

GLOBAL INVESTMENT COSTS FOR COASTAL DEFENCE THROUGH THE 21ST CENTURY

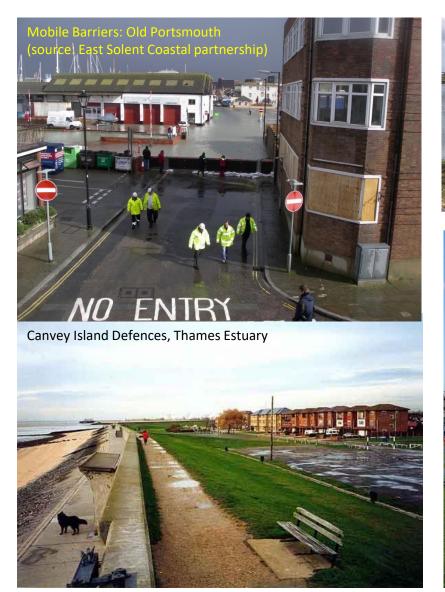
Robert J. Nicholls¹, Daniel Lincke², Jochen Hinkel²,
Thomas van der Pol²

- 1. University of Southampton, Southampton, UK
 - 2. Global Climate Forum, Berlin, Germany

Symposium "Building Safety with Nature", Commissiekamer 3, Aula TU Delft 27 March 2019,

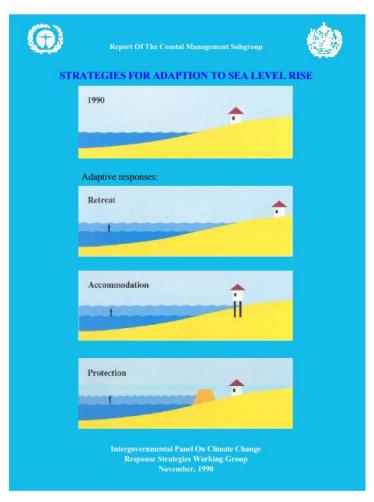
Plan

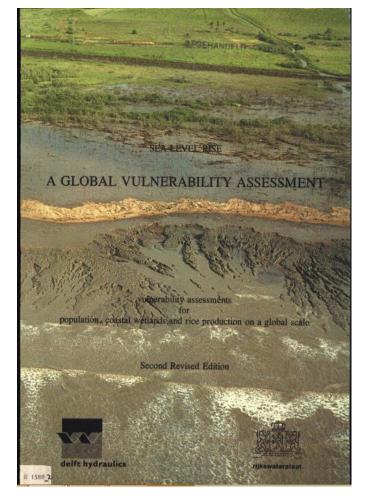
- Background
- Methodology
 - The DIVA model
 - Approach and cost estimates
- Illustrative results
 - Length of defences
 - Capital and maintenance costs
- Concluding thoughts


Background

- KEY QUESTION: What are plausible cost estimates for coastal defence infrastructure against coastal flooding through the 21st Century?
- Under scenarios of changing population, economy and climate-induced sea-level rise.
- Follows a pre-defined stylized protection strategy at a global scale.
- Both capital investment and maintenance costs are considered.
- Funded by World Bank.

Coastal Flood Defences in the UK





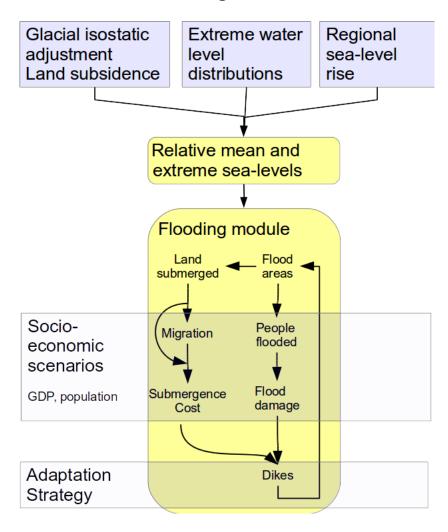
(a) 1990

Global protection costs for sea-level rise A long history

(b) 1993

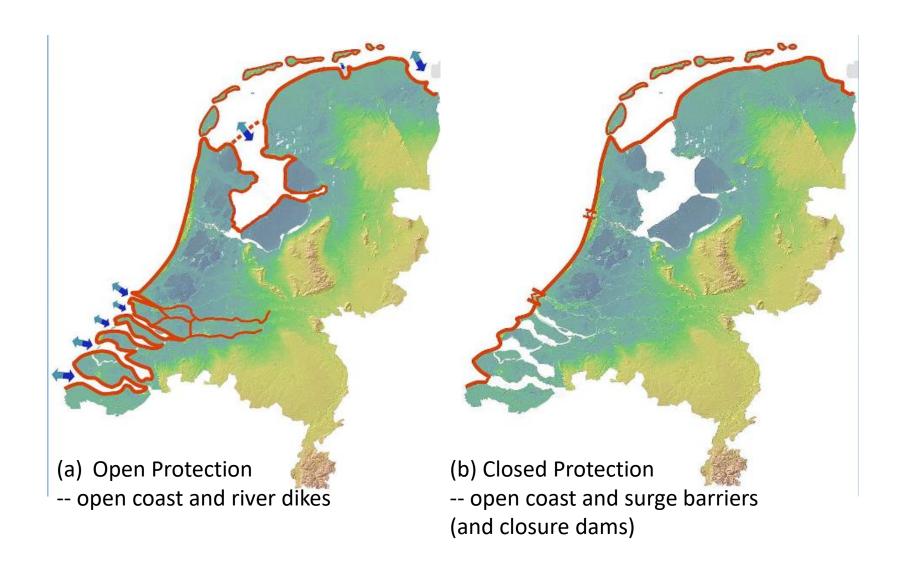
Global protection costs for sea-level rise

Study	Cost Estimate (2014 USD)	Comments
Dronkers et al., 1990	\$815 billion	1-m rise, capital costs mainly reflecting flood protection and other aspects (e.g. port upgrade).
Hoozemans et al., 1993	\$1,630 billion	1-m rise, as Dronkers et al. (1990) with better consideration of storm surge hazard and protection needs.
Tol, 2002	\$1,524 billion	1-m rise. Optimum (benefit-cost) analysis using the FUND model. Capital costs only.
Hinkel et al. 2014	\$3,000 to \$6,100 billion	0.6-m to 1.23-m rise (RCP8.5 emissions). Demand for safety approach (protection scenario rather than benefit-cost approach). Costs include capital and maintenance costs of dikes built since 2005.


Methods

DIVA Flood Module (after Hinkel et al., 2014)

DIVA (Dynamic Interactive Vulnerability Assessment) of coastal floods, erosion and wetland change. A set of algorithms and a global database based on about 12,000 linear segments


Defence technologies, approaches and adaptation strategies

Defence Technologies	(1) Sea dikes	
	(2) River dikes	
	(3) Surge barriers	

Different protection choices

Protection standards

(following Sadoff et al., 2015 [Securing Water, Sustaining Growth])

Wealth Class (annual income per capita) (2014 US\$ GDP per capita (PPP))	Urban (>1000 people/km²)	Rural (30 to 1000 people/km²)	Uninhabited (<30 people/km²)	
Low income	1:10	none	none	
Lower middle income	1:25	none	none	
Upper middle income	1:100	1:20	none	
High income	1:200	1:50	none	
Special case: Netherlands	1:10,000			
Special case: 136 large coastal cities	from Hallegatte et al. (2013)			

Scenarios SSP2 and RCP2.6/RCP8.5

Year		2015	2030	2050	2075	2100
Global population (billions)		7.4	8.4	9.4	9.7	9.2
GDP per capita (US\$, global average)		14,400	20,800	30,000	46,700	72,600
Sea-level rise, (global coastal	RCP 2.6	0.03	0.08	0.14	0.21	0.28
average, m)	RCP 8.5	0.03	0.09	0.19	0.39	0.65

Note: Base year for sea-level rise is 1985 to 2005 average

Costs

 Capital costs for dikes taken from Jonkman et al (2013)

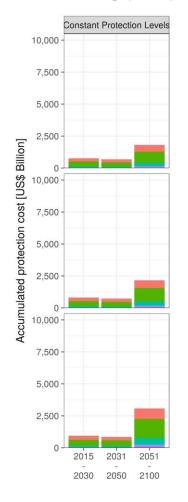
Old average costs Euro 3.47 million/km/m

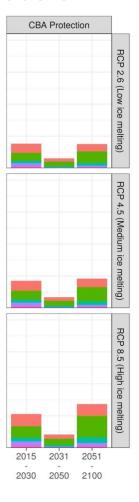
New average costs Euro 4.00 to 11.04 million/km/m

- Capital costs for barriers taken from Mooyaart and Jonkman (2017)
- Maintenance costs of 1% per year of the defence stock capital investment

Results

All for dike and barrier protection

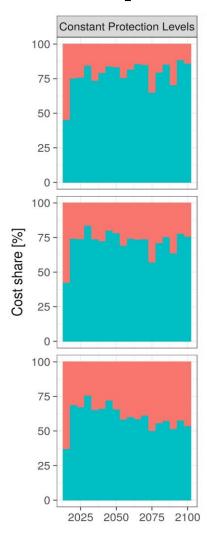


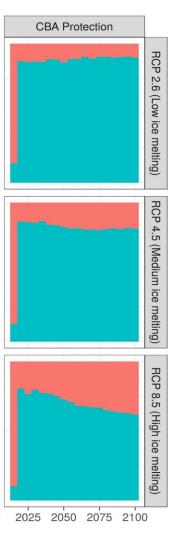

Protection costs, 2015-2030, 2031-2050, 2051-2100 RCP8.5 sea-level rise scenario Sums maintenance and capital costs

Year

Sub-Saharan Africa

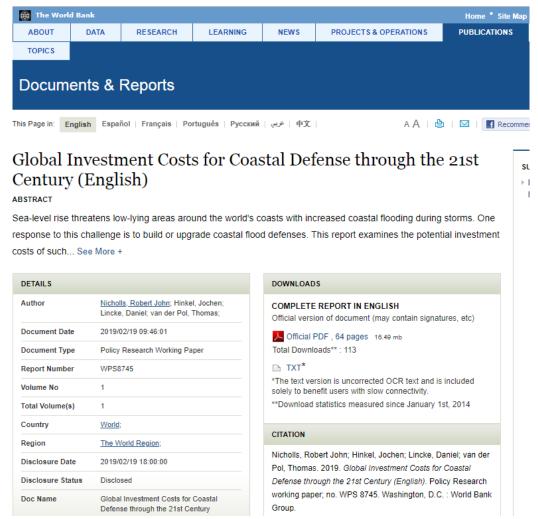
East Asia & Pacific Europe & Central Asia High Incom
Latin America & Caribbean Middle East & North Africa South Asia





Capital versus maintenance costs

Total undiscounted protection costs 2015 to 2100 (US dollars 10³ billion). Main uncertainty is unit cost.

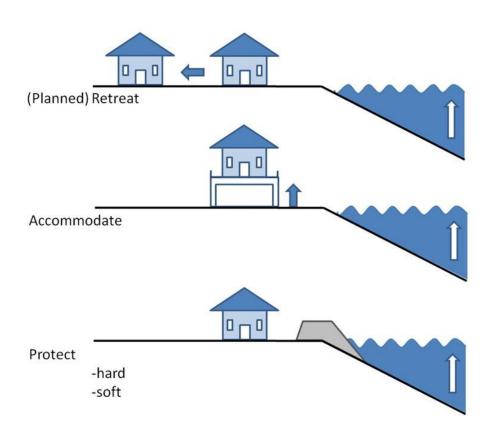

Scen	ario	Constant Protection	Cost-Benefit Analysis
	SSP2	4.6 - 13.2	6.8 - 16.0
	SSP3	4.4 - 12.5	6.2 - 13.6
RCP8.5	SSP5	4.9 - 14.0	7.9 - 18.2
	SSP2	3.5 - 10.0	5.0 - 11.4
	SSP3	3.3 - 9.4	4.4 - 10.0
RCP4.5	SSP5	3.7 - 10.5	5.7 - 13.2
	SSP2	3.1 - 8.8	4.3 - 9.8
	SSP3	2.9 - 8.3	3.8 - 8.8
RCP2.6	SSP5	3.3 - 9.3	5.8 - 11.5

Report available at:

http://documents.worldbank.org/curated/en/43398155024062218 8/Global-Investment-Costs-for-Coastal-Defense-through-the-21st-Century

Concluding Thoughts (1)

- The total accumulated defence costs from 2015 to 2100 are up to US\$11.5 trillion and US\$18.2 trillion for the RCP2.6 and RCP8.5 scenarios, respectively (Cost-benefit analysis).
- These are higher than earlier estimates, mainly reflecting: (1) higher range of unit defence costs; and (2) consideration of maintenance of the existing dike stock (in 2015).
- Maintenance costs are larger than capital costs.
- Cost-benefit analysis raises costs by more than 20% over the century compared to Constant Protection (more defence can be economically justified

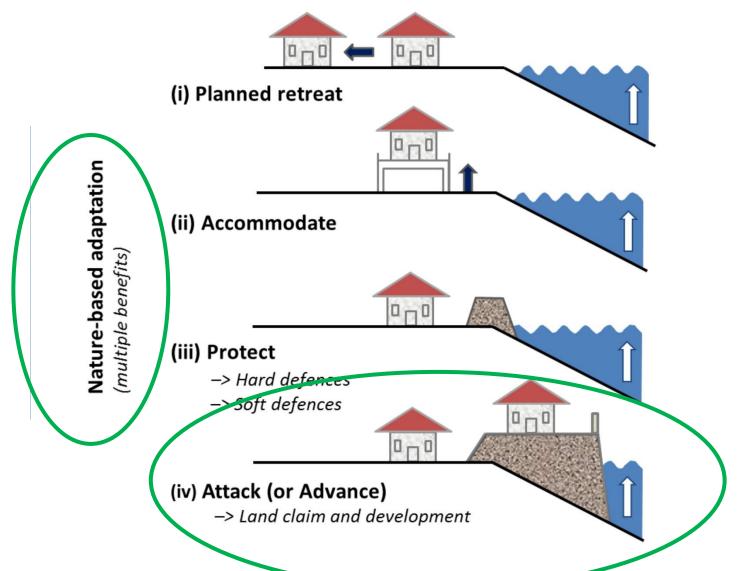


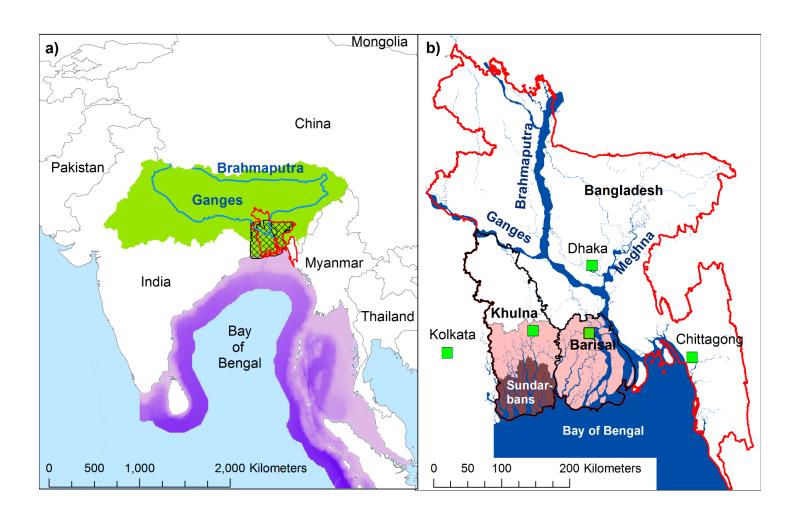
Concluding Thoughts (2)

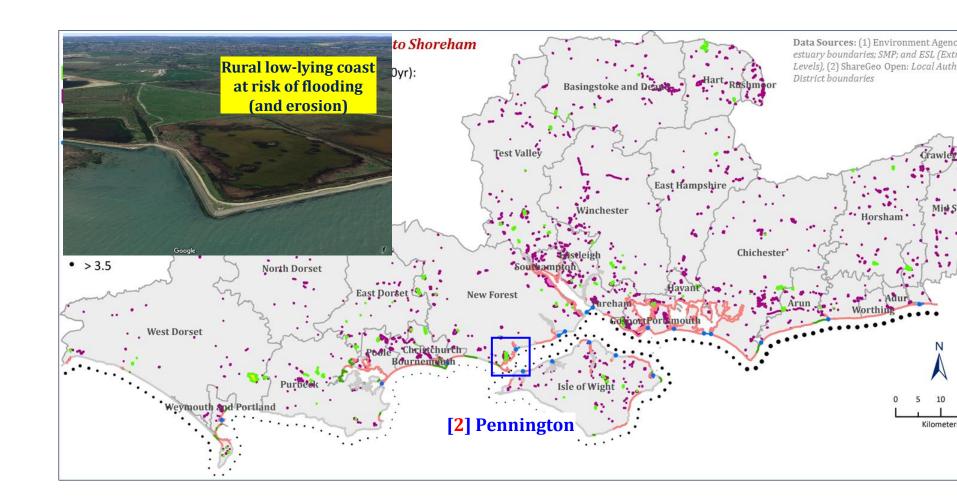
- There are more defence options than dikes and barriers what is presented is stylised (and there are other adaptation options).
- There are downsides to a defence (or protect) strategy. The world's developed coast will have growing (and deeper) flood plains and potential damage and threat to life if defences fail.
- Hence, residual risk must be considered and managed which implies ongoing investment in flood simulation, forecasting and warning.
- Delivering maintenance implies significant efforts to enhance flood management and governance institutions.
- Sea-level rise continues after 2100 (there is a long-term commitment to sea-level rise and adaptation to sea-level rise).
- The interplay between sea-level rise and adaptation remains the major uncertainty for the future of the coast.
- The role of nature-based approaches?

Planned Adaptation to SLR

The IPCC Approach

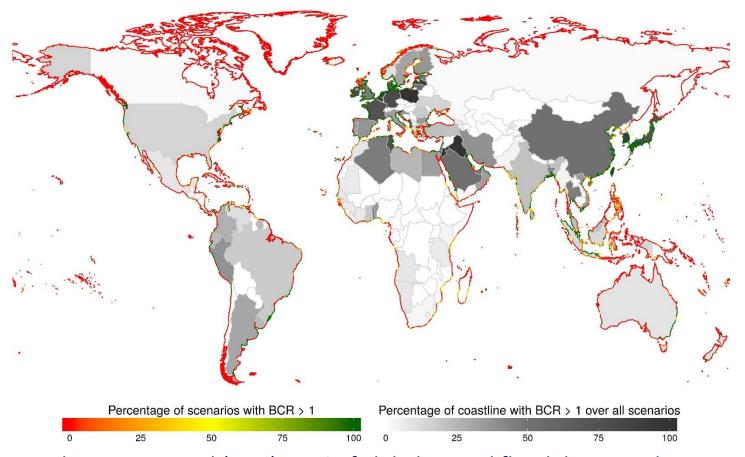



Planned Adaptation to SLR


The Sundarbans

Pennington Marshes

Pennington Marshes



Economic robustness of coastal protection

SLR scenarios from 0.3 m to 2.0 m, the five SSPs and 10 discount rates of up to 6%. Source: Lincke and Hinkel (2018) Global Environmental Change

92,500 km is always protected (13%): 90% of global coastal floodplain population 451,000 km is never protected (65%): 0.2% of coastal floodplain population 22% world's coast and 9.8% of coastal flood plain population – result is scenario dependent

Next Steps

 Integration "attack" and "nature-based" approaches into broad-scale assessment.

GLOBAL INVESTMENT COSTS FOR COASTAL DEFENCE THROUGH THE 21ST CENTURY

Robert J. Nicholls¹, Daniel Lincke², Jochen Hinkel²,
Thomas van der Pol²

- 1. University of Southampton, Southampton, UK
 - 2. Global Climate Forum, Berlin, Germany

Symposium "Building Safety with Nature", Commissiekamer 3, Aula TU Delft 27 March 2019,