation positions are given in blue, and the desired interpolation position is indicated in
red. In the configuration on the left (gridded data-set), many observations are available in all
directions in a regular way around the desired interpolation position, while in the configuration
on the right, observations are sparse and irregular — in some directions observations are
available, whereas not in other directions, while in addition, some observations have their

53
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Figure 7.1: The water-depth at position has not been measured. The water-depth is interpolated, based
on measurements of water-depth , … , at positions through . Note that the measurements — the open
dots — are not exactly on the sea-floor, as they are subject to (small) measurement errors. Generally, the resulting
estimate or prediction ̂ (interpolated value) will not lie exactly on the sea-floor either, though hopefully be close
to it.

Figure 7.2: Observations of the attribute in a regular grid, in a two-dimensional domain, in blue (left), and at
arbitrary positions (right). The intended interpolation position is indicated by the red dot.

positions almost coinciding. In the first case, a simple but fast method will probably work
well, while in the latter case, one should be more careful on how the method handles clusters
of data and directional variability.

If the desired position (red dot) is within the convex hull of surrounding observation posi-
tions, then one speaks of interpolation, otherwise of extrapolation. Two classes of interpolation
methods are distinguished here. In deterministic methods, the uncertainty of, and correlation
between observations is ignored, while stochastic methods do take this uncertainty and cor-
relation into account. The next two sections present the basics of deterministic interpolation
and stochastic interpolation.

7.2. Deterministic interpolation
Deterministic interpolation methods are distinguished by the way in which they distribute
weights 𝑤 with 𝑖 = 1,… ,𝑚 over the available observations (with 𝑤 ≥ 0).

As mentioned before, two very basic ways of interpolation are nearest neighbour inter-
polation, in which all weight is given to the closest observation, and averaging all available
observations by distributing the weights equally over all observations. Most common, slightly
more advanced, methods are inverse distance interpolation and triangular interpolation.
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7.2.1. Inverse distance interpolation
It is intuitively appealing that observations close-by (in the spatial domain) show large similarity
with the attribute at the target interpolation position. The observations are weighted by their
spatial distance to the interpolation position. Let 𝑑 be the distance between points 𝑝 and 𝑝 ,
with 𝑖 = 1,… ,𝑚. The inverse distance interpolation of (for instance) the height at position 𝑝
is given by

�̂� = 1
∑ ( 1𝑑 𝑦 +⋯+ 1

𝑑 𝑦 ) (7.3)

based on the height observations 𝑦 ,… , 𝑦 . Therefore, the weight given to the 𝑗-th observation
equals

𝑤 = ∑ (7.4)

Note that the sum of all weights equals one.
More or less weight to closeby observations can be given by incorporating a power 𝑝

in equation (7.3), respectively by power 𝑝 > 1 (more) and 𝑝 < 1 (less). Inverse distance
interpolation of power 𝑝 reads:

�̂� = 1
∑ ( 1𝑑 𝑦 +⋯+ 1

𝑑 𝑦 ) (7.5)

Inverse distance interpolation works well for dense and regularly space data.
Often only observations within some threshold distance 𝑅 to the interpolation location are

incorporated (𝑑 ≤ 𝑅); the neighbourhood of position 𝑝 is restricted to those positions within
a distance of 𝑅.

7.2.2. Triangular interpolation
Rather than using a single nearby observation for interpolation, as done with nearest neighbour
interpolation, one may want to use the three observations, which are, in a two-dimensional
spatial domain, directly surrounding the target interpolation position 𝑝 . Triangular interpo-
lation is often used for dense data, like airborne laser scanning data (for creating 3D terrain
models, for instance). This method consists of two steps. Assume 𝑚 height observations
𝑦 ,… , 𝑦 are available at positions 𝑝 ,… , 𝑝 , with 𝑝 = ((𝑥 ) , (𝑥 ) ), … , 𝑝 = ((𝑥 ) , (𝑥 ) ),
and that we want to obtain a height estimate at a 2D position 𝑝 .

The first step consists of determining the Delaunay triangulation of the observation posi-
tions 𝑝 ,… , 𝑝 , see Figure 7.3 on the left.

In the second step one finds the (smallest) triangle consisting of three nodes (positions
𝑝 , 𝑝 , and 𝑝 ) which contains 𝑝 , see Figure 7.3 on the right. Only the three observations
𝑦 , 𝑦 , 𝑦 at positions 𝑝 , 𝑝 , and 𝑝 are used. All other observations get a weight equal to
zero for interpolation at 𝑝 , hence 𝑤 = 0 for 𝑙 ≠ 𝑖, 𝑗, 𝑘. Positive weights for 𝑦 , 𝑦 and 𝑦 are
obtained from the triangular weight equation

�̂� =
𝐴
𝐴 𝑦 + 𝐴𝐴 𝑦 +

𝐴
𝐴 𝑦 = 𝑤 𝑦 + 𝑤 𝑦 + 𝑤 𝑦 (7.6)

where 𝐴 denotes the area of the triangle with vertices 𝑖, 𝑗, 𝑘, and noting that 𝐴 +𝐴 +
𝐴 = 𝐴 . So, the closer 𝑝 is to vertex 𝑖, the larger the triangle on the other side (𝐴 )
and the more weight 𝑦 gets.
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Figure 7.3: Delaunay triangulation in black of a set of observation points/positions (black dots) in two-dimensional
ℝ , and Voronoi diagram in yellow, on the left. In triangular interpolation the weights , and of the attribute
at positions , and are proportional to their relative distance to the center point .

An example of a Delaunay triangulation is given in black in Figure 7.3 (on the left), while
in yellow its dual structure, the Voronoi diagram is given. To create the Voronoi diagram, one
starts from the perpendicular bisectors between any two positions (black dots), and uses these
to construct the smallest possible convex polygon around each position (practically spoken,
the smallest possible area (cell) around each position). This yields the Voronoi cells in yellow,
Figure 7.3 (on the left). Triangular interpolation is relatively fast, as efficient algorithms exist
for creating a Delaunay triangulation, cf. [3].

Once the Delaunay triangulation has been done for the full set of observation positions,
typically irregularly distributed, triangular interpolation is often used to create a regular inter-
polation grid; then the attribute is determined (interpolated) at each grid point.

7.3. Stochastic interpolation
Though deterministic interpolation is intuitively appealing at first sight, there are a few prob-
lems associated.

In stochastic interpolation we consider the spatial variation of the attribute in a statistical
way. The attribute to-be-interpolated, which is subject to variations, is modelled as a random
function 𝑧(𝑝), which depends on position 𝑝. As an example we can assume that the seafloor
is flat (deterministic trend), but quite naturally, small variations may occur from place to place,
see Figure 7.4. These random variations are referred to as the signal in the quantity of interest,
in this case the seafloor-depth; the seafloor naturally goes up and down, though smoothly.
Considering the observation positions, the random function 𝑧(𝑝) actually consists of a set of
random variables 𝑧(𝑝 ), … , 𝑧(𝑝 ). We note that examples of spatial interpolation are shown
here, but the approach presented in this section equally applies to temporal interpolation (with
the attribute, for instance temperature, as a function of time).

Secondly, as we know already from chapter 4, observables 𝑦 ,… , 𝑦 are random variables,
and the measurement uncertainty, or noise, should be taken into account in the interpolation,
like we did with parameter estimation. For optimal interpolation results, the measurement
uncertainty should be reflected in the weights in (7.1).

Finally one should also propagate the quality of the observables into measures of quality
of the interpolation result, taking into account also the natural variability of the signal, so that
one is able, to not only present the result, but also in a realistic way to evaluate its quality
(uncertainty). What counts in the end is, how far off the interpolated value is from the actual
sea-floor depth. The result of interpolation, estimate �̂� at position 𝑝 is shown in Figure 7.5.
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Figure 7.4: The to-be-interpolated attribute (e.g. the seafloor-depth) is modelled (simply) as a trend, in this
case the flat dashed horizontal line (average seafloor-level), supplemented by a small variation signal, the solid
line. The signal behaves smoothly in the spatial domain, there are no sudden changes or jumps. The trend and
signal together represent the actual seafloor-depth . By including a random signal in the model, the interpolation
can accomodate small local variations of the attribute (e.g. the depth) with respect to the trend. Water-depth
is measured with respect to the thin line, which represents the reference or zero height/depth level (for instance
average sea-level).

Figure 7.5: The result of interpolation: water-depth ̂ . The open dots indicate water-depth observations , … , .
Because of measurement errors, they do not perfectly coincide with the actual sea-floor. The actual sea-floor is
not known to us - we just got the observations at positions , … , . Interpolation is about determining the
water-depth at another location , and do this in a best way. The interpolated water-depth ̂ , indicated by the
asterisk, is hopefully close to the actual sea-floor.
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7.3.1. Kriging
A class of methods that takes care of the above issues is called Kriging. Kriging is a common
technique in geology and environmental sciences, and fits in the theory of linear prediction
developed in (geo-)statistics and geodesy.

Kriging takes as input, the observation values, and also takes into account stochastic prop-
erties of the attribute and the observable. In this section we restrict ourselves to working with
the first two central moments of a random variables’ distribution: the mean and the variance.

The spatial variation of the attribute with respect to the trend is captured by the signal,
denoted by 𝑠, and it depends on the position 𝑝, i.e. 𝑠(𝑝). The signal is assumed here to have
zero mean, i.e. on average, the variations of the seafloor with respect to the assumed flat plane
equal zero. The variation is described by a covariance function, cf. Figure 7.7 on the right; this
implies that signal values at two nearby positions are largely correlated (dependent), whereas
signal values of two positions far away from each other will have little, or no dependence.
In this way physical smoothness of the variation is translated into statistical correlation. The
covariance is assumed to depend on the separation vector between two positions, and in
practice often only on its norm, hence the Euclidean distance between two positions, and not
on the particular positions themselves.

Secondly we take into account the uncertainty in the observables 𝑦. As one can see in
Figure 7.5, random deviations in the observations from the trend consist of firstly, the signal
variation (the solid line hoovers around the dashed line), and secondly, the measurement
uncertainty (the open dots are not exactly on the solid line). With respect to model (4.3) in
chapter 4, the random signal 𝑠 is added, and we have

𝑦 = 𝐴𝑥 + 𝑠 + 𝑒 (7.7)

with vector 𝑦 holding the observations 𝑦 ,… , 𝑦 at positions 𝑝 ,… , 𝑝 , with 𝐴𝑥 the so-called
trend, vector 𝑠 the signal at positions 𝑝 ,… , 𝑝 , i.e. 𝑠 = (𝑠(𝑝 ), … , 𝑠(𝑝 )) , and vector 𝑒 the
measurement errors 𝑒 = (𝑒 ,… , 𝑒 ) . The full 𝑚x𝑚 variance matrix 𝑄 of all observables,
cf. (3.5), and section 4.3.4, takes both effects into account (error in the measurement system
and signal in the observed attribute). It starts from the variance matrix 𝑄 in chapter 4,
representing the measurement noise, and adding now the𝑚x𝑚 variance matrix 𝑄 of vector 𝑠,
constructed from the covariance function, with elements 𝜎 ( ) ( ) for 𝑖 = 1,… ,𝑚 and 𝑗 =
1,… ,𝑚. Positions 𝑝 and 𝑝 are separated by a certain distance 𝑑 , and given this distance,
matrix entry 𝜎 ( ) ( ) is simply read from Figure 7.7, on the right. In short-hand notation
we have 𝑄 ∶= 𝑄 +𝑄 (assuming that measurement noise and signal are not correlated).
In many applications of Ordinary Kriging, the measurement noise — when compared to the
signal variation — can often be, or is often neglected. In that case we simply have 𝑄 ∶= 𝑄 .

In order to derive the best possible interpolator, the interpolation error is defined as
̂𝜖 = 𝑧 − �̂� , the difference between the actual water-depth 𝑧 at position 𝑝 and the in-
terpolated value �̂� . We start from the Mean Squared Error (MSE), cf. section 2.6 and impose
conditions on the solution like that the interpolation is a linear combination of the observa-
tions, cf. equation (7.2), and that the interpolation is unbiased, thus 𝐸(�̂�) = 𝐸(𝑧), and this
leads to an expression for the error variance of the interpolator. Minimizing the error variance
(implying minimum MSE) results in a solution that in practice is obtained by solving a system
of linear equations. Kriging not only provides a numerical interpolation result that is optimal
in the sense of minimum error variance 𝜎 ̂ (least uncertainty), but also provides this variance
as a measure of the uncertainty of the interpolation result.

Finally we note that in this chapter we always work with a given covariance function. In
practice, the covariance function will not be known, and has to be estimated. In particular
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selecting an appropriate type or shape of covariance function is important. These subjects are
beyond the scope of this primer.

7.3.2. Ordinary Kriging
The most common way of Kriging is so-called Ordinary Kriging. Ordinary Kriging assumes, first,
that the attribute under consideration has a constant mean over the entire spatial domain (i.e.
the seafloor globally is assumed to be flat and level, as in Figure 7.4), but the mean water-
depth is unknown. The attribute 𝑧 at position 𝑝 equals the unknown trend 𝑥, plus the signal 𝑠
at that position, cf. Figure 7.4

𝑧(𝑝 ) = 𝑥 + 𝑠(𝑝 ) (7.8)

Stating that the attribute has a constant unknown mean over the entire spatial domain implies
that matrix 𝐴 in (7.7) reduces to 𝐴 = 𝑙, with 𝑙 a vector of all ones, i.e. 𝑙 = (1, … , 1) , of
length 𝑚.

Secondly, it assumes that the covariance is the same over the entire spatial domain under
consideration (typically a decaying function of distance, as the example in Figure 7.7 on the
right).

The above assumptions, in combination with requirements on unbiasedness and linearity
as above, see Appendix A.7, lead to the following Ordinary Kriging system:

( 𝑄 𝑙
𝑙 0 ) (

𝑤
𝜈 ) = (

𝑄
1 ) (7.9)

The last row of this matrix-vector system, 𝑙 𝑤 = 1, ensures that the sum of all weights equals
one (and represents the unbiasedness condition). Matrix 𝑄 is the variance matrix of 𝑦
in (7.7). Vector 𝑄 contains the covariances 𝜎 ( ) ( ) between the signal at observation
position 𝑝 and the signal at interpolation position 𝑝 , and this for 𝑖 = 1,… ,𝑚; the covariances
depend, according to the covariance function, on the distances 𝑑 .

Equation (7.9) is a square system with 𝑚 + 1 unknowns, namely 𝑤 = (𝑤 ,… ,𝑤 ) and
Lagrange multiplier 𝜆, with 𝜈 = , cf. Appendix A.7, and can be solved by inverting the (𝑚 +
1)x(𝑚 + 1) matrix, resulting in

( 𝑤𝜈 ) = (
𝑄 𝑙
𝑙 0 ) ( 𝑄1 ) (7.10)

Finally, once vector 𝑤 has been obtained, the interpolated value is computed with (7.2). Or-
dinary Kriging is based on Best Linear Unbiased Prediction (BLUP), similar to BLUE in sec-
tion 4.3.4. With the weights in 𝑤 resulting from the above equation, it can be shown, cf.
Appendix A.7, that the interpolator (7.2) can be rewritten into

�̂� = �̂� + 𝑄 𝑄 (𝑦 − 𝑙�̂�) (7.11)

with estimator �̂� as

�̂� = (𝑙 𝑄 𝑙) 𝑙 𝑄 𝑦 (7.12)

similar to (4.6) with 𝐴 = 𝑙, and 𝑄 the variance matrix of 𝑦 in (7.7). The estimator �̂� is also
a linear function of 𝑦. Matrix 𝑄 is a row-vector, containing the covariances 𝜎 ( ) ( ).

In Figure 7.6 we show an example of Ordinary Kriging. On the left 𝑚 = 5 observations of
terrain height are shown in a two-dimensional spatial domain. The graph on the right shows
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Figure 7.6: Example of Ordinary Kriging. On the left, five observations of attribute height, indicated by asterisks,
in a two-dimensional spatial domain ( , ). The observed heights are 0, 2, 13, 11, 12, at positions ( , ),
( , ), ( , ), ( , ), ( , ). On the right the interpolated terrain model - two of the observations are above the
interpolated surface, and three are below (and thereby not visible). The used covariance function was ( ) ( )

, with and , and the Euclidean distance between positions and . The measurement
noise was set to have a variance of .

the interpolation result, computed for a 0.1×0.1 grid of positions. Using (7.12), the trend 𝑥
(mean terrain height) is estimated as �̂� = 4.7. This is quite remarkable, as the mean of the
five observations is 7.6. This is caused by the fact that variance matrix 𝑄 of 𝑦 in (7.7)
now contains measurement noise and signal noise. The last three observations are closely
together (clustered in the spatial domain) and hence, according to a covariance function, like
in Figure 7.7 on the right, highly correlated (dependent). In computing the mean height for
the full spatial domain, they therefore ‘count for’ one observation (their mean equals 12, and
counts effectively as one observation, rather than three).

With universal Kriging one can use a general polynomial trend model (for instance a sloped
line or plane), rather than just a constant, as with Ordinary Kriging.

In the next sub-section we cover a variant of Kriging, with an additional restriction.

7.3.3. Simple Kriging
Simple Kriging, as the name suggests, implies a further simplification of Ordinary Kriging.
Instead of an unknown trend, it is assumed that the mean value of the attribute is known.
Parameter 𝑥 in (7.8) is known.

Simple Kriging will be covered by means of an example. The temperature in a room is
kept constant, at a pre-set, known (scalar) value 𝑥. If this were all available information,
predicting the temperature would simply be �̂� = 𝑥 (for any time 𝑡 ); it equals the known
mean, obviously. In practice however, small variations of temperature occur over time. The
random signal 𝑠 now represents the deviations from the nominal temperature 𝑥. This signal
has a constant, zero mean, as we had with (7.8) as well.

The temperature in the room is observed at regular time instants 𝑡 , … , 𝑡 , and the obser-
vations are denoted as 𝑦 ,… , 𝑦 . Compared to the assumed variation in the temperature, the
measurement uncertainty is negligible in this example (though measurement noise can also
be accomodated with Simple Kriging, similar as with Ordinary Kriging).

Now we would like to interpolate the temperature to some time instant 𝑡 in between the
observation time instants, based on all available information, i.e. the known mean 𝑥, and the
observations in vector 𝑦 = (𝑦 ,… , 𝑦 ) . The result reads

�̂� = 𝑥 + 𝑤 (𝑦 − 𝑙𝑥) (7.13)

where 𝑙 is again a vector with all ones, 𝑙 = (1, … , 1) , and 𝑤 = 𝑄 𝑄 , similar to (7.10),
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Figure 7.7: Example of Simple Kriging. On the left, six observations (red circles) of attribute temperature (at time
instants 3, 6, 9, 12, 15 and 18), and the interpolation result (blue line). On the right the covariance function of the
signal ( ) ( )

| | with and ; the amount of covariance between the signal at two positions
or instants depends on their distance, shown along the horizontal axis, i.e. the covariance depends on how far the
positions or instants are apart.

though omitting the last row (this result is given here without proof/derivation).
This equation can — as a side note — be shown to deliver the interpolation value, as a

function of both the known mean and the observations, through rewriting it as

�̂� = (1 − 𝑤 𝑙)𝑥 + 𝑤 𝑦 = (1 −∑𝑤 )𝑥 +∑𝑤 𝑦

Substituting the expression for weight-vector 𝑤 in (7.13) yields

�̂� = 𝑥 + 𝑄 𝑄 (𝑦 − 𝑙𝑥) (7.14)

This result is based on Best Linear Prediction (BLP). The result actually looks very similar
to (7.11), but in (7.14) the known mean 𝑥 is used, whereas estimator �̂� is used in (7.11).

Figure 7.7 shows an example of Simple Kriging, specifically the temperature as a function
of time 𝑡. The known mean equals 𝑥 = 20 and is shown by the dashed line. The actual
observations are shown by red circles, 𝑦 = (19, 18, 19, 20, 22, 21) . The blue line presents
the interpolation result. One can see that in between observations, the interpolation has the
tendency of going back to the known mean (dashed line) — the interpolation is a combination
of the known mean and the observations cf. (7.13).

The graph on the right shows the covariance function of random signal 𝑠. The amount of
covariance between the signal at two positions 𝑝 and 𝑝 depends on the mutual distance 𝑑
between them, or, in this example, the difference in time between instants 𝑡 and 𝑡 : 𝑑 = |𝑡 −
𝑡 |. Typically, an exponentially decaying function is used, as 𝜎 ( ) ( ) = 𝑎𝑒 . Parameter 𝑏
governs the width of the covariance function; a larger value for 𝑏 yields a function which
is more narrow, and a smaller value yields a wider covariance function. The width of the
covariance function measures the smoothness of the signal; a wide function corresponds to
a smooth signal, a narrow function allows for rapid variations. Parameter 𝑎 represents the
signal variance, i.e. 𝜎 ( ) ( ) = 𝑎, and equals 𝜎 ; it is a measure of the magnitude of the
signal variations with respect to the trend.

The interpolation result in Figure 7.7 on the left, is computed using equation (7.14). The
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Figure 7.8: Example of Simple Kriging: interpolation error standard deviation ̂ as a function of the interpolation
time instant.

6x6-variance matrix 𝑄 reads

𝑄 =
⎛
⎜⎜⎜

⎝

1 0.05
0.05 1 0.05

0.05 1 0.05
0.05 1 0.05

0.05 1 0.05
0.05 1

⎞
⎟⎟⎟

⎠
For the interpolation �̂� at time instant 𝑡 = 4, matrix 𝑄 reads

𝑄 = ( 0.72 0.26 0 0 0 0 )

which has only two non-zero values. In line with the covariance function in Figure 7.7 on the
right and equation (7.14), interpolation at 𝑡 = 4 depends on the known mean, and on the two
neighbouring observations, at 𝑡 = 3 we have |𝑡 −𝑡 | = 1, and at 𝑡 = 6 we have |𝑡 −𝑡 | = 2.
The interpolated value at 𝑡 = 4 becomes �̂� = 18.85, well in between the two neighbouring
observations of 19 at 𝑡 = 3, and 18 at 𝑡 = 6.

Figure 7.8 shows the interpolation error standard deviation 𝜎 ̂ from (A.5), as a function
of the interpolation position, in this case, interpolation time instant. At 𝑡 = 4 the standard
deviation reads 𝜎 ̂ ( ) = 0.66. Note that the interpolated signal passes exactly through the
observations (red circles), cf. Figure 7.7. At the observation positions (time instants), the error
standard deviation is zero cf. Figure 7.8, as at these positions there is no uncertainty on the
interpolated height/depth (as actually no interpolation is needed at these positions). When
there is measurement noise present, the interpolated signal will not pass exactly through the
observations. In between observation instants, the interpolation error standard deviation will
increase. The interpolation error standard deviation as shown in Figure 7.8 initially increases
with increasing distance to the observation positions, but levels off at a maximum value at
the so-called range distance 𝜎 ̂ = √𝑎 (the level when there would be no observation), the
distance beyond which there is no correlation anymore between observables, according to the
covariance function used. For more information see e.g. [4].

7.4. Exercises and worked examples
This section presents a derivation-exercise and a simple problem with a worked answer on
interpolation.

Question 1 Piecewise linear interpolation of an attribute, in a one-dimensional spatial,
or temporal domain implies just connecting two succesive observations by a straight line,
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Figure 7.9: Piecewise linear interpolation of observations in the example of Figure 7.7, with question 1.

see Figure 7.9. Start from equation (7.3) for inverse distance interpolation, and restrict it to
𝑚 = 2, for instance interpolating 𝑧 for position 𝑝 with 𝑝 ∈ [𝑝 , 𝑝 ], using only 𝑦 and 𝑦 in
the interpolation. Show that in this case one obtains

�̂� = 𝑝 − 𝑝
𝑝 − 𝑝 𝑦 + 𝑝 − 𝑝

𝑝 − 𝑝 𝑦 = 𝑦 + 𝑝 − 𝑝
𝑝 − 𝑝 (𝑦 − 𝑦 )

Answer 1 Restricting 𝑚 = 2 and using solely 𝑦 and 𝑦 in (7.3) yields

�̂� = 1
+

( 1𝑑 𝑦 + 1
𝑑 𝑦 )

with 𝑑 the distance between 𝑝 and 𝑝 , and 𝑑 the distance between 𝑝 and 𝑝 . This can
be rewritten as

�̂� = 𝑑 𝑑
𝑑 + 𝑑 ( 1𝑑 𝑦 + 1

𝑑 𝑦 ) = 𝑑
𝑑 + 𝑑 𝑦 + 𝑑

𝑑 + 𝑑 𝑦

which shows the given equation, when the horizontal coordinate 𝑝 is introduced (e.g. 𝑑 =
𝑝 − 𝑝 ).

Question 2 Two observations of terrain height are given: 𝑦 = 3 at position 𝑝 = 1,
and 𝑦 = 4 at position 𝑝 = 3, see Figure 7.10 on the left. The measurement noise of the
observables has a variance of 𝜎 = 𝜎 = , and is uncorrelated across the observables. In
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Figure 7.10: On the left, problem statement for question 2. Two observations of height are given (shown by the
circles), and , at positions and respectively, and one is asked to interpolate the height
for position . On the right, covariance function ( ) ( ) for question 2.
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this spatial domain from 𝑝 = 0 to 𝑝 = 5, the terrain can be assumed flat, though the mean
terrain-height is unknown. On the right in Figure 7.10 the covariance function is given, it
describes the ‘smoothness’ of the terrain. It is mathematically given as 𝜎 ( ) ( ) = − 𝑑 +1
for 0 ≤ 𝑑 ≤ 4, and zero otherwise, with 𝑑 = |𝑝 − 𝑝 |. With all this information, one
can perform interpolation using Ordinary Kriging. Compute the interpolated terrain-height for
𝑝 = 2. Also do this for 𝑝 = 1 .

Answer 2 The terrain-height exactly halfway the two observation positions can, logically,
be expected to be the average of the two observations. Kriging will also provide this an-
swer. The variance matrix for the signal at the two observation positions 𝑝 and 𝑝 , using the
covariance function in Figure 7.10 on the right, reads

𝑄 = ( 1 1 )

Together with the measurement noise 𝜎 = 𝜎 = , the variance matrix of vector 𝑦, as
outlined with (7.7), becomes

𝑄 = ( )

and its inverse reads

𝑄 = ( −
− )

With (7.12) and 𝑙 = (1, 1) , the estimated mean terrain height becomes �̂� = 3 . Then with
(7.11), and matrix, or actually vector 𝑄 as 𝑄 = ( ), based on the distance from 𝑝
to 𝑝 , and the distance from 𝑝 to 𝑝 , and the covariance function of Figure 7.10, we obtain,
as expected

�̂� = 312 + ( ) ( −
− ) [( 34 ) − (

1
1 )3

1
2] = 3

1
2

Repeating the exercise for 𝑝 = 1 yields �̂� = 3 . The full interpolation result is shown in
Figure 7.11. Apparently, interpolation with Ordinary Kriging, does not yield a straight line
passing through the two observation points. The observations 𝑦 and 𝑦 are subject to mea-
surement error. And also mind that in Ordinary Kriging, one assumes that the attribute under
consideration has a constant mean across the entire spatial domain. That is why the result is
an in-between the straight line and a flat horizontal line, and does not pass through the two
observations. As a final exercise, verify yourself that for 𝑝 = 1 you obtain �̂� = 3, and �̂� = 4
for 𝑝 = 3, when the measurement noise can be neglected, i.e. when 𝜎 = 𝜎 = 0. In this
case the interpolated result is exactly matching the observations 𝑦 and 𝑦 .
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Figure 7.11: Interpolation result using Ordinary Kriging for question 1, ̂ is given by the dashed line, and the
interpolation ̂ by the solid line in blue; the two circles give the observations.





8
Conclusion

In land surveying it is good practice to take more measurements than strictly necessary. Using
redundant measurements serves the purpose of increasing the precision of the estimators
for the unknown parameters of interest, and it allows for checking the mutual and internal
consistency of the set of measurements.

Using the variance matrix of chapter 4, one can see that when the measurement set-up
is doubled, the variances of the estimators go down by a factor of 2. And in chapter 6, we
have seen that redundant measurements can be used to check the validity of the assumed
mathematical model, and to diagnose whether big outliers or anomalies are present in the
data-set. This check provides a safeguard against producing, unknowingly, largely incorrect
results.

67
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Several proofs [*]

A.1. Mean and variance of normal distribution
The Probability Density Function (PDF) of a normally distributed random variable 𝑦 reads

𝑓(𝑦) = 1
√2𝜋𝜎

𝑒
( )

(A.1)

and in this section we prove that 𝑥 is the mean, and 𝜎 the standard deviation (𝜎 the variance).
Using (2.9) the mean reads

𝐸(𝑦) = ∫ 𝑦 1
√2𝜋𝜎

𝑒 ( ( ) ) 𝑑𝑦 (A.2)

which can be split into

𝐸(𝑦) = 𝑥∫ 1
√2𝜋𝜎

𝑒 ( ( ) ) 𝑑𝑦 + ∫ (𝑦 − 𝑥)
√2𝜋𝜎

𝑒 ( ( ) ) 𝑑𝑦

The first part yields just the mean 𝑥, and in the second part we apply the change of variable
𝑧 =

𝐸(𝑦) = 𝑥 + ∫ 𝜎 𝑧
√2𝜋

𝑒 𝑑𝑧

where the factor 𝜎 enters in the second term as the change of variable implies 𝜎𝑑𝑧 = 𝑑𝑦.

𝐸(𝑦) = 𝑥 + 𝜎
√2𝜋

[−𝑒 ] = 𝑥

as the second term yields zero. The mean of the random variable 𝑦 reads 𝑥.
Using (2.10) the variance reads

𝐷(𝑦) = ∫ (𝑦 − 𝑥) 1
√2𝜋𝜎

𝑒 ( ( ) ) 𝑑𝑦 (A.3)

where we used already 𝐸(𝑦) = 𝑥. Again we apply the change of variable 𝑧 =

𝐷(𝑦) = ∫ 𝜎 𝑧
√2𝜋

𝑒 𝑑𝑧

69
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which can be split into

𝐷(𝑦) = 𝜎
√2𝜋

∫ (𝑧𝑒 )(𝑧)𝑑𝑧

where we apply integration by parts

𝐷(𝑦) = 𝜎
√2𝜋

(− [𝑧𝑒 ] + ∫ 𝑒 𝑑𝑧) = 𝜎

where we used the definite integral ∫ 𝑒 (√ ) 𝑑𝑧 = √ . The variance of the random variable
𝑦 reads 𝜎 .

A.2. Mean and variance propagation laws
We consider the following linear transformation, as given by (3.7), of 𝑚-vector 𝑦

𝑣 = 𝑅𝑦 + 𝑠

where vector 𝑣 has 𝑛 elements, and consequently matrix 𝑅 has 𝑛 rows and 𝑚 columns, and
vector 𝑠 is an 𝑛-vector.

In this section we prove that 𝐸(𝑣) = 𝑅𝐸(𝑦) + 𝑠 (3.8) and that 𝑄 = 𝑅𝑄 𝑅 (3.9).
Using

𝐸(𝐺(𝑦)) = ∫ 𝐺(𝑦)𝑓(𝑦)𝑑𝑦

we compute the mean of 𝑣

𝐸(𝑣) = 𝐸(𝑅𝑦 + 𝑠) = ∫ (𝑅𝑦 + 𝑠)𝑓(𝑦)𝑑𝑦

= 𝑅∫ 𝑦𝑓(𝑦)𝑑𝑦 + 𝑠∫ 𝑓(𝑦)𝑑𝑦 = 𝑅𝐸(𝑦) + 𝑠

which proves (3.8) in section 3.2.
With (3.4) applied to vector 𝑣

𝐷(𝑣) = 𝐸((𝑣 − 𝐸(𝑣))(𝑣 − 𝐸(𝑣)) ) = 𝐸((𝑅𝑦 + 𝑠 − 𝑅𝐸(𝑦) − 𝑠)(𝑅𝑦 + 𝑠 − 𝑅𝐸(𝑦) − 𝑠) )

= 𝑅𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦)) )𝑅 = 𝑅𝐷(𝑦)𝑅 = 𝑅𝑄 𝑅 = 𝑄
which proves (3.9).

A.3. Non-linear mean and variance propagation laws
In section 3.4 the mean and variance propagation laws were given for the non-linear transfor-
mation 𝑣 = 𝐺(𝑦) (3.10), where 𝐺() represents 𝑛 non-linear functions of each time 𝑚 random
variables (the elements of vector 𝑦).

The Taylor series, up to second order term, of one of the 𝑛 non-linear functions 𝑣 = 𝐺 (𝑦)
with 𝑖 = 1,… , 𝑛, at 𝐸(𝑦), reads

𝐺 (𝑦) ≈ 𝐺 (𝐸(𝑦)) + 𝜕𝐺
𝜕𝑦 |

( )
(𝑦 − 𝐸(𝑦)) + 12(𝑦 − 𝐸(𝑦))

𝜕 𝐺
𝜕𝑦𝑦 |

( )
(𝑦 − 𝐸(𝑦))
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where ( ) is the 𝑚×1 gradient vector of 𝐺 (𝑦), and ( ) is the 𝑚×𝑚 Hessian matrix of
𝐺 (𝑦) (matrix with second order partial derivatives).

The expectation of 𝑣 in terms of 𝑦 becomes

𝐸(𝑣 ) = 𝐸(𝐺 (𝑦)) ≈ 𝐸(𝐺 (𝐸(𝑦)))+𝐸( 𝜕𝐺𝜕𝑦 |
( )
(𝑦−𝐸(𝑦)))+𝐸(12(𝑦−𝐸(𝑦))

𝜕 𝐺
𝜕𝑦𝑦 |

( )
(𝑦−𝐸(𝑦)))

= 𝐺 (𝐸(𝑦)) + 12trace(
𝜕 𝐺
𝜕𝑦𝑦 |

( )
𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦)) ))

= 𝐺 (𝐸(𝑦)) + 12trace(
𝜕 𝐺
𝜕𝑦𝑦 |

( )
𝑄 )

as 𝐸(𝑦 −𝐸(𝑦)) = 𝐸(𝑦)−𝐸(𝐸(𝑦)) = 𝐸(𝑦)−𝐸(𝑦) = 0, and where trace means taking the sum
of the diagonal elements of the matrix, and, we used definitions (3.4) and (3.5) for 𝑄 . This
completes the proof of (3.11).

The 𝑛 × 𝑛 variance matrix of 𝑣 is formally given by

𝑄 = 𝐸((𝑣 − 𝐸(𝑣))(𝑣 − 𝐸(𝑣)) )

see (3.4) and (3.5). We consider one element (𝑖, 𝑗), which is 𝑄

𝑄 = 𝐸((𝑣 − 𝐸(𝑣 ))(𝑣 − 𝐸(𝑣 )) )

with 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑛. We supply the above Taylor series, up to second order term,
of 𝑣 = 𝐺 (𝑦), and of 𝑣 = 𝐺 (𝑦), and we substitute the just obtained approximation for 𝐸(𝑣 ),
and for 𝐸(𝑣 ). In the expansion we neglect all terms with cross products of first and second
order derivatives of 𝐺(𝑦), as well as products of second order derivatives, and we are left with
just one term, namely

𝑄 ≈ 𝐸( 𝜕𝐺𝜕𝑦 |
( )
)(𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))

𝜕𝐺
𝜕𝑦 |

( )

= 𝜕𝐺
𝜕𝑦 |

( )
𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦)) )

𝜕𝐺
𝜕𝑦 |

( )
= 𝜕𝐺
𝜕𝑦 |

( )
𝑄

𝜕𝐺
𝜕𝑦 |

( )

where we used again definition (3.4). Finally the above expression can be used for any element
𝑄 , hence, the full 𝑛 × 𝑛 variance matrix 𝑄 results as

𝑄 ≈ 𝜕𝐺
𝜕𝑦 |

( )
𝑄 𝜕𝐺

𝜕𝑦 |
( )

This completes the proof of (3.12). The term ( ) is an 𝑛 × 𝑚 matrix, containing, as rows,
the gradient vectors of non-linear functions 𝐺 (𝑦), with 𝑖 = 1,… , 𝑛, all evaluated at 𝐸(𝑦).



72 A. Several proofs [*]

A.4. Least-squares
In this section we prove that �̂� = (𝐴 𝐴) 𝐴 𝑦 (4.4) is the solution to min ‖𝑦 − 𝐴𝑥‖ (4.5).

For the least-squares solution we minimize, for 𝑥, the function 𝑔(𝑥) = ‖𝑦 − 𝐴𝑥‖ = (𝑦 −
𝐴𝑥) (𝑦 − 𝐴𝑥). The gradient, the first order derivative, is set equal to zero, and the Hessian,
the second order derivative, should be larger than zero (be a positive definite matrix), in order
for the found (single) extremum to be a global minimizer.

𝑔(𝑥) = 𝑦 𝑦 − 𝑦 𝐴𝑥 − 𝑥 𝐴 𝑦 + 𝑥 𝐴 𝐴𝑥 = 𝑦 𝑦 − 2𝑥 𝐴 𝑦 + 𝑥 𝐴 𝐴𝑥

as the innerproduct 𝑦 𝑏 = 𝑏 𝑦. Setting ( ) = 0 yields

−2𝐴 𝑦 + 2𝐴 𝐴𝑥 = 0

where we used ( ) = 𝑏 and ( ) = (𝑀+𝑀 )𝑥 (which both can be verified by expansion),
and recognize that 𝐴 𝐴 is a symmetric 𝑛 × 𝑛 matrix. Solving this for 𝑥 yields

𝐴 𝐴�̂� = 𝐴 𝑦

which is referred to as the system of normal equations (it is a system with 𝑛 unknowns in 𝑛
equations), and inverting matrix 𝐴 𝐴 yields indeed (4.4). The Hessian reads

𝜕 𝑔(𝑥)
𝜕𝑥𝑥 = 2𝐴 𝐴 > 0

which is indeed a positive definite matrix, and where we used ( ) = 𝑏 .

A.5. Concerns on non-linear estimation
For model (4.8) in section 4.4, application of the least-squares criterion (4.5), taking into
account the variance matrix 𝑄 , yields

�̂� = argmin
∈

‖𝑦 − 𝐹(𝑥)‖

the non-linear estimator �̂� = 𝐺(𝑦), which in most cases in practice can not be found in
an analytical form. Also we mention that non-linear estimation is not a trivial subject. The
propagation of the random characteristics of 𝑦 into those of �̂� is difficult. For instance the
mean and variance can not be propagated through a non-linear relation in a straightforward
way, e.g. 𝐸(�̂� ) = 𝐸(𝐺(𝑦)) ≠ 𝐺(𝐸(𝑦)), the non-linear estimator is biased 𝐸(�̂� ) ≠ 𝑥.

Through the iterative procedure in section 4.4 the estimate �̂� is a numerical approximation
of the realization of the non-linear estimator �̂� .

A.6. Line-fitting with observed independent variable
Equation (4.2) 𝐸(𝑦) = 𝐴𝑥; 𝐷(𝑦) = 𝑄 presented the (linear) model of observation equa-
tions, with observations 𝑦, unknown parameters 𝑥, and known coefficients in 𝑚x𝑛-matrix 𝐴.
Example (6.2) was on line fitting, and positions were observed, with error, but timing, the
independent variable, was assumed to be perfect (error-free), yielding the coefficients of ma-
trix 𝐴. If this assumption (on the independent variable) cannot be made, the model for line
fitting has to be set up differently. As an example we consider the measurement of the ex-
pansion of a steel bar due to a rise in temperature. Both the dependent variable (the length,
observed, in vector 𝑦), and the independent variable (temperature, occuring in matrix 𝐴), are
now subject to observational error.
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The length of the bar is measured 𝑚 times: 𝑦 , 𝑦 , … , 𝑦 (and inevitably measurement
errors are being made), and, at the same time also the (corresponding) temperature is mea-
sured: 𝑇 , 𝑇 , … , 𝑇 (and also here inevitably with some error). The functional model reads
𝑦 = 𝑇 𝑥 + 𝑥 , for 𝑖 = 1,… ,𝑚, where 𝑥 is the length of the bar at reference temperature
(e.g. 𝑇 = 0), and 𝑥 is the coefficient of thermal expansion (in this case the increase in length
per degree, for instance for steel approximately 10 𝜇m per degree, for a 1 meter bar).

This model is an example of a so-called total least squares problem. There exist various
approaches to solve such a problem, e.g. using singular value decomposition. In the sequel
we describe another way.

Earlier, only 𝑦 was a random vector, namely 𝑦, and 𝑇 was not, but now also 𝑇 is a random
vector, namely 𝑇, and with keeping just 𝑥 and 𝑥 as unknown parameters, we would have
random variables in the design matrix 𝐴. Therefore the model is set up differently, namely
by introducing also the temperatures as unknown parameters, next to 𝑥 and 𝑥 . The actual
temperatures are not known — they have been measured, but with error. The full model of
observation equations becomes:

𝐸(𝑇 ) = 𝑇
𝐸(𝑦 ) = 𝑇 𝑥 + 𝑥 for 𝑖 = 1, 2, … ,𝑚 𝐷 ( 𝑇𝑦 ) = (

𝑄 0
0 𝑄 )

with in total 2𝑚 observations (which is exactly all we measured), 𝑚 temperatures and 𝑚
lengths, and 𝑚+2 unknown parameters, namely 𝑥 , 𝑥 , and 𝑇 , 𝑇 , … , 𝑇 . The total 2𝑚 x 2𝑚
variance matrix will typically be a block-diagonal matrix, as there is generally no correlation
between temperature and length readings.

The above extended model of observation equations is non-linear, notably by the product
of 𝑇 and 𝑥 , cf. section 4.4 on linearization and iteration.

A.7. Ordinary Kriging
In this section we prove the key equation for Ordinary Kriging (7.9).

The requirement of linear interpolation is already implied in (7.2), �̂� = 𝑤 𝑦.
The interpolation is also required to be unbiased. With just a constant unknown mean

(7.7), with 𝐴 = 𝑙, yields 𝐸(𝑦) = 𝑙𝑥, where 𝑙 is a vector of all ones. Then with (7.2) and (3.8)
𝐸(�̂� ) = 𝑤 𝐸(𝑦) = 𝑤 𝑙𝑥. Now with (7.8) for 𝑧(𝑝 ) = 𝑧 we know that 𝐸(𝑧 ) = 𝑥, hence
𝐸(�̂� ) = 𝐸(𝑧 ) yields the constraint 𝑤 𝑙 = 1, or ∑ 𝑤 = 1.

Eventually, to achieve the best interpolator �̂� , we require minimum error variance with
the error as ̂𝜖 = 𝑧 − �̂� . Variance 𝜎 ̂ should be as small as possible, implying the largest
probability on a small error at any position, and practically, the interpolated value being as
close as possible to the actual water-depth. Hence, the goal is to determine the elements of
vector 𝑤, such that

min𝜎 ̂ subject to 𝑤 𝑙 − 1 = 0 (A.4)

The error variance is obtained through noting, with (7.2), that

̂𝜖 = ( 1 −1 ) ( 𝑧�̂� ) = ( 1 −𝑤 )(
𝑧
𝑦 )

with the variance matrix of the vector on the right hand side as

( 𝑄 𝑄
𝑄 𝑄 )
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and 𝑄 = 𝜎 . Applying the variance propagation law (3.9) yields

𝜎 ̂ = 𝜎 + 𝑤 𝑄 𝑤 − 𝑄 𝑤 − 𝑤 𝑄 = 𝜎 + 𝑤 𝑄 𝑤 − 2𝑤 𝑄 (A.5)

and the error variance depends on the weights in vector 𝑤.
The minimization (A.4), including the constraint, is solved using the Lagrange multiplier

rule. The Lagrange function becomes

𝐿(𝑤, 𝜆) = 𝜎 ̂ + 𝜆(𝑤 𝑙 − 1) = 𝜎 + 𝑤 𝑄 𝑤 − 2𝑤 𝑄 + 𝜆(𝑤 𝑙 − 1)

where 𝜆 is the Lagrange multiplier, and (A.5) has been substituted. Setting the partial deriva-
tives of 𝐿(𝑤, 𝜆) to zero yields

𝜕𝐿(𝑤, 𝜆)
𝜕𝑤 = 2𝑄 𝑤 − 2𝑄 + 𝜆𝑙 = 0

which is an 𝑚-vector, and with 𝑄 a symmetric matrix, and

𝜕𝐿(𝑤, 𝜆)
𝜕𝜆 = 𝑤 𝑙 − 1 = 0

These 𝑚 + 1 equations, with 𝑚 + 1 unknowns can be cast in

( 𝑄 𝑙
𝑙 0 ) (

𝑤
𝜈 ) = (

𝑄
1 ) (A.6)

with 𝜈 = , see (7.9), from which the weights can be obtained through (7.10).
The inverse in (7.10) can be shown to read

( 𝑄 𝑙
𝑙 0 ) = ( 𝑄 − 𝑄 𝑙(𝑙 𝑄 𝑙) 𝑙 𝑄 𝑄 𝑙(𝑙 𝑄 𝑙)

(𝑙 𝑄 𝑙) 𝑙 𝑄 −(𝑙 𝑄 𝑙) )

Once the values for vector 𝑤 have been obtained, the interpolation error variance can be
evaluated using (A.5).
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Figure B.1: Standard normal distribution N(0,1): one-sided level of significance as function of the critical value
, i.e. ( ).
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76 B. Normal distribution: table

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

Table B.1: Standard normal distribution N(0,1): one-sided level of significance as function of the critical value
, i.e. ( ). Values of are given up to the first decimal in the first column, the second decimal in

the first row. Example: = 0.0250 for = 1.96.
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31
69

80
46
.5
19
9

51
.1
71
9

53
.5
40
1

57
.1
53
2

60
.3
91
5

64
.2
77
8

71
.1
44
5

79
.3
34
3

88
.1
30
3

96
.5
78
2

10
1.
87
95

10
6.
62
86

11
2.
32
88

11
6.
32
11

12
4.
83
92

90
54
.1
55
2

59
.1
96
3

61
.7
54
1

65
.6
46
6

69
.1
26
0

73
.2
91
1

80
.6
24
7

89
.3
34
2

98
.6
49
9

10
7.
56
50

11
3.
14
53

11
8.
13
59

12
4.
11
63

12
8.
29
89

13
7.
20
84

10
0

61
.9
17
9

67
.3
27
6

70
.0
64
9

74
.2
21
9

77
.9
29
5

82
.3
58
1

90
.1
33
2

99
.3
34
1

10
9.
14
12

11
8.
49
80

12
4.
34
21

12
9.
56
12

13
5.
80
67

14
0.
16
95

14
9.
44
93

Table C.1: Central distribution: critical value ( , ) as function of one-sided level of significance (top row)
and degrees of freedom (left column). Given is one-minus-the CDF, hence represents the right-tail probability.
Example: = 0.010 and = 10 yield ( , ) = 23.2093.



Concluding remarks

This primer on Mathematical Geodesy addresses the following two learning objectives: ’knowl-
edge, understanding, application, analysis and evaluation in the area of calculus of observa-
tion (in Dutch: waarnemingsrekening), and the assessment and presentation of (measures
of) quality’, and ’being able to convert a surveying problem into a mathematical model, sub-
sequently determining parameters of interest, and eventually inserting results back into the
application in reality’, and addressing these objectives from the perspective of Surveying and
Mapping applications in the field of Civil Engineering.
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