

The applicability of glass in structures is continuously ascending,
as the transparency and high compressive strength of the material as the transparency and high compressive strength of the material
render it the optimum choice for realizing diaphan ous structural
components that allow for componentst that allow for li ight transmiteance and space continuity.
The fabrication boundaries of the material are constantly stretching:
visible metal connections visible metal connections are minimized and glass surfaces are
maximized, resulting to pure all-glas structures. Still, due to the prevalence of the float glass industrs, all-glassss.sucturues are currently
confined to the limited forms and shapes that can be generated by confined to the limited forms and shapes that can be generareted by
planar, 2 D glass elements. Moreover, despite the fact that glass is Ppanar, 2D glass elements. M Moroover, despite the fact that glass is
fully recyclable, most of the olass currently employed in buildings is
neither reused nor recyled due tit neither reused nor recyclele due to tits perplexed disassembly and its
contamination from coatings and adhesive comano hom coangs and
the design limitations generarated from the 2-dimensional nature of
2. float glass. By pouring molten glass into moulds, solid 3 -dimensiona
glass components can be attained of considerably larger cross glass components can be attained of considerably larger cross-
sections and of virtually any shape. These monolithic glass object can form repetitive unitit for large all glass.stsuctures that doo ot
buckle due to slender bucke due to slender proportions and thus can take full advantage
of the stated compressive strength of flass . Such components can b
accordingly shaped to interlock towards sasily assembled accordingly shaped to interlock towards easily assembled structu
that do not require the use of achesives for further bonding. In that do not require the use of adhesives tor further bonding. In
addition, cast glass units-due to their in ineased cross section- can
tolerate a higher degree of impurties and thus can be produced by tolerate a higher degree of impurtites and thus can be produced by
using waste glass as a raw source.

Grasping this potential, the "R^\wedge 3 Glass" projec
aims to develoo a methodology and guideline

 suggested
Step 1 . REcycle by employing waste glass
Athough in theory glass can be endlessly Athough in theory gass can be endelessly
remeted without loss in quality, in practice only a small percentage gets recrlcled, mainly by
the float and packaging industy Mostof the the float and packaging industry. Most of the
discarded glass fails to pass the high quality
 incoatings, adhesives, other contaminants or landfil. However. employing discarded giass in
cast components for building applications can cast componentst for building applications san
bea eay to reintroduce this waste to the supply
chain chain. This is because such components can
tolerate a higher percentage of inclusions, witho tolerate a aigher percentage of inclusions, witho
necessarily compromising their mechanical or aesthetical properties.

These monolithic glass objects can form repetitive units for large all glass-structures that do not buckle due to slender proportions.

Step 2. Reduce by intury smat

 The use of he use of cast glass is proposed instead of hie commonly applied laminated float glass,to achieve solid monomaterial components of to achieve solid monomaterial components of
the desired cross section and form. Owing to to
their 1 rage crossssectional area and donolithic their Irrge cross-s.sectional area and monolithic
hature, cast glass components besides havin nature, cast tass components besides having a
unlimited freedom in shapes, can form repeetivive units for the generation of 3 -dimensional, self-
supporting glass facades and walls, sparing the
hecessity of an additional supporting structure.
Smart geometry implemented in the torm Smart geometry implementede in the form
of cavities and nothes lead to tightweight
yet strong components yet strong components, reducing not only
the eqequired dav material but also the overall
embodied enegy embodied energy.
Step 3. REuse by designing interlocking
components components
Currently the Currenty, the few realized structures using
cast glass components employ either a stee
substructure oran adh substructure or an andhesivio of tigh bornandig
strength, tyically less than 2 mi thick, to en strenght thyicially less than 2 mm thick, to ensure
the erigidity and lateral stability of the construction
Whereas the fist soll Whereas the first solution compromises the
overall leve of transparency, the second results
to a permanent contstur
 and meticulous labour and dextremen accuracy
requirements. In this sesearch the potential of a

 proposed system can attain the desired stiffness
and stability with the aid of minimal metal framing and stability with the aid of minimal metal framing.
Furthermore, the suggested system circumvents the use of adhesives by using a dry, colourless
interlayer as an intermediate between the glass intertayer as an intermeriate between the glass
nutits.
due to sides sereventing stress soncentrations
gass og lass contact the dry interlayer due to glass to ollass contatct, the dry interliarer
can also accommodate the inevitable dimensional tolerances in the cast units nise. Most mimportant,
the dry-assembly design allows for the circular the dr--asembly design allows for the circals
use of the glass components as they can be
eventualy retrieved intact and rewsed Proof of concept
\qquad geometries are develelpoped and ant assempensed in
terms of mechanical interlocking terms of mechanical interlocking capacaity, mass
distribution and ease of fabrication models are made to predict the most sensitive areas in the brick designs. In parallel, eresearch is
conducted on different materials and production conducted on different materials and productio
methods for the dry, transparent interlaye. As a

Type A
Type $F_{1} \bigcirc 0$

Type C
8
Type D
Type E
0

最

proof of concept, the most promising interlocking
forms are kilincast in $1: 2$ scale. The components are then dy-assembled in inseries of three and and structurally tested under
feasibility of the system.
The new generation of REcyclable, REducible and REusable cast glass components, which suggests an innovatie and sustainable way of building with glass.

 types of glass that reach the recycling Plants and
the typest that don not, arguing on the reasons
behind this selection. A series of experiments behind this selection, Aseries of expereaments
questions the possibility of recycling everyday questions the possibility of recycling everyday
glass waste, from beer bottles and Pyree@ trays to glass waste, from beer botles and Pyrexe trays to
mobile phone screens. Each type of glass waste is
initially cast separately to define the flow capability

 Colour due to ooiciation and reduction. Flux agents
are added to samples of high viscosity ath
aforementioned temperature range to to foilitate the aforementioned temperature range to facilitate the
flow and reduce the eraired denery for reycling.
Then, the possibility to to mix dififerent talass recipes Then, the eossisibilit tequired one diferereng tor flas recyl reing.
at temper
 eveluated. AAm of this research stepen in to achicievee
homogeneity in the slass components and good homogeneity in the glass components and good
physian and menhanicl properies sespite the
initial incompatibility of the mixeed glass types.

 cast glass components, which suggests an inno-
vative and sustainable way of building with glass.

