

TUDelft, July 4, 2014

Benefits of RBI in Offshore and Marine Applications – Lessons Learnt

 $\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_{p}} \frac{\partial^{z} T}{\partial X^{z}}$

M. H. Faber

Technical University of Denmark

Technical University of Denmark

Contents of Presentation

- Motivation for RBI
- The idea behind RBI
- Typical applications offshore and marine
- On the value of inspections
- Insights from practical experiences
- Outlook

Motivation

Why inspections and monitoring?

- Failure and inadequate performance of engineered facilities is generally associated with significant consequences
- Design assumptions for engineered facilities are rarely fulfilled during their operational life
- Deterioration processes such as fatigue and corrosion are associated with very significant uncertainties – hard to predict
- Knowledge about actual performance can be utilized to support optimal decisions on operation and maintenance

Using risk as a measure of the effect of AIM

- Fundamentally risk is the best knowledge available about the effect of decisions in the face of uncertainty
- Probabilistic risk assessment utilizing Bayesian probability theory – facilitates consistent treatment of information collected through inspections and monitoring – Bayesian updating
- The Bayesian (pre-posterior) decision theory facilitates that the value (benefit) of information which has not yet been collected can be quantified

Using risk as a measure of the effect of AIM

 The risk can be assessed at different scales depending on the decisions which are to be analyzed and ranked

Basic principles to be appreciated

- A <u>performed inspection</u> does not in itself improve the safety of a structure
- ☺ It improves our estimate of the safety
- A <u>planned inspection</u> does not in itself improve the safety of a structure
- ^(C) It does not improve our estimate of the safety
- I To ensure the safety of a structure inspection planning should be performed in conjunction with the maintenance planning !

Theoretical Framework

The value of inspections/monitoring may be quantified in accordance with the pre-posterior decision theory:

$$V = B_1 - B_0$$

$$V = \max_{s} E_{\mathbf{Z}_{E}} \left[E_{\mathbf{Z}_{A}} \left[\max_{\mathbf{a}} E_{\mathbf{X} | \mathbf{Z}_{E}, \mathbf{Z}_{A}} \left[B(\mathbf{X}, \mathbf{Z}_{E}, \mathbf{Z}_{A}, s, d(\mathbf{a}, \mathbf{X})) \right] \right] - E_{\mathbf{Z}_{E}} \left[E_{\mathbf{Z}_{A}} \left[B(\mathbf{Z}_{E}, \mathbf{Z}_{A}) \right] \right]$$

- *s*: Monitoring strategy
- **X**: Random variable representing uncertain monitoring results
- **Z**_A: Random variables representing aleatory uncertainties
- Z_E : Random variables representing epistemic uncertainties
- d():Decision rule defining the adaptive action

Inspection 2 (e,z,a)

Inspection 1 (e,z,a)

T=0

Systematic analysis of decision event trees No detection Survival & no repair Failure No detection Failure & no repair Detection Failure & no repair Survival Detection & no repair Survival Detection Minimal reliability (codes, authorities ...) Failure Detection & repair & repair Total cost **Inspection &** repair cost Survival Optimal other repair strategy options

Time

Inspection effort

Technical University of Denmark

Failure cost

What can RBI provide

to inspect/monitor

Typical Applications - Offshore and Marine

Jacket structures

Inspection Focus

- ↑ Fatigue
- ↑ Excessive Marine Fouling
- ↑ Scour
- ↑ Corrosion Protection
- ↑ Impact damages

Typical Applications - Offshore and Marine

Process Equipment

Inspection Focus
↑ Corrosion
↑ Erosion
↑ Fatigue

Typical Applications - Offshore and Marine

Pipelines

Inspection Focus

- ↑ Fatigue
- ↑ Scour (free span)
- ↑ Corrosion
- ↑ Impact damages/dropped objects

Typical Application of RBI

Experience on applied RBI – offshore and marine

- 100+ jacket structures in the Gulf of Mexico
- Xxx Mærsk Oil and Gas jackets in the Danish North Sea
- 15 jackets in the Gulf of Thailand
- 4 FSO/FPSO (Norway/Nigeria/Brazil)
- As basis for the design of FPSOs in the Mexican part of the Gulf of Mexico
- As basis for the design of semi-subs in the Mexican part of the Gulf of Mexico

On the Value of RBI

Quantifying the value of RBI

 A simple approach is to compare the expected value of the service life integrity management costs for a structural detail with given deterioration characteristics corresponding to different strategies

On the Value of RBI

Quantifying the value of RBI

• For an entre platform the risks may be aggregated

2 Different cost models

3

1

Technical University of Denmark

On the Value of RBI

Quantifying the value of RBI

 For a portfolio for structures the risk information facilitates budgeting

Insights Gained from Experience

Issues to be considered carefully

- The representation of the knowledge (uncertainty) concerning the performance of the structures/faclities must be undertaken with care:
 - deterioration processes
 - performance given damage
 - model uncertainties (time/space dependency representations)
 - inspection/monitoring uncertainty
 - modeling of effect of mainenance/repairs

Insights Gained from Experience

Barriers for practical applications

 Availability of adequate and simple tools which might be utilized by engineers without expert knowledge on probabilistic risk modelling and analysis

Outlook

A New COST Action on the Value of Information in SHM

 The JCSS has been granted COST Action 1402 starting in November 2014

Main purpose is to:

- Develop, describe and apply the theoretical framework for the quantification of the value of SHM prior to its implementation for a range of typical structures and best practice optimal SMH techniques/strategies
- Provide practical guideline for VoI of SHM across different classes of structures

Thanks for Your Attention ©

E-mail: mihf@byg.dtu.dk

Technical University of Denmark

