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 [slide 1] It is an honor to address you all today.  I have long 
had the highest regard for the research and education here at TU 
Delft, and I am delighted to have joined you on the faculty.  My 
wife Janice and I have a great affection for TU Delft extending 
back more than 15 years, when we first met Hans Bruining of the 
Petroleum Engineering program, during his sabbatical at The 
University of Texas at Austin, where I taught for many years.  I 
especially thank my colleagues in the Department of 
Geotechnology, at TU Delft, who have done so much to help me fit 
in. 
 My topic today is the tension between simplicity and 
complexity in modeling oil and gas reservoirs for the purpose of 
predicting and optimizing their performance. Oil and gas reservoirs 
are incomprehensibly complex, from the microscopic scale up to 
that of kilometers.  In our lifetimes, we will never be able to 
represent all the spatial variation of properties in these geological 
formations, even if computers grow larger and more powerful for 
many years to come.  In addition, we lack sufficient information 
about those properties (except in a relatively few locations), even if 
we had the power to represent them in computer models.  Finally, 
the recovery processes themselves introduce another layer of 
complexity to that provided by the geological formation.   
 Therefore, radical simplification is needed, to begin to 
represent and predict what happens underground as an oil or gas 
field is produced.  And yet the very process of reducing a model to 
its essentials calls for careful judgment, lest we over-simplify.  
How does one decide how much complexity is enough in a model?  
Which mechanisms are necessary in creating a meaningful model, 
and which can be safely left out?   



 The tension between complexity in the real world and 
simplifications we must make in our models is a continuing and 
unavoidable challenge—amounting at times to exasperation.  
However, there is also an esthetic pleasure in finding a particularly 
elegant and simple solution to a complex problem.  There is a joy 
both in discovering beautiful complexity in a seemingly simple 
physical phenomenon and in finding an elegant mathematical 
model to represent it.  I hope in this talk to highlight both the 
tension and the joy in this process of simplification. 
 I don't need to convince my colleagues in the geosciences of 
the complexity of geological formations.  [SLIDE 2] Traditionally, 
it is engineers that are most guilty of oversimplifying this.  My first 
slide [SLIDE 3] starts on the scale of micrometers: an electron 
microscope image that illustrates the complexity of pore shapes 
and the roughness along pore walls introduced by clay deposition. 
The oil and gas we want to produce fills the gap between these 
grains and clay particles.   
 My next slide [SLIDE 4] moves up a little, to the scale of a 
mm or two.  This is a slice through the rock and illustrates the 
complex pore geometry and heterogeneity of grains and minerals.  
We can represent the pore network mathematically on a scale of a 
few mm  [SLIDE 5], but it requires the largest computers now 
available, and we've already thrown away the information on the 
pore surfaces shown earlier.   
 Next  [SLIDE 6] we're at a scale of a cm or two, and one can 
see heterogeneity of a larger scale, with grains further apart at the 
bottom of the image.  Fluids would flow more easily through this 
pore space than through the pores above this.  Moving up to the 
scale of 5-10 cm [SLIDE 7] it becomes clear that there is large 
heterogeneity on a scale of mm.  In this case the black layers 
would block the flow of oil and gas and the gray areas conduct 
flow.   
 Reservoirs are modeled on the computer on a scale of 
hundreds of meters or kilometers [SLIDE 8], where one tries to 
include heterogeneity on a scale of 10s m, but one throws away (or 



tries to average) the effects of heterogeneity on smaller scales.  
Here are shown two large reservoir computer models, illustrating 
that one tries to represent large-scale heterogeneities,  but the small 
scale is lost.  We can never create a complete, or true, model of the 
reservoir if completeness or truth means representing all of the 
complexity in the reservoir. 
 A motto I find very helpful in such situations was suggested 
by a colleague, Larry Lake [SLIDE 9]:   
 

"All models are false, but some models are useful." 
-George E. P. Box 

 
By "false," I believe this means incomplete.  All models are false 
because none of them includes everything in nature.  Beginning 
with this realization saves us from fruitless arguments about why 
the other guy's model is wrong because it doesn't include some 
aspect which my model does include.  Scientists do argue about 
which model is better because it is more complete.   
 The real test, however, is whether a model is useful. By 
useful, I mean a model that provides insights we would not 
otherwise have, or that is accurate enough for prediction and use in 
design. Sometimes the useful models are ones that are not as 
complete, because complexity in modeling can blind us to 
relatively simple explanations for the most important features of a 
situation. For instance, Newtonian mechanics is a false model; it 
doesn't include relativistic effects.  But it is almost always useful.  
 I would like to describe three examples of this tension.  The 
first example is the question of how to represent naturally fractured 
oil and gas reservoirs. I have no answers at this point, but the case 
illustrates the difficulties in determining what is essential; that is, 
what makes a model useful even if it is false.  The second example 
is modeling gravity effects that occurs in processes that use 
injected gas to recover oil.  In this case remarkably simple models 
are clearly useful, though not complete.  The third case is the use 
of foam for improved oil recovery and well stimulation.  In this 



case I have played both sides; sometimes illustrating the 
remarkable complexity that would be required in a model that 
claims to be complete; and in other cases finding simplifications 
that lead to useful, incomplete models. 
 
 My first test case is the modeling of Naturally Fractured 
Reservoirs [SLIDE 10] 
 An open fracture in a geological formation is like a 
superhighway for flow.  [SLIDE 11] A rough rule of thumb is that 
all of the flow through the reservoir is through the fractures, while 
all of the fluids reside in the "matrix," or solid rock between the 
fractures.  A successful recovery process then works something 
like an urban highway system. The workers reside in the suburbs, 
on small streets.  To get to the city, they first travel through the 
slow, inefficient side streets until they reach the highway, after 
which they rapidly reach the city.  Similarly, in fractured reservoirs 
there is a slow process of oil or gas reaching the fractures, but 
rapid flow to the well through the fractures.  (At this point, 
admittedly, my analogy breaks down, because it most cities the 
highways are jammed at rush hour.) 
 Moreover, the longer the fracture is, the more important it is; 
not only because it carries flow a longer distance, but because 
length tends to correlate with ability to conduct flow.  But large 
fractures are relatively rare.  Because fractures are often nearly 
vertical, one is unlikely to observe one directly with a vertical well.  
Because the large fractures are so important to the flow in the 
reservoir, the position or existence of a single fracture could have a 
large impact on the flow in the entire reservoir. 
 One can map fractures in outcrops, where the fracture rock 
comes to the surface as shown in the next slide [SLIDE 12], and 
try to relate this to what occurs underground.  (This slide shows a 
map of fractures at an outcrop created by Michiel van der Most, a 
current MSc student here at TU Delft.  There are three sets of 
fractures, shown in three colors, that were created at three different 
periods of stress within the reservoir.)  One could take the 



properties from maps like this and create possible arrangements of 
fractures in the reservoir consistent with these fractures on the 
computer. 
 Moreover, some studies suggest that fractures are more 
frequent the smaller they are, and that there are an infinite number 
of fractures at the smallest scales.  Thus we clearly can't represent 
all the fractures.  Moreover, there is no completely dependable way 
to average the properties of fractures to allow one to move to larger 
scales with the averaged properties.   
 The next slide  [SLIDE 13] shows two computer-generated 
sets of fractures.  In the set on the right, there is a continuous path 
for flow from top to bottom in the big square, but not through 
every one of the smaller squares.  In the set on the left, there is a 
path for flow from top to bottom across every one of the smaller 
squares, but not across the big square.  Scaling the properties from 
small to large scales is difficult with fractured reservoirs. 
 What are the most important features of naturally fractured 
reservoirs?  One might list the aspects as follows [slide 14], in 
increasing level of sophistication; [READ POINTS OUT LOUD]: 
 Of these features, the most common computer modeling 
method includes the first two points, but leaves out the rest.  A 
colleague at TU Delft believes the third point is crucial.  I worked 
for a time on point 4, but I am currently wondering whether points 
5 and 6 are first-order effects or can be left out.  
 Issues involved in modeling fractured reservoirs then are 
listed on the next slide [slide 15]; [READ POINTS ALOUD] .  
The first point is the heart of most current models of fractured 
reservoirs.  A group of researchers at TU Delft and the Free 
University of Amsterdam are at work on point 2, which would feed 
information into that approach.  My colleague at TU Delft is at 
work on the fourth point, and points 3 and 5 are the focus of my 
curiosity at the moment. 
 For fractured reservoirs, as for other oil and gas reservoirs, 
the key is determining which kinds of complexity are of second-



order importance and can be left out, and which are essential for 
accurate understanding and prediction of behavior. 
 [Slide 16] My second case study is Gravity Segregation in 
Gas Improved Oil Recovery. 
 On average, about 2/3 of the oil initially in place in an oil 
reservoir is left behind when the field is abandoned.  One way to 
increase this total a bit is by injecting gases that are miscible with 
the oil.  A schematic of the process is shown in the next slide 
[SLIDE 17].  As this slide shows, the gas (in this case carbon 
dioxide, or CO2) is usually injected in alternating slugs along with 
water.  In principle, miscible gas flooding could recover 100% of 
the remaining oil, but in practice recovery is much less, for a 
reason not shown in this picture.   
 One reason is that the injected gas only sweeps a portion of 
the reservoir, and part of the reason for this is gravity segregation.  
The gas is much less dense than water and oil; it quickly moves to 
the top of the reservoir and leaves most of the reservoir untouched, 
as illustrated in the next slide [SLIDE 18].  Here the injection well 
is along the left-hand side, and the production well on the right.  
Gas recovers oil only in the mixed zone and the thin override zone 
at the top of the reservoir.   
 A remarkably simple model for this process was proposed by 
two engineers, Stone and Jenkins, 25 years ago; it describes the 
process of gravity segregation when gas and water are injected 
continuously in a homogeneous reservoir.  Stone and Jenkins give 
an equation for the distance gas and water flow before they 
segregate.  The model is clearly false, i.e. incomplete.  For instance  
[SLIDE 19], it leaves out geological complexity, details of how the 
gas and water flow together, and even the oil, which is the target of 
the whole process.  Moreover, the model says that many factors it 
does account for are unimportant:  the reservoir's permeability (or 
ability to conduct flow), for instance. 
 Nonetheless, the model gives one clear insight:  the key to 
avoiding gravity segregation of water and gas, as shown in the 
previous slide, is to maximize the horizontal pressure drop in its 



fight against the vertical effects of gravity, and to do so at the 
leading edge of the gas front, where gas is deciding whether to 
override or not.  The model also suggests the challenge in doing 
this  [SLIDE 20]. In this figure radial distance from a well is 
shown on the horizontal axis; note the nonlinear scale, with most 
of the scale taken up with the first few m from the well.   
 Plotted here are two features: The diagonal lines represent 
dissipation of injection pressure, computed in two ways, which 
mostly occurs near the well.  The bottom curve is the extent of 
segregation that has happened at the same position.  It is clear from 
this plot that most of the injection pressure is dissipated near the 
well, where it does no good, and where practically none of the 
segregation occurs.  From this insight a number of improved 
designs have emerged that minimize the dissipation of pressure 
near the well and focus the pressure drop on the outer edge, where 
gravity override is determined. 
 This model is useful, but incomplete.  I and my students are 
extending it now to heterogeneous formations, starting with simple 
layered formations.  I'll show one success and one failure of the 
model tested in this way.  First  [SLIDE 21] is a comparison of two 
processes with different injection pressures (what is shown is 
actually injection pressure minus reservoir pressure).  The layers 
are shown in the upper right: light blue represents layers with 
higher permeability; i.e. that take flow more easily.  There is a 
high-permeability layer at the top in this case.   
 The bottom two figures show gas saturation in the reservoir 
during gas injection.  It may look like the left-hand process is 
winning, because gas is advancing faster along the top there.  
Actually, this process is losing, because once this gas reaches the 
production well the remaining parts of the reservoir may have to be 
abandoned.  The right-hand plot, with the higher injection pressure, 
is the winner, because the sweep is more even.  As the model 
predicts, maximizing injection pressure is the key to maximizing 
the sweep of gas and therefore oil recovery.  



 Next [SLIDE 22] is an example of a reservoir with lower 
permeability on the top, as shown on the left.  I should mention 
that what is shown in these two slides are not just gas processes but 
processes involving foam; I'll say more about foam in a minute.  
The sort of reservoir shown on this slide is supposed to perform 
better than the first one, but in this case gas breaks rapidly through 
the lower-permeability layer at the top and rapidly reaches the 
production well; you can just see it at the top of the figure.  The 
model missed this feature.  In this case the simple model was false 
in a way that also made it less useful.  Therefore I am some 
students are modifying it to add needed complications. 
 My final example is modeling foam in porous media  [SLIDE 
23]. Foam is used to divert gas flow in improved oil recovery, as 
illustrated in the previous slides; to divert the flow of acid in well-
stimulation treatments; and to direct the flow of remediation fluids 
in aquifer cleanup.  I confess to a passion for this research topic 
that has extended over 20 years. [SLIDE 24]  In part this passion 
arises from the esthetic pleasures of contemplation of bubble 
shapes and curved interfaces, something like the boy shown at left 
here.  Shown at right is a huge bubble, one or 2 m in length, 
created by one of those bubble toys you can buy in a toy store.  I 
own several of these toys, but I've never made a bubble quite like 
this. 
 [SLIDE 25]  In geological formations, foams greatly reduce 
the ability of gas to flow, in effect making it more viscous, or even 
trapping it in place like a solid. The basic idea of this foam is much 
like you would think: bubbles separated by soap films, stabilized 
by detergents.  But the foam is inside of pores that are as small as 
the bubbles are.  So the picture inside the rock is like that shown 
on the right. In this picture the soap films between bubbles are 
shown in blue, and the grains of sediment are hashed.  Bubbles fill 
the space between the liquid films.  The bubbles flow between the 
grains of sediment, while water (shown here schematically at the 
bottom) fills the smallest pores and flows along separately on its 



own.  In only the largest pores the gas bubbles flow; in the middle-
sized pores the bubbles are trapped.  
 In addition to the properties of the pores, the water and the 
gas, the behavior of foam depends on the fraction of the bubbles 
that flow; the drag on the bubbles that do flow; both of these 
properties depend on the size of the bubbles.  The size of the 
bubbles in turn depends on a variety of processes that create and 
destroy soap films.  A former student created a chart once to try to 
express the interdependency of all these mechanisms.  [SLIDE 26]  
The point of this slide is just to illustrate that the interactions that 
govern foam properties are complex. 
 To illustrate the complexity of all this, I would like to 
describe just one aspect: the yield stress and drag on moving 
bubbles, which determines the fraction of the bubbles that can 
flow, the box circled in the next slide  [SLIDE 27]. The resistance 
to flow is reflected in and caused by the curvature of the soap films 
[SLIDE 28], illustrated here; films that bulge forward resist the 
forward movement and increase the drag on the foam.  The soap 
films are perpendicular to the pore wall.  So in this example the 
first soap film is resisting forward movement; the next is pulling 
the foam forward; the next two resisting, and so on. To simplify 
the problem, one might imagine that the pores are identical and 
conical in shape, as shown here, and, initially, that the foam is 
moving extremely slowly. This pore shape has symmetry both 
front-to-back and radially.   
 This work was done some time ago, so I'm going to have to 
change color scheme in my slides [SLIDE 29]. The first surprise is 
that although the pore is symmetric front to back, the soap film 
does not spend half its time bending forwards and half backwards.  
The front-back symmetry is broken because when the soap film 
reaches the midpoint of the pore it already occupies more than half 
the volume of the pore.  Therefore, when it reaches the midpoint of 
the pore it has to jump part-way up the pore wall in order to 
conserve volume.  Again, the sequence of film shapes determines 
the resistance to flow, and how much of the foam remains trapped. 



 I went to the lab with a conical pore about 10 cm long to 
document this jump. [SLIDE 30]  The pore is held vertically in this 
photo and the soap film is near the entrance. At first things went 
according to plan ([CLICK 3 TIMES].  The next step was 
something of a shock.  [CLICK]  Although the pore was radially 
symmetric (or as close as we could make it), the soap film jumped 
to an asymmetric shape. This change in shape changes the 
curvature of the film and the resistance of the gas to flow.  It keeps 
this shape a while longer [CLICK] and then eventually reverts to 
the symmetric shape for its remaining passage through the pore. 
[CLICK TWICE] 
 When I saw this, I thought what you're thinking now - the 
glass must be dirty.  But it turns out [CLICK] the jump is predicted 
by theory, if one doesn't start off by assuming that the soap film is 
symmetrical.  Solving for the sequence of steps in two dimensions 
is pretty easy, but doing so in three dimensions  [SLIDE 39] 
required help from colleagues at Trinity College, Dublin. 
 Moreover [SLIDE 40], theory predicts that the asymmetric 
jump disappears at high velocity.  In some cases it disappears 
abruptly, suddenly going from the sequence on the left to that in 
the middle; in other cases it becomes more symmetrical gradually, 
as shown on the right.  Which way the process falls out depends on 
the pore shape.  All this was worked out in two dimensions , 
however; the process still hasn't been worked out in three 
dimensions . 
 Back to the movement at very slow velocity:  it turns out 
[CLICK] that the compressibility of the gas plays a role in how the 
soap films jump.  But not just the compressibility of the gas in the 
moving bubble [CLICK]: the expansion and contraction of gas in 
bubbles surrounding the moving bubble makes the moving bubble 
behave as if it were more compressible.  This feature turned out to 
be essential in fitting laboratory data on bubble movement through 
beadpacks.  In addition [CLICK], liquid in the corners of pores is 
expelled and drawn back in as pressure in the bubbles fluctuates, 
making the bubbles behave as if more compressible still.   



 Finally [CLICK], when a chain of compressible bubbles 
moves through a sequence of pores as shown here, they all tend to 
jump together.  Physicists, I believe, call this "self-organized 
criticality."  As a result, the soap films tend to spend more time in 
pore constrictions, where the resistance to flow is highest, and this 
raises the resistance to flow yet further. 
 This solution is far from finished, and much of what's been 
done has only been in two dimensions.  [SLIDE 45]  All of this is 
then only a partial solution of the mechanism in one box in the 
schematic of foam mechanisms.  Clearly we are not close to a 
complete (i.e., not a "false,") model for foam. 
 
 But sometimes nature is kind.  I will conclude [SLIDE 46] 
with an example where a stunning simplification appears to work 
well for describing foam. 
 The next slide [SLIDE 47] shows a large amount of 
laboratory data taken in flow of foam through a sandpack.  The 
vertical axis is gas flow rate through the pack; the horizontal axis is 
liquid flow rate.  Each little dot, which you can barely see, is a 
separate experiment, in which the pressure drop was measured 
across a foam-filled sandpack.  There are about 40 dots in this 
figure.  From each of the individual pressure-drop measurements a 
contour plot has been constructed.  Pressure drop is lowest along 
the left and bottom sides of the figure, and climbs as one moves 
upwards and toward the right. 
 What is striking about this figure is the existence of two very 
different kinds of behavior.  In the upper left, circled in red, at high 
gas flow rates and low water flow rates, pressure gradient does not 
change as one increases the flow of gas.  In the bottom right, the 
opposite is true; one can vary the flow rate of liquid without 
changing the pressure response.  This is especially striking that one 
can increase the flow rate of liquid, the more-viscous fluid, and not 
increase the pressure drop across the core. 
 Actually, it turns out that the explanation is relatively simple.  
Returning to the schematic of foam mechanisms [SLIDE 48], in 



each case a single mechanism controls all the others. Like an 
extremely strong feedback loop in a controller in a chemical plant, 
all other factors respond as needed to maintain the fixed set point.  
The two boxes are highlighted on this figure, with the same colors 
as the regime they control in the previous slide.  In fact, one can 
represent this behavior relatively simply, using just two 
parameters.  The results are shown in the next slide [SLIDE 49].  
The fit isn't perfect, but it comes close enough for design work for 
field applications of foam. 
 In modeling oil reservoirs, for the purpose of predicting and 
optimizing their behavior, it is essential to simplify a complex 
reality.  No model can be true in the sense of being complete.  So 
we return to the motto with which I began [SLIDE 50]; the goal is 
not a model that is complete, or even necessarily more complete, 
but one that is useful, in that it provides insights that one did not 
have before, or makes predictions that are close enough to guide 
design and optimization.   
 These challenges continually provide the fascination of 
pursuing research, which all of my colleagues share, and which 
make it exciting to come to work each day.  As Hamlet tells 
Horatio, ‘there are more things in heaven and earth than are dreamt 
of in your philosophy’—perhaps, as  he might have added, in an 
academic’s chosen ‘model.’  But the search itself is what continues 
to beckon us all. 
 [SLIDE 51 -TUD SEAL] 


