On the perception of morphodynamic model skill
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Abstract

The quality of morphodynamic predictions is generally expressed by an overall grid-point based skill score, which measures the relative
accuracy of a morphological prediction over a prediction of zero morphological change, using the Mean-Squared Error (MSE) as the
accuracy measure. Through a generic ranking for morphodynamic model predictions, this MSE based skill score (MSESS) aims at
making model performance comparable across different prediction situations (geographical locations, forcing conditions, time periods,
internal dynamics). The implicit assumptions underlying this approach are that the MSE is an appropriate measure of correspondence
for morphological predictions and that the accuracy of the initial bed as the reference correctly reflects the inherent difficulty or ease of
prediction situations. This paper presents a thorough analysis of the perception of model skill through the MSE skill score. Using synthetic
examples, an example from literature and a long-yearly Delft3D model simulation, we demonstrate that unexpected skill may be reported
due to a violation of either of the above assumptions. It is shown that the accuracy of the reference fails to reflect the relative difficulty of
prediction situations with a different morphological development prior to the evaluation time (for instance trend, cyclic/seasonal, episodic,
speed of the development). We further demonstrate that the MSESS tends to favour model results that underestimate the variance of
cumulative bed changes, a feature inherited from the MSE. As a consequence of these limitations, the MSESS may report a relative
ranking of predictions not matching the intuitive judgement of experts. Guidelines are suggested for how to adjust calibration and validation
procedures to be more in line with a morphologist's expert judgement.
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1. Introduction

A commonly-used, single-number metric for judging the rela-
tive accuracy of morphodynamic simulations is the Mean-Squared
Error Skill Score (MSESS) that goes by the name Brier Skill
Score (BSSﬂ among morphodynamic modellers (Sutherland et al.,
2004). It measures the proportion of improvement in accuracy of
a prediction over a reference model prediction, using the Mean-
Squared Error (MSE) as the accuracy measure. Generally, the
initial bed is chosen as the reference prediction, which implies a
reference model of zero morphological change. To our knowl-
edge, |Gallagher et al.| (1998) were the first to determine morpho-
dynamic model skill as the model accuracy relative to the accuracy
of the initial bathymetry. They used the Root-Mean-Squared Er-
ror (RMSE) as the accuracy measure. Several other researchers and
modellers have determined the MSESS with the measured initial
bathymetry as the reference for field and laboratory applications of
both cross-shore profile models (e.g.|Van Rijn et al.l 2003; Suther-
land et al., |2004; [Henderson et al., 2004; Pedrozo-Acuna et al.,
2006; Ruessink et al.l 2007; Roelvink et al.l2009; Ruggiero et al.|
2009; (Walstra et al., [2012; [Williams et al., 2012) and area models
(e.g.Sutherland et al.||2004; [Scott and Mason, 2007; McCall et al.,
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'We prefer to address this skill metric as MSESS, consistent with [Murphy
(1988). Technically, the term Brier Skill Score (BSS) is reserved for the relative
accuracy of probabilistic forecasts with the Brier score (Brier, |1950) as the accu-
racy measure, which is a mean-squared error for probabilistic forecasts with two
mutually-exclusive outcomes (e.g. rain or no rain).
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2010; Ganju et al., [201 1} |Orzech et al., [2011; |Van der Wegen et al.|
20115 [Dam et al., 2013} |[Fortunato et al., [2014). The simulation
duration for the field cases varied from days for bar evolution to
decades for large-scale tidal basin evolution. Alongside MSESS, its
decomposition according to Murphy and Epstein| (1989) has been
used to separately assess phase and amplitude errors (Sutherland
et al., 2004} Ruessink and Kuriyama, 2008; [Van der Wegen et al.|
2011;|Van der Wegen and Roelvinkl 2012).

Values for the MSESS are typically computed for the entire spa-
tial array at a particular time and valued through a generic ranking
for morphodynamic computations (Van Rijn et al., 2003; Suther-
land et al) [2004). This approach, which aims at making model
performance comparable across different prediction situations (ge-
ographical locations, forcing conditions, time periods, internal dy-
namics) has become the standard in quantitative judgement of mor-
phodynamic model skill (Roelvink and Reniers, 2012). |Gallagher
et al.[(1998)) already pointed out that a comparative analysis based
on skill values requires a good understanding of the statistics of
predictive skill. Nonetheless, the behaviour of MSESS and the va-
lidity of a generic ranking based on its values have not been thor-
oughly explored. Also, there have been accounts of skill scores not
matching the researcher's perception of model performance. For
instance, |Van der Wegen and Roelvink| (2012)) suggested that their
relatively high skill scores were a result of the use of a horizontally
uniform initial bed (and hence of a low accuracy of the reference
model). For bed profile predictions, Walstra et al.[(2012)) reported
skill values to increase in time to an unexpectedly similar level as
previously found for weekly time-scales by Ruessink et al.| (2007).

Clearly, a crucial element of skill is the proper selection of the
reference; it establishes the zero point at the scale on which skill
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is measured and, hence, defines a minimal level of acceptable per-
formance. Therefore, a comparative analysis based on skill scores
is only effective to the extent that the intrinsic difficulty of differ-
ent prediction situations is correctly reflected in the level of accu-
racy of the reference predictions (Brier and Allenl |1951} [Winkler,
1994; [Murphy, |1988; Wilks, 2011). In weather forecasting, where
skill scores have widely been used for over a century (Murphy,
1996a)), the reference is generally required to be an unskilful, yet
not unreasonable forecast as can be made with a naive forecast-
ing method (Winkler, [1994). Examples are persistence, i.e. the
observations at a given time are forecast to persist, and long-term
climatology, i.e. the average of historical data is used as the base-
line (Murphyl [1996b). The naive method that produces the most
accurate forecasts is considered the appropriate method in a partic-
ular context (Murphy, [1992). Hence, for short-term weather fore-
casts, persistence is generally the more appropriate choice of ref-
erence, whereas climatology may be better for longer-term predic-
tions. The reference of zero morphological change is similar to the
concept of persistence in that it assumes the morphology to persist,
i.e. remain unchanged, in time. However, instead of using a re-
cent state (e.g. the previously observed value) as the reference, as
is common practice in weather forecasting, the zero change model
is applied irrespective of the prediction horizon, by assuming the
initial bed to persist. Another marked difference is the cumula-
tive nature of morphology as the persisted parameter, as opposed
to for instance precipitation. Thus, the accuracy of the zero change
model is given by the observed cumulative morphological develop-
ment away from the initial bed, which must adequately represent
the situation's inherent difficulty for the MSESS to create a “level
playing field” (Winkler et al., [1996).

Not only the choice of reference, but also the choice of the ac-
curacy measure determines the reported skill. Unfortunately, grid-
point based accuracy measures, such as the MSE, are prone to re-
ward predictions that underestimate variability (Anthes, 1983} Tay-
lor, 2001; Mass et al.,|2002), a phenomenon also referred to as the
“double penalty effect” (Bougeault, 2003). As a consequence, such
accuracy measures may lead to wrong decisions as to which of two
morphological predictions is better (Bosboom and Reniers| 2014al).
If this undesirable property is inherited by the MSESS, the diagno-
sis of model skill will similarly be affected.

The purpose of this paper is to investigate the potential impact of
the choice of the zero change reference model, in combination with
the MSE as the accuracy measure, on the perception of morphody-
namic model skill. First, section[2]provides a review and discussion
on the interpretation of the conventional skill metrics used in mor-
phodynamic skill assessment, viz. the MSESS and its Murphy—
Epstein decomposition. It includes examples, both synthetic and
from literature, which demonstrate how unexpected skill can be ob-
tained by using the MSESS. Next, in section [3] a record of bathy-
metric data and Delft3D morphodynamic computations, spanning
15 years, is used to illustrate that also for a real-life case, the com-
mon skill metrics may lead to an interpretation of model perfor-
mance inconsistent with expert judgement. In section[d} the impli-
cations for morphological model validation are discussed. Finally,
section[3]presents conclusions and discusses avenues for adaptation
of validation strategies.

2. A critical review of the common skill metrics

This section reviews the skill metrics as commonly applied for
morphodynamic model validation. Possible pitfalls for the percep-

tion of model performance are identified and illustrated with var-
ious examples. First, section @] summarizes the MSESS and its
Murphy—Epstein decomposition (Murphy and Epstein, [1989)) for
arbitrary spatial fields and a yet undefined reference. Second, in
section the metrics are interpreted in the context of the valida-
tion of morphological fields, using the initial bed as the reference.
Third, section [2.3] discusses the impact of the zero change refer-
ence model on the perception of morphodynamic model skill. Fi-
nally, section [2.4] demonstrates that the MSESS tends to reward an
underestimation of the variance of bed changes.

2.1. Mean-squared error skill score

The concept of skill, according toMurphy| (1996a)) first proposed
by |Gilbert (1884), refers to the relative accuracy of a prediction
over some reference or baseline prediction. For a prediction with
accuracy E, a generic skill score ESS with respect to a reference
prediction with accuracy E, is (e.g.|Sutherland et al., [2004):

E-E,
E, - E,
where E; is the accuracy of an impeccable prediction. A prediction
that is as good as the reference prediction receives a score of 0 and
an impeccable prediction a score of 1. A value between 0 and 1 can
be interpreted as the proportion of improvement over the reference

prediction. If the MSE is used as the accuracy measure, eq. (I)
yields (Murphyl [1988):

ESS =

ey

MSE
MSE,

since MSE; = 0. The MSESS ranges from —oco to 1, with nega-
tive (positive) values indicating a prediction worse (better) than the
reference prediction.

The MSE between the predicted and observed spatial fields is
defined as:

MSESS = 1 — ()

1 n
MSE = ((p=0)’) = ~ > wi(pi— i)’ 3)

where the angle brackets denote spatially weighted averaging,
(pi, 0;) are the ith pair of the gridded predicted and observed fields
p and o respectively and #n is the number of points in the spatial do-
main. Further, w; is a weighting factor by grid-cell size, such that
> w; = n and for regularly spaced grids w; = 1.

Skill metrics often are in terms of the differences (anomalies)
with respect to the reference prediction ». With the anomalies of
predictions and observations given by p’ = p—rand o’ = o —r,
respectively, we can rewrite eq. (3) upon substitution as:

MSE = ((p’ - 0')*). “)

Further, the accuracy of the reference prediction is given by:

MSE, = ((r — 0)*) = (0'%). Q)

An advantage of the mean-squared error measure of accuracy
and the corresponding MSESS is that they can readily be decom-
posed into components that describe specific elements of predic-
tion quality. The decomposition according to |[Murphy and Epstein
(1989) separates the MSE into correlation and conditional and sys-

tematic bias terms (Appendix A)). Herewith, Equation can be
written as (cf. egs. (A.2)) and (A.3)):

MSE =02 (1 -a' +f +7) (6)
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Here p’ and o’ are the weighted map means and oy and o, are
the weighted standard deviations of p’ and o’. Further, p,y =
oy foyo, 1s the weighted Pearson correlation coefficient between
p’ and o', with o, representing the weighted covariance. Note
that the MSE can be considered as the summation of MSE;,s =
0'3,7’ that expresses the systematic bias or map-mean error and
MSEfquet = 0'(2),(1 — o' + f') that quantifies the mismatch between
the fluctuating parts in predictions and observations.

Equivalently, we can write for MSE,:

MSE, = o2(1 + €) 8)
where
—,2
¢ = ©)

is non-zero if the map mean of the observations differs from the
map mean of the reference prediction.

Finally, substitution of eqs. (6) and in eq. yields the
Murphy—Epstein decomposition of the skill score (Murphy and Ep-
stein, |1989):

a/’—ﬁ'—y'+e’

MSESS =
1+¢

(10)

Livezey et al. (1995)) explained 1 — @’ as the phase error and o’
as the phase association between predicted and observed anoma-
lies, 8 as a penalty due to conditional bias or amplitude error of
the anomalies (with a penalty for both insufficient and excessive
predicted amplitudes) and y’ as the reduction of skill due to map-
mean errors. Hence, o’ can be regarded as the skill in the absence
of biases.

2.2. Reference model of zero morphological change

In morphodynamic modelling, the predictand is the bathymetry,
such that p and o in eq. are the predicted and observed bed
levels z,, and z,, respectively. In order to determine the relative ac-
curacy of bed level predictions, it is a common practice to use the
initial observed bathymetry at the start of the simulation as the ref-
erence prediction, which implies that the model to beat is a model
of zero morphological change. In that case, the anomalies are the
cumulative sedimentation/erosion fields from the simulation start
time t = 0: p’ = Az, and o’ = Az,. Herewith, from egs. to (5)
we have MSE = ((z, — 2,)%) = ((Az, — Az,)*) and MSE, = (Az2).
Upon substitution, eq. leads to a skill score valid for the zero
change reference model:

((Azp — Az,)%)
(AZ2)

with the angle brackets again indicating spatially weighted averag-
ing.

MSESS;,i = 1 — (11)

The MSESS;,; expresses the proportion of improvement in the
accuracy of bed level predictions or, equivalently, of predictions
of cumulative sedimentation/erosion over a model that predicts no
morphological change. It is often interpreted as the model added
accuracy relative to a situation in which no modelling is done (al-
though technically the zero change model is a model as well, al-
beit a naive one). The proportion of improvement is typically val-
ued through a generic ranking for morphodynamic computations
(Van Rijn et al.| 2003} |Sutherland et al., 2004). TableE] shows the
ranking proposed by [Sutherland et al.| (2004)) for the skill formula-
tion according to eq. (IT). Note that slightly different rankings have
been proposed in combination with skill formulations that include
observation error (Van Rijn et al.} 2003} Sutherland et al.,[2004).

Table 1: Classification according to[Sutherland et al.|(2004) for the MSE skill score
as in eq.

MSESS;,;
Excellent 1.0-0.5
Good 05-0.2
Reasonable/fair 0.2 - 0.1
Poor 0.1-0.0
Bad <0.0

With the anomalies equal to the cumulative sedimenta-

. . . ’ _ 2
tion/erosion fields, egs. and (ﬁ) can be written as @’ = p Azphzy

B = (pasac, - “Azp/mz,,)z, y' = (8-8) /o2, and € = 8a'/o2, . For
the normalization term €', non-zero values are obtained in the case
of an observed net sediment import or export from the initial time to
the evaluation time (Gerritsen et al., 2011). A non-zero y’ indicates
a misestimation of the amount of sediment that has been imported
into or exported from the model domain and, equivalently, of the
mean bed levels. Hence, 7’ can be considered as a (normalized)
sediment budget error (Gerritsen et al., 2011). Following [Livezey
et al.|(1995), Sutherland et al.|(2004) refer to 1 — o’ and 8’ as mea-
sures of phase and amplitude errors, respectively, of the cumulative
sedimentation/erosion fields (see section [2.1)). Note that the phase
and amplitude errors of predicted bed levels are given by 1 — « and
B (egs. and (A.3b)) rather than 1 — o’ and 8’. Only in the
special case that the reference prediction is a horizontal bed (e.g.
Van der Wegen and Roelvink| [2012)), we have o’ = @, f/ = 8 and
Y =7

The phase error 1 — @’ is often loosely interpreted as a position
error, signifying that “sand has been moved to the wrong position”
(Sutherland et al.| 2004)). |Gerritsen et al.| (2011) explain the phase
association o’ as the degree of similarity between the spatial pat-
terns of sedimentation and erosion. Since the correlation coefficient
measures the tendency of the predictions and observations to vary
together (Appendix A), a non-perfect phase-association (¢’ < 1)
may result from incorrect locations, shapes and relative magnitudes
of the sedimentation/erosion features. Predictions that are different
by a constant or a constant proportion (either positive or negative)
receive the same a’. Therefore, we prefer to consider @’ as the
extent to which the structure of the predicted and observed sedi-
mentation/erosion fields is similar and recognize that overall mag-
nitudes of predicted and observed bed changes may not be close for
' = 1. With ¢’ measuring the structural similarity, its complement
1 — @’ measures the structural dissimilarity between the predicted
and observed sedimentation/erosion fields.

According to|Sutherland et al.|(2004)), a non-zero amplitude error
B’ indicates that “the wrong volumes of sand have been moved”,
whereas |Gerritsen et al.[(2011]) refer to 5 as a transport rate error.



Section [2.4] demonstrates that these interpretations should be used
with care, but first the impact of the zero change reference model
on the perception of model skill is discussed.

2.3. Morphodynamic model skill as (mis)perceived using the zero
change model

Ineq. , the MSE is normalized with MSE, and hence with the
observed mean-squared cumulative bed changes (Az2). This means
that for the zero change model to be an adequate reference model
enabling cross-comparison and absolute ranking of predictions, the
net bed changes from the start time of the simulations must rep-
resent an evaluator's judgements about the difficulty of predictions
for different situations and simulation times. In this section, we
reason that this requirement cannot be expected to hold and that
consequently the perception of model skill may be distorted.

Let us first consider two hypothetical regions characterized by
an identical, propagating morphological feature. During the con-
sidered time period, both features have moved over the same net
distance, such that the net displaced sediment volumes are equal.
However, one feature has propagated at a steady speed to its final
position, while the other feature has first moved in the opposite di-
rection under the influence of an episodic event, and subsequently
slowly moved back, under milder conditions, to its final position.
Although the latter situation would generally be considered the
more difficult prediction situation, cumulative (net) changes can-
not discern between the two.

As a second example, we consider a cross-shore profile devel-
opment with a summer—winter cycle and small, random variations
between the same seasons in consecutive years. Now, a cross-shore
profile model is initialized from a profile measured in winter and
run for several years, covering a number of winter—summer profile
cycles. For all consecutive modelled winter profiles, the accuracy
of the reference is high, such that a similar, high accuracy is re-
quired to obtain a certain level of skill. For the modelled summer
profiles on the contrary, each summer a similar, lesser accuracy is
required, since the initial winter bed is not a good estimate for the
observed summer profile. Given a constant modelled accuracy, the
diagnosed temporal evolution of model skill would therefore show
an artificial seasonal trend with higher skill in summer, but with no
changes between the same seasons from year to year.

The above examples demonstrate that observed cumulative bed
changes are not likely to be a proper indicator of the inherent ease
or difficulty of a morphological prediction, since they do not reflect
the nature of the morphological development prior to the evaluation
time, but only its cumulative effect. The MSESS;;; could thus very
well make the wrong decision as to which of two predictions is bet-
ter, by awarding a higher skill based merely on a lower accuracy of
the initial bed as the reference and not through any intrinsic higher
prediction skill. Consequently, the validity of judging morphody-
namic model performance based on MSESS;,;, through a ranking
as in table [T} may be less generic than often assumed. Note that
in weather forecasting, this complication is not encountered in the
same manner, since predictands such as precipitation, as opposed
to morphology, are not cumulative. Also, persistence of the initial
situation is only used for a short enough lag, i.e. as long as per-
sistence can still be considered a reasonable prediction (e.g. at the
scale of days for short-range forecasts).

For longer-range simulations of seasonal systems, a more appro-
priate naive prediction could be the initial or last observed state for
the same season (e.g. ‘next July is like this July’, hence a one-
year persistence model). By using a one-year persistence model

for inter-seasonal modelling of seasonal morphodynamics, artifi-
cial seasonal variation of skill due to the varying accuracy of the
reference can be avoided. The zero change model may only pro-
vide a fair reference as long as the model-data comparison is per-
formed yearly, at the same phase in the seasonal cycle as the initial
bed.

Still, even if the zero change reference model is only applied
yearly, values of MSESS;,; for a long-yearly simulation of a sea-
sonal system and an equally long simulation of a progressive devel-
opment should not be compared. For the progressive development,
the use of the zero change reference model implies that in time, the
minimal level of acceptable performance is lowered at a rate deter-
mined by the cumulative (net) observed bed changes. Of course, it
could be argued that the progressive lowering of the (metaphorical)
bar qualitatively agrees with a modeller's intuition that it is only
fair that for a longer time in the simulation, and hence a more dif-
ficult prediction situation, a lesser accuracy is required to achieve
a certain skill level. This interpretation, however, is not consistent
with the fact that the zero change reference model for seasonal sys-
tems does not exhibit a similar relaxation of the stringency of the
test over the course of multiple years, regardless of the amount of
gross change. As a consequence, the simulation of the trend has
an unfair advantage over the simulation of the seasonal system and
increasingly so further into the simulation.

In conclusion, observed mean-squared cumulative bed changes
cannot be expected to accurately reflect and thus effectively neu-
tralize the level of difficulty among different prediction situations
and times in a simulation. This places severe limits on the gen-
eral validity of a comparative analysis based on MSESS;;;. On
a case-by-case basis, MSESS;,;, notably its time-evolution for a
trend, may still provide useful information. Therefore, section E]
thoroughly investigates how to interpret the temporal variation of
MSESS;,; for a real-life case that shows a consistent bathymetric
development away from the initial bed.

2.4. Underestimation of the variance of bed changes through the
use of MSESSiy;

In this section, we demonstrate that MSESS;; is prone to re-
ward predictions that underestimate the overall magnitude of bed
changes. To this end, we analyse the Murphy—Epstein decomposi-
tion of MSESS;,;; and especially the amplitude error 5.

The behaviour of g, which is controlled by ov/s, and ppo
(eq. (7b)), is shown in Figure [Ta| for p,,» = 0,0.6 and 1. The
line for p,/» = 0.6 is characteristic of the behaviour of g’ for a
suboptimal correlation, for instance a situation of an erosion hole
that is slightly misplaced, such that 0 < p,» < 1; even if the ero-
sion hole is predicted correctly with respect to size (o = o),
the amplitude error 5’ is non-zero. In fact, the amplitude error 5’
is minimized for oy /s, = p, . As a result, the interpretation of
a non-zero S’ reflecting that the wrong volumes of sand have been
moved is only strictly valid for p,,,» = 1 (Sutherland et al., [2004).

The above also implies that for positive correlation, the skill
score MSESS;,; is maximized for o»/oc, = pp o (eq. @I)
and fig. [Tb). This shows an undesirable property of the MSE skill
score, namely that for the same suboptimal anomaly correlation, a
higher skill would have been reported for /s, = p, than for
oy /oy = 1, such that sedimentation/erosion fields that underpredict
the overall amount of sedimentation and erosion may be favoured
above predictions with the correct variance of the bed changes. As
can be seen from eq. @, this feature is inherited from the MSE,
which is known for its tendency to reward the underestimation of
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Figure 1: Amplitude error g’ and skill score MSESS;,; = o’ — 8’ (assuming y’ =
€ = 0in eq. (T0)) versus /o, for p s, equal to 0,0.6 and 1: (a) 8 has a minimum
for oy /o, = ppo, (b) the skill @’ — B’ is maximized for o /o,y = ppror.

the variability (e.g. /Arpe et al.,|1985}; Gupta et al.| 2009; Bosboom!
and Reniers| [2014a)).

Interestingly, a real-life illustration is provided by the compari-
son of observed and predicted bathymetric changes for East Pole
Sand, reported in Sutherland et al.[|(2004). Since three predictions,
which only differ with respect to the values of the representative
grain-size diameter, are compared for the same prediction situation
(their fig. 4) and hence relative to the same initial bed, the ranking
between them is not affected by the normalization with the accu-
racy of the reference. Also, the values of € are equal. From their
fig. 4 and table 9, it can be seen that among the three predictions
that have the same positive, but non-perfect correlation between
predicted and measured bed changes (o = V0.38 = 0.62), the
MSESS;,; favours the prediction for which /s, is the closest to
Ppo (and thus B’ is the smallest, viz. 8/ = 0.01). The values of y’
are small and do not differ significantly for the three predictions.
As a result, the prediction with the coarsest grain-size, for which
the standard deviation of the bed changes deviates most from the
observations (v /o, = 0.52 or 0.72, cf. fig. , is diagnosed with
the highest skill (MSESS;,;; = 0.34, 0.29, 0.15 for D5y = 0.5, 0.35,

2For Dsp = 0.5mm, we have oy /o, = Ppo’ — VB = 0.62 £ 0.1. Observing
from their fig. 4 that o,/ increases with decreasing grain-size, we deduce, using
the values in their Table 9, that for Dsg = 0.35mm and 0.25mm, ¢/ /o, = 0.88 and
1.07, respectively.

0.25mm, respectively). It is likely however, that an expert, asked to
visually compare the quality of these sedimentation/erosion fields,
would not prefer this prediction, as for the coarsest grain-size the
(maximum) magnitudes of sedimentation and erosion are clearly
underestimated. Apparently, even when predictions are compared
relative to the same initial bed, the characteristics of the MSESS;;
and its decomposition could lead to a preference for a prediction
that is not consistent with the evaluator's judgement.

In summary, for 0 < pyy < 1, the amplitude error B is
minimized and, unless compensated by systematic bias y’, the
MSESS;y; is maximized for o /o, = p,, thus for predictions that
underestimate the variance of the bed changes. Note that, similarly,
the MSE can be minimized through an underprediction of the vari-
ance of bed levels. Clearly, these findings have implications for
(automated) calibration as well as validation procedures that mini-
mize MSE or MSESS;,;.

3. Illustration for the real-life case of Bornrif

In this section, the conventional validation method, discussed in
section E], is applied to 15 years of Delft3D (Lesser et al.l 2004)
morphodynamic computations for the Bornrif, a dynamic attached
bar at the North-Western edge of the Wadden Sea barrier island
of Ameland, the Netherlands. We specifically explore the corre-
spondence between predictive skill as perceived by the MSESS;y;
and its decomposition on the one hand, and by visual validation on
the other hand. Here, visual validation is considered as the diag-
nosis of prediction quality by visual inspection, which is a pow-
erful yet qualitative and subjective validation method. First, sec-
tion [3.T|briefly describes the available observations and model set-
up. Next, sections [3.2] and [3.3] evaluate the model results by vi-
sually inspecting the predicted and observed morphology and mor-
phological change and by applying the conventional error statistics,
respectively. In section[3.4] the effect of the validation approach on
the perception of model skill is further examined. Finally, the effect
of spatial scales on the skill trend, as perceived by the MSESS;y;, is
examined in section

3.1. Bornrif model and validation set-up

We have gratefully made use of available morphodynamic sim-
ulations from 1993 to 2008 (Achete et al.| 2011}, which were per-
formed with the specific goal to hindcast the spit evolution at the
Bornrif area and to project the findings to the Sand Engine pilot
project at the Delfland coast (Stive et al. [2013). Only sediment
transport due to waves and wave-induced currents was considered.
To this end, a set of 12 wave conditions, representing the yearly-
averaged climate, was applied throughout the simulation. While
the horizontal tide and the dynamics of the adjacent ebb tidal delta
were neglected, the vertical tide was taken into account. The mor-
phodynamic evolution was computed on a grid with a resolution
of 50x50m near the spit and 100x50m closer to the model bound-
aries. The initial bed for the simulations (fig.[2) was prepared from
the Vaklodingen data set (Wiegman et al.,[2005).

For the present validation, yearly bathymetric data up to depths
of about 16m (JARKUS data; Minnebool |1995) are available, inter-
polated to a 20x20m grid. The JARKUS measurements are more
frequent than the Vaklodingen, but extend to smaller water depths.
The measurements for 1994 were excluded from the analysis be-
cause of a significant gap in the data in the considered domain. In
order to retain all observed scales, the comparison between the ob-
served and computed fields is performed on the 20x20m grid that
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Figure 2: Initial bathymetry for the Bornrif simulation (1993) with the red polygon
indicating the analysis region.

the JARKUS data were presented on. To that end, the computa-
tions were interpolated onto the observational grid. The red poly-
gon in fig. 2] delineates the overlap of the computational domain
and the yearly observations during the entire period and defines the
analysis region for which the various statistics are computed (see

section [3.3).

3.2. Visual validation

The bathymetries and the yearly and cumulative sedimenta-
tion/erosion fields within the bounding polygon are shown in figs. 3]
to[3] respectively. Visual validation of bathymetries shows that the
computed general migration direction, the progressive attachment
of the spit to the mainland and the subsequent infilling of the bay
qualitatively correspond to the observations (fig. ). From about
1998, migrating sand bars are observed at water depths larger than
5Sm to the east of the Bornrif, which are not reproduced by the
model. The observations further differ from the computations in
that a stronger and faster development and flattening of the over-
all shape takes place in reality. The rate between eastward and
southward propagation is smaller in the computations leading to a
shorter spit and a faster land attachment (i.e. at a smaller along-
shore distance) and a smaller bay. The visual comparison of com-
puted and observed bathymetries suggests a decreasing correspon-
dence in time.

The observed yearly sedimentation/erosion fields (fig.[d) are very
different from the computed fields in that they show a strong, small-
scale morphological variability, not reproduced by the model, in the
larger part of the domain. The strength of this variability changes
significantly from year to year. From 1998, the sand bars are clearly
visible, particularly at larger water depths to the east of the Bornrif.
In the inlet channel, alternating sedimentation and erosion is ob-
served, whereas the computations show consistent sedimentation.
The visual agreement between measured and computed yearly bed
changes is limited in all years. The magnitude of the changes is
best represented at the start of the computations and deteriorates
with time, as the computed yearly changes strongly reduce towards
the end of the simulation.

The cumulative bed changes (fig. [5)) show that the model qualita-
tively reproduces the main nearshore feature of large-scale erosion
and sedimentation in the western and eastern parts of the domain,
respectively. The spatial extent and the overall magnitude of the
cumulative changes, however, are significantly larger in the obser-
vations, and increasingly so in time. Another marked difference
between observations and computations is that the observed pattern
shifts eastward with time, whereas the computed pattern remains
more localized. The computations further show net sedimentation
in the inlet channel that is not found in reality. The migrating sand

bars are best recognized from the yearly changes, but are also vis-
ible in the observed fields of cumulative change, where they are
evident as a smaller-scale variation to the larger-scale trend.

By definition, the point-wise error (p — 0) = (p’ — 0’). Nonethe-
less, while it was easily concluded that the quality of the bathy-
metric fields (fig. [B) deteriorates with time, it is much harder to
visually judge the quality of the cumulative sedimentation/erosion
fields over time (fig. E[) On the one hand, the underestimation of
the overall magnitude of the bed changes can be seen to rapidly in-
crease in time, at least until 2002. On the other hand, the centres
of cumulative erosion, which attract immediate attention, seem to
be located closer together in for instance 2002 than in 1996. This
ambiguity (and its absence for bed levels) is further explored in sec-
tion[3.4]by comparison with the conventional error statistics that are
discussed in the next section.

3.3. Conventional error statistics

The skill score MSESS;,; according to eq. (@) is the lowest at
the beginning of the simulation and gradually increases over time
from the start of the simulation until 2002, after which the skill
slightly decreases again (fig. [6a). According to table [T} the score
qualifies as ‘good’ for all years. Based on MSESS;,;, we would
conclude that the quality of the predictions increases with time, at
least for the main part of the simulation until 2002. In contrast,
the accuracy of the modelled bed levels, or equivalently, of the sed-
imentation/erosion fields decreases with simulation time, evident
from the increase in MSE (fig. That nonetheless the skill,
viz. the relative accuracy, increases with time is due to MSE;;,
the MSE of the reference prediction, increasing with time and, un-
til 2002, at a faster rate than the MSE of the predictions (fig. [6b).
With MSE,,;; = (Azg), its behaviour is governed by the increase of
the mean-squared cumulative observed bed changes as a result of
the natural development away from the initial situation.

Figures [6a] and [6b] exemplify that, for a trend, the accuracy re-
quired for a certain level of skill decreases further into the sim-
ulation (section @) In order to better value MSESS;,; and its
temporal variation, a detailed analysis is needed of the terms that
contribute to the absolute and relative accuracy. The decomposed
error terms as defined through egs. (6) and (7) and egs. (8) and (),
with p’ = Az, and o’ = Agz,, are shown in fig. [6c| and fig. [bd]
respectively. The MSE normalized with the variance of the ob-
served anomalies, shown in fig.|6c| is dominated by the phase error
1 — o’ of the anomalies. The normalized sediment budget error y’
decreases with time and only plays a role in the first half of the
simulation, while the amplitude error 8’ is negligible throughout
the simulation. Figure @ illuminates that the bias part €', of
MSE;,; is negligible (¢’ <« 1), such that MSE;,; ~ o-i,. The skill
score (eq. @)) is thus given by MSESS;; ~ 1 — MSE/s2, ~ o' — v/
and from, say, 1999, MSESS;,; ~ @’. Thus, the decrease of both
the phase error 1 — @’ and the sediment budget error y’ contributes
to the increase in skill until 2002, the year that exhibits most skill
as well as the smallest phase error. From 2002-2003 onwards, the
phase error increases and, consequently, the skill decreases. Below,
we further explain these findings.

The sediment budget error y’ normalizes an absolute map-mean

SN
error MSEyi,s = (p — 0)’ = (p’ - 0’) with the variance of the cu-
mulative observed bed changes 0'3, (eq. ). Analysis showed

3Note that the MSE is not exactly zero for the simulation start time due to the
Delft3D algorithm applied to interpolate the 1993 observed bathymetry to the water-
depth points of the staggered computational grid.
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Figure 3: Measured (left) and computed (right) Bornrif bathymetries for the years 1993, 1996, 1999, 2002 and 2005 for the analysis region.

that the rapid decrease of y’ until 2000 is mainly due to the strong
increase of 0'3, over time rather than through variation of MSEp;,s.

The negligible amplitude error 8’ (eq. (7b)) is the direct result of
Ppo and o» /o, being relatively close together in value (fig. @ and
is not to be interpreted as an indicator that the correct volumes of
sand are moved; pair-wise comparison of the observed and com-
puted fields of cumulative change (fig.[5) suggests a consistent and
over time increasing underprediction of the magnitude of the cumu-
lative bed changes, and, thus, of the volumes of sand moved, at least
in the first half of the simulation (see also section[2.4). This is con-
firmed by the behaviour of the ratio v»'/o,, between the standard de-
viations of computed and measured cumulative bed changes, which
has values consistently smaller than 1 and as low as about 0.6 from
2000 onwards (fig. [7a).

The effect on the skill score is visualized in fig. [7b] which shows
the behaviour of MSESS;,; = @/ —f’ (eq. assumingy’ = € =0)
as a function of p, and o»/o,. As expected, the values for the
Bornrif simulation can be seen to lie close to the green diagonal
(0pror = v /o) along which g is minimized. Consequently, for the
Bornrif, a much smaller underestimation of the variance of the cu-
mulative bed changes would, counter-intuitively, have raised MSE
values and lowered the diagnosed skill levels, as in the case of East
Pole Sand (section [2.4)).

With g’ negligible and y’ vanishing after the first years of the
simulation, the skill score MSESS;,; peaks simultaneously with the
phase association @’ and the maximum value of MSESS;;;, in 2002,
is fully determined by o’ (figs. [6a] and [6c). In section 2.2} we in-
terpreted o’ as the structural similarity between predicted and ob-
served cumulative sedimentation/erosion patterns. Since it is in-
variant to map-mean error and changes in scale of observations and
predictions (in other words: the mean and variance of observed and
predicted bed changes are irrelevant), @’ does not provide informa-
tion on the accuracy of predictions [1982).

In summary, it is inherent to the use of the initial bed as the refer-
ence that while the morphology progressively develops away from
the initial bed, larger absolute errors (MSE, MSEy;,s) are allowed in
order to obtain a certain level of skill. Further, for the Bornrif sim-
ulation, the skill levels benefit from the consistent underestimation
of the magnitude of the bed changes (v»'/o,, < 1). In fact, the un-
derestimation is largest in 2002, the year for which maximum skill
is reported. This undesirable behaviour of MSESS;;; is inherited
from the use of the MSE as the accuracy measure (cf. section [2.4).
The skill maximum is due only to the greatest similarity, in 2002,
in the structure of the sedimentation/erosion patterns (as measured

by ppor 01 ).
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Figure 4: Measured (left) and computed (right) Bornrif yearly bed changes for several years.

3.4. Visual validation versus error statistics

Sections[3.2]and 3.3]illustrated that prediction quality, the degree
of correspondence between predictions and observations (Murphy,
1993)), is a multidimensional concept. Logically, as follows from
eq. (I0), MSESS;,; and its components describe aspects of predic-
tion quality related to the cumulative sedimentation/erosion fields
from the start of a simulation. While visually judging fields of cu-
mulative change, we tend to compare the structure as well as the
magnitude of the fluctuating parts of pairs of observations and pre-
dictions (section [3.2). A small bias, as in fig. [5] will most likely
go unnoticed. Our impression, from fig. 5] of the structure and
magnitude of the anomalies over time qualitatively corresponds to
the behaviour of py and o /o, (fig. , respectively. The oppo-
site behaviour of p,, and o/, explains the ambiguity that was
found in visually judging, based on fig. 5] whether the predictions
in 1996 or 2002 are of higher quality. On the contrary, the devel-
opment of MSESS;,;; over the course of the simulation was seen to
merely report the correlation p,,» between cumulative sedimenta-
tion/erosion fields (fig. , such that the 2002 predictions are di-
agnosed with maximum skill (fig. [6a). A morphologist, however,
asked to visual judge the fields of cumulative change, will proba-
bly only reach a similar conclusion when turning a blind eye to the
differences in scale, both between observations and predictions at

a particular time and between pairs of observations and predictions
at different times.

Prediction quality, as perceived by pair-wise visual comparison
of bed levels rather than cumulative change, was unambiguously
found to deteriorate over time (section [3.2)). Clearly, even though
MSE = ((zp - 70)%) = ((Azp, - Az,)?), other aspects of prediction
quality are highlighted when visually judging the closeness of bed
levels instead of cumulative sedimentation/erosion fields. This can
be explained by considering the Murphy—Epstein decomposition of
MSE in terms of the bed levels (eq. (A.2) and fig.[8a), as opposed to
of the anomalies (eq. (6) and fig. [6c). Although the variance of the
observations o-ﬁ varies in time (ﬁ, it is relatively constant as
compared to 0'(27, (fig. . Hence, where the MSE normalized with
0'(2), behaves quite differently from the MSE itself, the MSE nor-
malized with o2 increases in time as the MSE does. From fig.
MSE/s2 can be seen to be dominated by the phase error 1 — @, which
increases with time as a result of the decreasing correlation pp, be-
tween predicted and observed bed levels (fig. [Bc). Analogously,
the most obvious finding from the visual validation of bed levels
(fig. B) was the decreasing overall agreement in structural similar-
ity between the measured and predicted bathymetric fields. The
slight increase in amplitude error 3 is governed by the fact that p),
decreases faster with time than o»/o, (fig. . Note further that,
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Figure 5: Measured (left) and computed (right) Bornrif cumulative bed changes for 1996, 1999, 2002 and 2005 with respect to the initial bed of 1993.

analogously to ', 8 would have been larger, if only slightly, for
g 11/01, =1.

The normalized metrics for the bed levels, p,, and »/c,, pro-
vide information not contained in the anomalies. For instance, from
fig. [Bb} it is apparent that the computational variance develops to-
wards a constant, too low level at which the larger-scale modelled
bathymetry appears to be in equilibrium with the applied represen-
tative yearly-averaged wave climate. Further, without taking possi-
ble compensation due to systematic bias into account, p,, < /e,
indicates that at deeper water the predicted depths are overesti-
mated (and at smaller depths underestimated), see A
regression demonstrated that this is most likely the result of the
large extent of sedimentation at deeper water that is not mimicked
by the model (fig. [3).

In conclusion, MSESS;,; by itself sheds a limited light on the
model performance for the Bornrif; it merely reports the devel-
opment of the correlation p,, between cumulative sedimenta-
tion/erosion fields. A morphologist, asked to visually evaluate the
time evolution of model performance on the basis of figs. 3] and [3}
would most likely report his impression of the degree of overall
correspondence between the fields, the relative role of map-mean
error and the extent to which the magnitudes and structure of the
fields of cumulative change and bed levels are reproduced. These
subjective notions can be quantified by e.g. MSE, MSEyi,s, 7v/0,
Ppo> Trlo, and p,, respectively.

3.5. The effect of various spatial scales

The various statistics, discussed in section [3.4] inevitably com-
bine information across a range of spatial scales. Hence, it is non-
trivial to relate pp, and 7»/o, O py o and o /o, to particular features

of interest in the morphology or the fields of cumulative change,
respectively. The range over which spatial scales are lumped to-
gether is especially wide for the normalized bed level metrics, p,,
and 7»/o,, in which scales up to the size of the model domain play
a role (cf. section @ By implication, the values of p, or 7»/c,
are sensitive to the inclusion of morphologically inactive regions,
which is not the case for p,,» and /s, , and are arguably domi-
nated by the larger scales.

Upon visual inspection, it was concluded that the simulations
capture little of the year-to-year variability, while the larger-scale
fields of cumulative change are reasonably well predicted (sec-
tion[3.2). This suggests that the relative contribution of the smaller
scales to p,or, 7r/o, and MSESS;,; decreases during the simula-
tion.

The skill at smaller spatial scales can be quantified by taking a
slightly different approach to skill, which considers the bathymetric
change rather than the morphology itself. Skill can now be defined
as the relative accuracy of bed changes rather than bed levels, us-
ing a reference of zero change and considering bed changes in a
one-year period. Denoting the yearly predicted and measured bed
changes with Az, | and Az, ;, respectively, we now have p = Az, ;
and 0 = Az, ineq. (B) and r = 0 in eq. (5). Upon substitution,
eq. [2) yields:

((Azp1 — Azo1)?)

MSESSp;; =1 -
AZ,l <A25’1>

12)

Note that if the period of bed changes was taken as the simulation
duration up to the evaluation time, we obtain MSESSiy; (eq. (TI)).
For all years of the Bornrif simulation, the relative accuracy of
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MSESSin; ~ .

yearly change, MSESS_ 1, is low or negative (fig. [8d) and tends
to decrease further into the simulation. Note that the relatively low
value for 1996 is the result of the rather small observed morpho-
logical change in 1995-1996 (fig.[6d). Since eq. (I2) does not con-
sider any cumulative effect on time-scales larger than one year, the
cancellation of errors over the course of multiple years (as can be

10

expected specifically for the smaller spatial scales) is not taken into
account.

Based on the above, we hypothesize that the relatively low values
of MSESSy; at the beginning of the Bornrif simulation (fig. [6a) are
mainly due to unskilful smaller spatial scales. When, over time,
the relative contribution of these smaller scales to the cumulative
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Figure 8: Comparison of overall statistics for measured and computed Bornrif bathymetries: (a) MSE normalized with the observation variance and its decomposition, (b)
variance of observed and computed bed levels, (c) correlation and ratio of standard deviations of the measured and predicted bed levels and (d) MSE skill score for yearly

bed changes with a zero change reference model (MSESS,; 1). Note that, similar as for the MSEEl

change decreases, the larger scales are allowed a greater opportu-
nity to become correlated to the predictions, until at some point in
the simulation, the main part of the skill is attributable to the more
skilful, persistent large-scale trend. Hence, further into the simula-
tion, on average higher skill values are found.

The same phenomenon may also, at least partly, explain the pe-
riod of negative to low skill that is referred to as spin-up time and
often found at the beginning of long-yearly morphodynamic simu-
lations (Dam et al.l [2013)). An increase in skill, for longer predic-
tion horizons, is then to be interpreted as the emerging of the more
skilful larger scales. Clearly, the above demonstrates the need to
develop validation methods that distinguish between various spa-
tial scales.

4. Summary and discussion

The use of MSESS;y; (eq. @) as (the main) indicator of mor-
phodynamic model performance has implications for the percep-
tion of model skill. We summarize and discuss these implications
in this section. First, section[d.1] focuses on the effect of the choice
of the zero change reference model. Second, section @ summa-
rizes the aspects of model performance captured by MSESS;,; as
well as by visual validation.
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the 1993 measured and computed parameters differ slightly.

4.1. The zero point at the scale of skill

The MSESS;,; is frequently used to compare morphodynamic
model performance across different prediction situations. We have
demonstrated however, that the validity of the ranking based on
MSESS;,i (table|I[) is limited and that absolute values of skill levels
for different geographical locations, time periods or forcing condi-
tions should not be compared. For the MSESS;y; to create a level
playing field, the cumulative observed bed changes from the initial
bed must adequately reflect the intrinsic difficulty levels across sit-
uations with a different morphological development (for instance
trend, cyclic/seasonal, episodic or combinations thereof). Synthe-
sized examples (section[2.3)) showed that this assumption cannot be
expected to hold.

In connection with the above, it was argued that MSESS;;; may
also misreport the temporal evolution of model skill. For inter-
seasonal modelling of seasonal systems, the normalization with the
mean-squared cumulative bed changes may result in an artificial
seasonal variation of the accuracy of the initial bed and hence of the
reported model skill (section [2.3). More in general, when predict-
ing cyclic morphodynamics, any single-state reference, whether a
longer-term average or an arbitrary moment's actual bathymetry,
unavoidably leads to a zero level on the scale of skill that fluctuates
with the observed deviation from the reference.

For prediction situations that include a trend, the use of the zero
change reference model means that, in time, the minimal level of
acceptable performance is lowered at a rate determined by the cu-



mulative observed bed changes (section[2.3)). If the accuracy of the
reference model decreases in time at a faster rate than the accu-
racy of the predictions, the MSESS;,; may even increase with time,
while the agreement between modelled and observed bathymetry
strongly decreases, as was seen for the Bornrif (section [3.3). It
is debatable whether the zero change reference model sets an am-
bitious enough quality standard, especially for longer prediction
horizons. For instance, the 2008 Bornrif prediction obtains posi-
tive skill if it outperforms the prediction ‘2008 is like 1993°, 1993
being the start of the simulation (section [3.3). This reference pre-
diction, however, is not very likely in the eyes of a morphologist,
who expects the Bornrif to gradually diffuse eastward.

A slightly different normalization is applied by |Ruessink and
Kuriyamal (2008), who normalize with the expected value of the
mean-squared difference between two bathymetric profiles with a
sampling interval equal to the time elapsed from the start of the
simulation. Although in this way the accuracy of the zero change
reference is determined in an averaged sense, the magnitude of the
denominator remains dependent on the cumulative morphological
development.

Alternatives to the model of zero change, valid across different
morphological systems, are non-trivial. For inter-seasonal mod-
elling of seasonal systems, a persistence model could be adequate
as long as the observations from the same season are assumed to
persist (as opposed to assuming that the initial bed persists). If for
the example of the summer—winter cycle in section the initial
or last observed state from the same season were used, this would
have eliminated the artificial seasonal fluctuation of the accuracy
of the reference and subjected the summer and winter profiles to an
equal test. Naturally, for a trend, a more appropriate naive model
would be some estimate of the trend, producing more accurate ref-
erence predictions than the zero change model. One of the rare
examples in morphodynamic modelling is due to [Davidson et al.
(2010) who make use of a linear trend prediction as the benchmark
for coastline modelling. Unfortunately, for area models the quan-
tification of a naive trend prediction is far from trivial.

In conclusion, a comparative evaluation based on skill scores,
however defined, is unlikely to have general validity. Instead of
through an absolute ranking of predictions, skill levels should thus
be valued on a case-by-case basis. In doing so, when reporting the
temporal variation of MSESS;,;, we recommend that at the very
least also values of MSE are reported, such that a broader view on
model performance can be obtained than by using MSESS;,;; alone.

4.2. Multiple dimensions to prediction quality

Using the evaluation of the Bornrif model performance as an ex-
ample, multiple aspects of prediction quality were identified, viz.
the extent to which the magnitudes and structure of the fields of
cumulative change and bed levels are reproduced, the degree of
overall correspondence between the fields and the relative role of
map-mean error (section[3.2). These notions can be quantified by
e.8. /oy, Ppos Tr/0ss Ppo» MSE and MSEy;,,, respectively (sec-
tions and [3.4). Summary metrics, such as the MSE and the
MSESS;,, were seen to provide an implicit weighting of systematic
bias terms as well p,, and %»/c, and p,, and 7» /s, , Tespectively.
Unfortunately, in doing so, MSE and MSESS;;; tend to reward the
underprediction of the variance of bed levels and bed changes, re-
spectively, as shown in section@

This tendency of the mean-squared error measure of accuracy, in
combination with the model of zero change, to favour predictions
that underestimate the variance of the cumulative bed changes, was
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easiest appreciated in the absence of systematic bias and sediment
import or export (y* = € = 0). Then, 1 — MSESS;,; differs from
MSE by a factor !/o? and is fully determined by the correlation p
and the ratio of the standard deviations ¢ /s, of the predicted and
measured bed changes. It was found that for the same map-mean
errors and suboptimal py, (0 < pyy < 1), the skill MSESS;y;
is maximized for v» /o, = pp., hence for too small overall bed
changes (section [2.4] and fig. [7b). For a real-life case, taken from
literature, this was shown to have resulted in the ranking of predic-
tions based on MSESS;,; being inconsistent with expert judgement
(section . Similarly, since for the Bornrif simulation p,,, and
oy /o, are close together in value (fig. , the skill levels are dom-
inated by p,. As a result, the development of MSESS;,; in time
was seen to merely report the correlation p,,, between cumula-
tive sedimentation/erosion fields (section and the year with the
largest underestimation of the variance of cumulative change could
be diagnosed with maximum skill.

Clearly, this finding has implications for (automated) calibration
procedures that minimize MSESS;;;; for positive, suboptimal cor-
relation, reduction of the overall sizes of bed changes by, for in-
stance, choosing an unrealistic transport parameter is an effective,
though undesirable method to obtain higher values of MSESS;y;.

In morphodynamic model validation, the MSESS;;; is sometimes
supplemented with its Murphy—Epstein decomposition (eq. (10)).
Although this may provide some of the required extra information,
a few warnings are warranted here. First, the phase and ampli-
tude errors according to the Murphy—Epstein decomposition, 1 —a’
and g, respectively, are not necessarily in line with the morphol-
ogists' intuitive definition. The phase association a’ (eq. ) is
best explained as a measure of the structural similarity between
the sedimentation/erosion fields, indicating to what extent not only
locations but also shapes and relative magnitudes of the sedimen-
tation/erosion features are correct (but note that o’ does not distin-
guish between positive and negative correlations). Further, when
neglecting systematic bias, o/s, rather than 8 (eq. (7b)) would
be the more appropriate overall indicator of agreement between the
predicted and observed sizes of bed changes and, therefore, cumu-
lative volumes of sand moved. Finally, the interpretation of the
sediment budget error ¥ (eq. (7c)) is also non-trivial, since it nor-
malizes an absolute sediment budget error with the variance of the
cumulative observed bed changes. This normalization, and the re-
lated complications for the interpretation of y’, are inherited from
the zero change reference model.

None of the above mentioned measures facilitates a distinction
between the multiple scales at which features of interest appear in
bed levels and fields of cumulative change. As a consequence, they
do not provide guidance as to which scales in the output can be con-
sidered of sufficient quality. Furthermore, their temporal variation
may carry the signature of a combination of small-scale variabil-
ity and larger-scale trends. For instance, negative or low values
of MSESS;,; at the beginning of a simulation may be attributable
to inadequately represented small-scale variability, whereas larger
values further into the simulation could be due to larger-scale trends
(section [3.3).

In summary, although frequently used as the main indicator of
morphodynamic model skill, the use of MSESS;,; (or any other
measure of quality) is not sufficient to describe prediction quality
in its full dimensionality. In order to capture the various aspects
of model performance contained in the fields of bed levels and cu-
mulative and yearly sedimentation/erosion, multiple accuracy/skill
measures must be reported (sections [3.3] and [3.4). In doing so, it



is crucial, yet non-trivial, to fully appreciate which aspect(s) of
model quality is (are) exactly captured in a particular score. A
method that allows any metric to selectively address multiple spa-
tial scales could further broaden our view on model performance
(see Bosboom and Reniers, 2014b). Finally, the tendency of MSE
and MSESS;;; to reward the underprediction of the variance of bed
levels and bed changes, respectively, calls for the development of
alternative summary metrics (e.g. [Taylor, 2001} [Koh et al., 2012}
Bosboom and Reniers| 2014a.b).

5. Conclusions and future work

As demonstrated with synthetic examples, examples from lit-
erature and a long-yearly Delft3D model simulation, the mean-
squared error skill score relative to a prediction of zero change may
produce a relative ranking of predictions that does not match the in-
tuitive judgement of experts. This is true for the comparison of skill
across different prediction situations, e.g. different forcing condi-
tions or internal dynamics, as well for the temporal variation of
skill within a simulation. Two main causes of unexpected skill are
identified. First, the zero change reference model assumes that the
conditions at the start of the simulations persist in time, such that
the minimal level of acceptable performance varies with the mean-
squared observed cumulative change. The latter fails to reflect the
relative difficulty of prediction situations with a different morpho-
logical development prior to the evaluation time (for instance trend,
cyclic/seasonal, episodic or combinations thereof). Second, since
the MSE is prone to reward predictions that underestimate variabil-
ity, an underprediction of the variance of cumulative bed changes
leads to a higher diagnosed skill.

On a case-by-case basis, a balanced appreciation of model per-
formance requires that multiple accuracy and/or skill metrics are
considered in concert. For instance, the temporal evolution of skill
as diagnosed through the mean-squared-error skill score is best val-
ued in combination with the MSE itself. In addition, we recom-
mend the use of separate measures for map-mean error and magni-
tude and structure of the fluctuating parts, for both morphology and
bed changes, which are more in line with the morphologists' intu-
itive definition than the decomposed error contributions according
to the Murphy—Epstein decomposition.

Of course, the morphologist may sometimes still desire a single-
number summary of the main aspects of model performance, es-
pecially if automated calibration routines are used. We are there-
fore exploring alternative summary metrics that, unlike grid-point
based accuracy measures, such as the MSE, and its derived MSE
skill score relative to the initial bed, penalize the underestimation
of variability. For instance, experimental work is undertaken to
formulate error metrics that take the spatial structure of 2D mor-
phological fields into account (Bosboom and Reniers, [2014a). Fur-
ther, since model predictions are not necessarily of similar qual-
ity at different spatial scales, a method is being developed that al-
lows any metric to selectively address multiple scales (Bosboom
and Reniers, 2014b)). This scale-selective validation method for 2D
morphological predictions provides information on model skill and
similarity in amplitude and structure per spatial scale as well as
aggregated over all scales.
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Appendix A. Murphy-Epstein decomposition of MSE

Algebraic manipulation of the MSE, eq. (3), leads to (Murphyl
1988):

MSE = 0 + 0% = 20,0 0ppo + (P — 0)° (A1)

where p and o are the weighted map means and o, and o, the
weighted standard deviations of the predictions p and the obser-
vations o, respectively, and p,,, is the weighted Pearson product—
moment correlation between the predictions and the observations.
The latter is given by p,, = 9w/o,0,, With o,, denoting the
weighted covariance between p and o, and reflects the overall
strength and direction of the linear correspondence between pairs
of computations and observations; a deviation from —1 or 1 im-
plies scatter around the best linear fit. We can rearrange the terms
in eq. (A.T) to arrive at (Murphy and Epstein|, [1989):

MSE = 2(1 —a++7) (A.2)
where
@=p;, (A3a)
o 2
B= (ppo - —p) (A.3b)
0o
(p-0o)
y=L-2 (A3¢)
0-{7

Here, y is a normalized map-mean error. The term f is the con-
ditional bias, which is non-zero if the slope b = pp,%/c, of the
regression line of the observations o, given the predictions p, devi-
ates from 1. Given a positive correlation and unless compensated
by systematic bias, b > 1 indicates that smaller values are over-
predicted and larger values are underpredicted (and vice versa for
b < 1). The term « is the coefficient of determination defined as
the proportion of the variation in the values of o that can be lin-
early “explained” (in a statistical sense) by p (or vice versa) (Tay-
lor, {1990).

Since MSE = ((p — 0)?) = ((p’ — 0')?), egs. (A.1) to (A.3) are

equally valid when p and o are replaced with p’ and o’, respectively.
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