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Summary

In the Netherlands the traffic has grown rapidly over the years. The codes
which were used to design the structures did not take into account the high
values of today’s traffic. Therefore Rijkswaterstaat started doing research
on all structures built before 1975.

One of the investigated structures is the Van Brienenoord bridge. The
bridge deck consists of prestressed girders with a transversely prestressed
concrete slab between them. During the review of the old structures, it
was found that according to the current codes the Van Brienenoord bridge
does not meet the requirements for structural safety. Although the bridge
is loaded beyond its calculated capacity, it still is in a good condition. Ex-
planation for this is the occurring phenomenon of compressive membrane
action.

Some countries have incorporated compressive membrane action into
their codes for the design of structures by an empirical method. However,
these codes do not take into account the presence of transverse prestressing
in the slabs. The issue with the Van Brienenoord bridge is the relative
slenderness of the concrete slab, the span to depth ratio is high. The foreign
design codes set a limit on the slenderness of a slab in order to make use of
the code. Because this requirement is not met, the codes assume that the
occurring amount of compressive membrane action is too little to take into
account as beneficial for the bearing capacity. However, the bearing capacity
is increased by the presence of transverse prestressing. So the exact bearing
capacity of the slender transversely prestressed slab remains unknown.

This project includes a design of scale model which represents the prop-
erties of the Van Brienenoord bridge, where the effect of the transverse
prestressing on the amount of compressive membrane action can be inves-
tigated. Also the bearing capacity of the slabs are predicted via analytical
methods and finite element analysis.

Two analytical methods are used to calculate the bearing capacity of the
slabs. Although these methods have not been validated with a lot of tests,
the results are promising. Especially in comparison with Eurocode 2, the
methods give results which are 7 to 9 times higher.

During the finite element analysis it is demonstrated that the transverse
prestressing level influences the bearing capacity of the slabs. The occur-
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rence of a compression arch is clearly visible when the strains are examined.
Also the behaviour of the slabs changes when the level is adapted. The first
moment of cracking delays when the prestressing level increases.

The properties of the interface between the girders and the slabs are very
important for both the stiffness of the 2D model as well as the failure load.
Because the capacity of the interface can change the failure mechanism, it
is very important to monitor the occurring failure mechanism during the
experiment.

A very important parameter of the experiment is the skewness of the
interface. When the forces of the skew interface are decomposed, an extra
vertical force loads the slabs. The extra loading results in a lower capacity of
the interface. The investigation of this parameter via finite element analysis
demonstrates that the capacity of the skew interface is considerably lower
than the capacity of a straight interface.

When the failure loads during the experiment reach the values of the
prediction in this thesis, the Van Brienenoord bridge will meet the require-
ments of structural safety. This is demonstrated by scaling back to the
dimensions of the bridge. Add to this the increased concrete quality due to
ongoing hydration and then the capacity increases even more. That would
mean that strengthening the bridge is not necessary yet.
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Chapter 1

Introduction

Rijkswaterstaat is the executive arm of the Dutch Ministry of Infrastructure
and the Environment. On behalf of the Minister and State Secretary, Ri-
jkswaterstaat is responsible for the design, construction, management and
maintenance of the main infrastructure facilities in the Netherlands. [9]
An important part of the infrastructure facilities are the structures. In the
Netherlands a lot of these structures are built in the sixties and seventies
of the twentieth century. Over the years the traffic has grown rapidly, both
the number of vehicles and their weight. This results in higher peak stresses
and an increase of the average stress. The codes which were used to design
the structures did not take into account the high values of today’s traf-
fic. Therefore Rijkswaterstaat started doing research on all structures built
before 1975.

One of the investigated structures is the Van Brienenoord bridge. The
Van Brienenoord bridge connects the city of Rotterdam with the southern
part of the Netherlands by crossing the river the Nieuwe Maas. With twelve
lanes and over 250.000 vehicles a day, the bridge is part of the busiest road
of the Netherlands. The bridge deck consists of prestressed girders with a
transversely prestressed concrete slab between them. During the review of
the old structures, it was found that according to the current codes the Van
Brienenoord bridge does not meet the requirements for structural safety.
Although the bridge is loaded beyond its calculated capacity, it still is in
a good condition. Explanation for this is the occurring phenomenon of
compressive membrane action.

Several researchers have investigated the phenomenon of compressive
membrane action and its positive effect on the bearing capacity of rein-
forced concrete slabs is demonstrated. Some countries have incorporated
compressive membrane action into their codes for the design of structures
by an empirical method. However, these codes do not take into account
the presence of transverse prestressing in the slabs. Only some experiments
have been carried out to investigate the effect of compressive membrane
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action with transverse prestressing. From these experiments it can be con-
cluded that transverse prestressing increases the effect and therefore giving
the slabs a higher bearing capacity.

The issue with the Van Brienenoord bridge is the relative slenderness of
the concrete slab, the span to depth ratio is high. The foreign design codes
set a limit on the slenderness of a slab in order to make use of the code.
Because this requirement is not met, the codes assume that the occurring
amount of compressive membrane action is too little to take into account
as beneficial for the bearing capacity. However, the bearing capacity is in-
creased by the presence of transverse prestressing. So due to the limitations
of the design codes, the exact bearing capacity of the slender transversely
prestressed slab remains unknown. And therefore it is not clear whether the
Van Brienenoord bridge needs to be strengthened or not.

1.1 Objective

The goal of this project is to design a scale model which represents the
properties of the Van Brienenoord bridge, where the effect of the transverse
prestressing on the amount of compressive membrane action can be inves-
tigated. The scale model has to be scaled down with a factor 1:2. Former
experiments have shown that in reinforced slabs the phenomenon of com-
pressive membrane action occurs. In theory the presence of prestressing
should enlarge the effect of compressive membrane action, but what is ef-
fect on the slender slab of the Van Brienenoord bridge? This project will
determine the bearing capacity of the slabs of the scale model with analyt-
ical methods and investigate the behaviour of the slabs by finite element
analysis. Special attention will be paid to the properties of the concrete to
concrete interface between the top flange of the girder and the slabs.

1.2 Outline of the thesis

The thesis consists of six chapters. Chapter 1 is an introduction to the
investigation and states the objective. Chapter 2 gives an overview of the
important components of the Van Brienenoord bridge. In chapter 3 the
design of the scale model is fully elaborated, all the important considerations
are described. In chapter 4 the bearing capacity of the concrete slabs are
determined analytically, resulting in failure loads for the experiment. Also
the loads are scaled back to the dimensions of the Van Brienenoord bridge.
Chapter 5 describes the finite element analysis of the scale model. And in
chapter 6 the conclusions and recommendations are given.
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Chapter 2

Van Brienenoord bridge

The scale model which is going to be tested during the experiment is based
on the dimensions of the Van Brienenoord bridge. Therefore a clear overview
is necessary of the different parts of the bridge deck, so the properties of the
scale model can be determined properly.

2.1 General information

The Van Brienenoord bridge connects the city of Rotterdam with the south-
ern part of the Netherlands by crossing the river the Nieuwe Maas. With
twelve lanes and over 250.000 vehicles a day, the bridge is part of the busiest
road of the Netherlands. Figure 2.1 shows an aerial view of the bridge and
its surroundings.

Plans to cross the river the Nieuwe Maas go back to the early thirties.
However, only after the war these plans could actually be elaborated. In
1961 the construction started by clearing the site for building. Around 1962,
the city council determined the name of the bridge. The Van Brienenoord
bridge owes its name to the underlying Brienenoord Island, the place of
A.W. Baron van Brienen. The bridge is completely constructed at the site.
To build the arch bridge, two temporary support pillars were placed in the
river. Construction was finished in 1965 and opened for traffic festively by
Queen Juliana on February 1st 1965. Figure 2.2 shows the bridge just a few
years after the opening.

Even in the seventies, short after the bridge was opened, it became clear
that the bridge would become too small to handle the rapidly growing traf-
fic. Already then, the possibilities to increase the number of lanes on the
bridge were investigated. First it was thought to use the existing bicycle
lanes as traffic lanes, but soon it became clear that this would not result in
sufficient capacity. A solution with major planological impact was necessary,
widening the bridge or building a tunnel next to the bridge. The work group
”Van Brienenoord-corridor” was created to investigate the planological im-

3



Figure 2.1: Aerial view of the Van Brienenoord bridge

pact. For a number of reasons the choice was finally made in favour of the
construction of a second bridge next to the existing one and the simultane-
ous expansion of the roads to and from the bridge. This proved to be the
solution with the least drastic effects for the surroundings and one which
was both financially and aesthetically sound. In 1985 a start was made with
the final design and construction started in 1987. The date for opening the
bridge to traffic is May 1990. The new arched bridge has not been built on
the spot, as was the old one. It was assembled by Grootint in Zwijndrecht.
After completion, the entire arch bridge was brought by boat to its ultimate
destination. Figure 2.3 shows the transport of the arch bridge.

The rapidity of the growth of traffic is best shown in the next figures: in
the year just after the opening in 1965, only 30000 vehicles passed the bridge
per day. In 1975 the number grew to 90000 per day and after completing
of the second bridge to 145000 per day. When the second bridge and the
connecting roads were finished, the Van Brienenoord bridge consisted of four
tracks with each three traffic lanes, so a total of twelve traffic lanes. Each
bridge has a track for trough traffic separated from the track for local traffic,
which have to exit immediately after crossing the bridge. Consequently
there are no conflicts between the two types of traffic, resulting in better
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road safety and better traffic flow. The capacity of the Van Brienenoord
bridge at the onset of congestion was determined to be 180000 vehicles per
day.

Figure 2.2: Van Brienenoord bridge in the seventies

Figure 2.3: Transportation of the arch bridge in February 1989
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2.2 Construction of the deck

A closer look to the Van Brienenoord bridge shows that it consists of several
bridges. From south to north nine approach spans of 50 meters, the arch
bridge of 300 meters, the bascule bridge, the bascule pit and another nine
approach spans of 50 meters. The total length of the bridges is 1320 meters.
Figure 2.4 shows an overview of the Van Brienenoord bridge.

Figure 2.4: Overview of the Van Brienenoord bridge

In this thesis the concrete approach spans of 50 meters are of interest.
The bridge deck is built up from simply supported longitudinal prestressed
girders with a span of 50 meters. To connect the girders a concrete slab is
cast in between them. The slab can be relative slender due to the presence
of transverse prestressing. Figure 2.5 shows the deck during construction
in 1962[9]. The holes for the transverse prestressing cables are clearly vis-
ible in the girders. The reinforcement ratio of the slab can be low due to
the presence of transverse prestressing. At the supports a transversely pre-
stressed end cross beam restrains the crosswise translation and rotation of
the girders. Also two diaphragms are placed at one third and two third of
the span, providing a higher stiffness in transverse direction of the bridge
and a more beneficial force distribution.

(a) Concrete girders (b) Concrete between the girders

Figure 2.5: Construction of the deck in 1962
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2.3 Materials

The materials used in the Van Brienenoord bridge all have an old coding
with respect to the applied strength class. Therefore in table 2.1 the old
strength class is converted to an equivalent strength class which is specified
in the current design codes. The strength class of the prestressing steel in
the Van Brienenoord bridge is unknown, only the working force known. 40
tons wires are applied.

Original strength class Equivalent strength class

Concrete girder B45 C35/45

Concrete slab B35 C28/35

Reinforcing steel QR24 FeB240

Table 2.1: Strength class of the Van Brienenoord bridge

Due to the fact that the Van Brienenoord bridge is built in the early six-
ties, the concrete strength is much higher than the original design strength.
Therefore an additional material research is done by Witteveen+Bos [11]to
determine the current concrete compressive and tensile strength. The re-
search consisted of drilling out cores and testing the samples for strength in
the laboratory. Table 2.2 shows the results of the material research. In this
research project, the effect of increased concrete quality is not investigated.

Value Unit

Compressive strength 84.6 N/mm2

Splitting tensile strength 4.3 N/mm2

Table 2.2: Strength of cores tested in laboratory
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2.4 Section properties

2.4.1 Girders

The bridge deck consists of nine girders. Figure 2.6 shows the cross section
of a girder with the dimensions, where sub-figure 2.6a shows a part of the
original hand made drawing.

(a) Dimensions in cm (b) Dimensions in mm

Figure 2.6: Drawing cross-section of the girder

In order to design an accurate scale model of the Van Brienenoord bridge,
the section properties of the girders have to be known. These are listed in
table 2.3.

Description Sign Value Unit

Concrete area Ac 1127000 mm2

Neutral axis to top fibre zc,top 1265 mm

Neutral axis to bottom fibre zc,bottom 1735 mm

Moment of inertia Ic 1.3197 · 1012 mm4

Section modulus top Wc,top 1.0432 · 109 mm3

Section modulus bottom Wc,bottom 0.7606 · 109 mm3

Weight of the girder qG 2.8175 ton/m

Table 2.3: Section properties girder Van Brienenoord bridge
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2.4.2 Slabs

The design of the bridge deck positions the concrete slabs between the gird-
ers. To create a stable connection between the parts, transverse prestressing
is applied. This is the only continuous connecting part, because no contin-
uing reinforcing steel is applied from the girder to the slabs. The bearing
capacity must be ensured by the transverse prestressing steel and a concrete
to concrete interface. The dimensions of the slabs are depicted in figure 2.7
in cm. The height of the slab is 200mm and the width is 2100mm.

Figure 2.7: Dimensions of the slabs in cm

The amount of transverse prestressing steel is varying over the length of
the girders. Drawing C10107 shows the side view of half a girder. Present
are 38 prestressing cables divided over a length of 24670mm. The average
center to center distance is:

c.t.c.average =
24670

38
= 649mm

The maximum center to center distance is:

c.t.c.max = 800mm

In the section of materials the prestressing steel is described. The amount
of transverse prestressing steel is:

Ap =
400 · 103

1262 · 649
= 0.4884mm2/mm

Figure 2.7 shows a slight inclination in the slope of the slab. In com-
bination with a skew edge of the girders, the interface is not a connection
between two vertical planes. The skewness of the interface needs to be added
to the scale model, because it can influence the bearing capacity.
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2.4.3 End cross beams

Drawing C10367 shows details of the ends of the girders. Figure 2.8 shows
a part of the drawing which depicts one end cross beam. The dimensions
are in cm, so the width is 700mm.

Figure 2.8: Dimensions of an end cross beam in cm
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Chapter 3

Design of the experiment

3.1 Introduction

To verify the theory of compressive membrane action in transversely pre-
stressed concrete slabs, an experiment will be carried out. The experiment
focuses on the bearing capacity of the slab. In order to investigate the be-
haviour of compressive membrane action, the model has to be loaded until
failure. Therefore also the occurring failure mechanism can be investigated.
The experiment set-up is a part of the Van Brienenoord bridge which is
scaled down. The dimensions of the scale model will be determined in this
chapter.

3.2 Scale model

3.2.1 Materials

The materials of the Van Brienenoord bridge are discussed in the previous
chapter. Due to the ongoing hydration of the concrete, the current strength
is higher than the strength class used for the design. Therefore higher con-
crete classes must be used in the scale model to represent the current quality
of the materials. The concrete strength class of the slabs is C45/55. The
strength of the girders is higher, due to the better conditions in which they
are casted. This represents the situation of the Van Brienenoord bridge
where the girders also have a higher concrete strength class. The concrete
strength class of the girders is C53/65. This quality is not described in
Eurcode 2, however the properties are calculated according to Eurocode 2.

fcm = fck + 8[MPa] (3.1)

fctm = 2.12 · ln
(

1 +

(
fcm
10

))
(3.2)
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Ecm = 22 ·
(
fcm
10

)0.3

(3.3)

The properties of the concrete are specified in tables 3.1 and 3.2.

Description Sign Value Unit

Characteristic compressive cylinder strength fck 45 N/mm2

Characteristic compressive cube strength fck,cube 55 N/mm2

Mean value of cylinder compressive strength fcm 53 N/mm2

Mean value of axial tensile strength fctm 3.8 N/mm2

Secant modulus of elasticity Ecm 36000 N/mm2

Table 3.1: Properties of concrete C45/55

Description Sign Value Unit

Characteristic compressive cylinder strength fck 53 N/mm2

Characteristic compressive cube strength fck,cube 65 N/mm2

Mean value of cylinder compressive strength fcm 61 N/mm2

Mean value of axial tensile strength fctm 4.16 N/mm2

Secant modulus of elasticity Ecm 37846 N/mm2

Table 3.2: Properties of concrete C53/65

The steel in the scale model will consist of reinforcing steel and prestress-
ing steel. For the calculation of the amount of stirrups the properties of the
reinforcing steel are necessary. The quality of the reinforcing steel is B500B.
For the prestressing two types of steel are used, strands and bars. Strands
are used to prestress the girders and bars are used to prestress the slabs and
end cross beams. Tables 3.3, 3.4 and 3.5 specify the properties of the steel
qualities used.

Description Sign Value Unit

Characteristic yield strength fyk 500 N/mm2

Design value of modulus of elasticity Es 200000 N/mm2

Table 3.3: Properties of reinforcing steel B500B

Description Sign Value Unit

Characteristic tensile strength fpk 1860 N/mm2

Characteristic 0,1% proof-stress fp0.1k 1640 N/mm2

Design value of modulus of elasticity Ep 195000 N/mm2

Table 3.4: Properties of prestressing steel Y1860S
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Description Sign Value Unit

Characteristic tensile strength fpk 1100 N/mm2

Characteristic 0,1% proof-stress fp0.1k 900 N/mm2

Design value of modulus of elasticity Ep 205000 N/mm2

Table 3.5: Properties of prestressing steel Y1100H

3.2.2 Scale factors

Due to the massive dimensions of the Van Brienenoord bridge, the experi-
ment is carried out on a scale model. Making use of a scale model demands
exact determination of the scaled dimensions. Therefore scale factors are
introduced. Savides[12] has investigated the different scale factors for the
required parameters. Table 3.6 shows the expressions of the scale factors.
In the expressions the p is an abbreviation for prototype, which means in
this experiment the parameter of the Van Brienenoord bridge. The m in
the expressions represents the parameter of the scale model.

Scale factor Expression

Length (L) λL = Lp/Lm = x

Stress (σ) λσ = σp/σm = 1

Force (F ) λF = Fp/Fm = x2

Strain (ε) λε = εp/εm = 1

Moment (M) λM = Mp/Mm = x3

Area (A) λA = Ap/Am = x2

Section modulus (S) λS = Sp/Sm = x3

Moment of inertia (I) λI = Ip/Im = x4

Mass density (ρ) λρ = ρp/ρm = 1/x2

Table 3.6: Scale factors

Some comments have to be made to the scaling factors. The factors are
determined based on geometry and are linear. However, when investigating
punching shear failure non-linear terms are present like the perimeter. Also
it is unknown to what degree the scale effects influence the compressive
membrane action. He[6] describes the scale factors as conservative, so they
are used for designing the scale model.

In the experiment the model will be scaled down 1:2. The experiment
focuses on the bearing capacity of the slab, so the length and height are
scaled down exactly with a factor x = 2. Making use of the table of Savides,
all required parameters can be calculated.
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3.2.3 Deck slabs

The main objective of the experiment is finding the bearing capacity of
the cast in-situ transversely prestressed deck slabs. Therefore it is most
important to represent the slab of the Van Brienenoord bridge properly. By
using the scale factors of Savides the dimensions of the height and width
can be determinded.

hm =
hp
x

=
200

2
= 100mm (3.4)

wm =
wp
x

=
2100

2
= 1050mm (3.5)

Prestressing system

The deck slabs need to be transversely prestressed with varying levels of
prestressing, 1.25N/mm2 and 2.50N/mm2. To reduce the time of preparing
the scale model and demolishing after the experiment, the prestressing steel
will be post-tensioned and unbonded. Two types of prestressing systems
are considered, namely: post-tensioning of strands and post-tensioning of
bars. The two systems both have different advantages and disadvantages.
Decisive for the choice between the two systems is the necessity of anchors
when using strands. Due to the small center to center distance of the strands,
a lot of anchors are required which is very costly. When prestressing bars are
used, the bars can be anchored by just a steel plate which is a lot cheaper.
Another advantage of bars is the introduction of the prestressing force in the
slabs. The steel plates are positioned at the edge of the outer girders and
do not require additional length to introduce the prestressing force, while
the anchors of strands are several decimeters long. This would require some
additional concrete to the outer girders.

The prestressing bars are anchored at one side and stressed from the
other side. The stressing is achieved by pulling out the bar and then applying
a nut. When the bar is released, the proper amount of prestressing is present.
In this way it is easy to vary the prestressing level from 2.50N/mm2 to
1.25N/mm2 just by loosening the nuts. This is also an advantage of the
prestressing bars over the strands.

Dimensions prestressing system

As described in chapter 2, the transverse prestressing bars in the Van Brieneno-
ord bridge are positioned with an average center-to-center distance of 649mm
and a maximum center-to-center distance of 800mm. To model the most un-
favourable situation, the maximum center-to-center distance will be scaled
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down for the experiment.

c.t.c.m =
c.t.c.p
x

=
800

2
= 400mm (3.6)

One prestressing bar will load a concrete area of:

Ac,bar = 100 · 400 = 40000mm2

The bars are dimensioned on the situation of the highest transverse pre-
stressing level of σcp = 2.50N/mm2. The total force working on one bar
is:

Fbar = 40000 · 2.50 = 100kN

The prestressing bars used in the scale model are made by DYWIDAG-
Systems. The minimum cross section of one bar is:

Ap,bar =
100 · 103

900
= 112mm2

The bar with the smallest diameter of DYWIDAG-Systems is �15mm. The
area of this bar is Ap = 177mm, the yield strength is 136kN and the ultimate
strength is 195kN [3]. This type of bar will be selected to prestress the deck
slabs. Appendix G contains the documentation sheet of the DYWIDAG
Prestressing Steel Threadbar System.

Ap/mm =
177 · 1000

400 · 1000
= 0.4425mm2/mm (3.7)

To apply the bars to the slabs and girders, ducts are necessary. The min-
imum diameter of the duct for this type of bar is �20mm. However, to
ease the fitting, a more practical diameter is �50mm. When the girders
are positioned, it is easy to fit the bars in the ducts of the slabs. Therefore
the ducts in the slabs can be �40mm, in this way the amount of voids is
reduced.
The prestressing bars are anchored by steel plates. The dimensions of the
plates are 100mm by 130mm. To absorb irregularities at the edge of the
girder, felt is placed between the steel plate and the concrete. In this way
the prestressing is applied uniformly. The stress of the concrete behind the
anchor plate is:

σcp =
100 · 103

100 · 130
= 7.70N/mm2

The amount of prestressing necessary per bar for the two load situations is
specified in table 3.7.

σcp Fp
1.25N/mm2 50kN

2.50N/mm2 100kN

Table 3.7: Prestressing force per bar
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Reinforcement

The applied reinforcement in the Van Brienenoordbridge is �8− 200mm in
longitudinal direction and �8 − 250mm in transverse direction. The ratio
of reinforcement is kept the same in the prototype bridge and in the scale
model.

Longitudinal direction

ρp =
1
4 · π · 8

2 · 1000200

200 · 1000
= 0.00126

To keep the reinforcement ratio the same �4− 100mm can be applied:

ρm =
1
4 · π · 4

2 · 1000100

100 · 1000
= 0.00126

Transverse direction

ρp =
1
4 · π · 8

2 · 1000250

200 · 1000
= 0.00101

To keep the reinforcement ratio the same �4− 125mm can be applied:

ρm =
1
4 · π · 4

2 · 1000125

100 · 1000
= 0.00101

The reinforcement ratio is lower than the minimum reinforcement ratio, also
the bar diameter necessary to achieve the right ratio is very small. If big-
ger bars are used, the reinforcement would not be scaled down exactly and
therefore the experiment would be influenced in a too favourable way. Be-
cause of these issues it is decided to neglect the low amount of reinforcement
and only apply transverse prestressing.

3.2.4 Girders

The total length of the scale model is 12m, it is divided in one main span
of 10.95m and two cantilevers of 0.525m. The cantilevers ensure the trans-
mission of prestressing from the steel to the concrete.

Cross section

The shape of the cross section is determined by the shape of the Van
Brienenoord bridge. The prefabricated girders are made in the factory of
Spanbeton. By adapting an existing mould of Spanbeton, the costs will be
lower than making a complete new mould. Therefore some restrictions exist
on the cross section of the girder. Figure 3.1b shows the dimensions of the
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mould of Spanbeton. In consultation with Spanbeton, the cross section of
the girder will be produced according to figure 3.1a.

(a) Cross section girder (b) Mould of Spanbeton

Figure 3.1: Dimensions of the center girders

In the Van Brienenoord bridge the slab between the girders has a thick-
ness of 200mm. Scaling down with a factor 1:2, the slab thickness becomes
100mm in the scale model. To ensure the proper behaviour of the connec-
tion between the girder and slab, the top flange is also reduced to a thickness
of 100mm. Another restriction is the thickness of the web, the minimum
practical thickness for casting is 150mm. After the restrictions, the most im-
portant parameter is the moment of inertia in longitudinal direction. The
girders must have an equivalent stiffness to the Van Brienenoord bridge.
This can be achieved by scaling down the moment of inertia in longitudinal
direction according to Savides.

Ixx,m =
Ixx,p
x4

=
1.3197 · 1012

24
= 82.4813 · 109mm4 (3.8)

Due to the restrictions it is not possible to meet the required value. The
moment of inertia in longitudinal direction with the dimensions according
to figure 3.1a has a moment of inertia of Ixx = 70.2295 · 109mm4. This is
lower than the calculated value, the reduction is:

Reduction of Ixx =

(
1− 70.2295

82.4813

)
· 100% = 15% (3.9)

17



The moment of inertia in transverse direction also needs to be scaled down
according to Savides. The smallest width will be checked per meter length,
which is the web.

Iyy,m =
Iyy,p
x3

=
1
12 · 1000 · 2003

23
= 83.33 · 106mm4/m (3.10)

Due to the restrictions the thickness of the web cannot be smaller than
150mm. This results in a minimum moment of inertia in transverse direction
which is sufficient.

Iyy =
1

12
· 1000 · 1503 = 281.25 · 106mm4/m (3.11)

The outer girders will have to introduce the transverse prestressing force
into the slabs. They must also give some horizontal restraint to introduce
compressive membrane action. Both issues are solved by casting an addi-
tional part of concrete to the top flange of the outer girders. The extra
parts of 125mm provide a straight surface where the steel plates can be po-
sitioned and they also provide more stiffness in transverse direction. Figure
3.2 shows the additional part of concrete at the outer girders.

Figure 3.2: Additional part concrete outer girders

Prestressing steel

To determine the required amount of prestressing steel, two stages are con-
sidered namely:

• t=0: Self weight of the girder + prestressing force Pm0

• t=∞: Self weight of the girder + prestressing force Pm∞ + weight of
slabs + point load
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Description Sign Value Unit

Concrete area Ac 342900 mm2

Neutral axis to top fibre zc,top 565 mm

Neutral axis to bottom fibre zc,bottom 735 mm

Moment of inertia Ic 70.2295 · 109 mm4

Section modulus top Wc,top 124.300 · 106 mm3

Section modulus bottom Wc,bottom 95.550 · 106 mm3

Weight of the girder qG 0.857 ton/m

Table 3.8: Section properties girder scale model

The experiment focuses on the bearing capacity of the slab, so the girder
must be able to take the full point load without cracking. Therefore the
limits of prestressing become:

t = 0 :

1 ≥ σc ≥ −fcd

σc,top = −Pm0

Ac
+
Pm0 · e
Wc,top

− MG

Wc,top

σc,bottom = −Pm0

Ac
− Pm0 · e
Wc,bottom

+
MG

Wc,bottom

t =∞ :

fctm ≥ σc ≥ −fcd

σc,top = −Pm∞
Ac

+
Pm∞ · e
Wc,top

−
MG +MS +MQ

Wc,top

σc,bottom = −Pm∞
Ac
− Pm∞ · e
Wc,bottom

+
MG +MS +MQ

Wc,bottom

The losses at t =∞ for strands are assumed to be 15%.
The girder must not fail under an exceptionally large load of 1375kN .

However, the load is not positioned directly on top of the girder. The ec-
centricity of the load is geometrically determined according to figure 3.3. So
the girder is loaded by:

Fgirder =
1425

375 + 1425
· F = 0.8 · F = 0.8 · 1375 = 1100kN (3.12)
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Figure 3.3: Distribution of load over the girders

The length of the cantilevers in the structural model is determined ac-
cording to figure 3.4.

Figure 3.4: Cantilever length

Appendix A contains a Maple file which describes the force distribution
of the girder. The results of the file, the force distribution of the girder, are
discussed in appendix B. The following parameters were adapted to find the
correct stress distribution:
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Description Sign V alue Unit

Prestressing force Pm0 4951 kN

Eccentricity e 389 mm

Applied point load F 1100 kN

Table 3.9: Parameters adapted for design girders

The amount of prestressing steel can be calculated with the prestressing
force. Spanbeton uses strands of �15.7mm with an area of 150mm2. The
number of strands becomes:

Ap,min =
4951 · 103

1395
= 3549mm2

#strands =
3549

150
= 23.7

The required amount of prestressing steel to satisfy the stress conditions is 24
strands of �15.7mm. The eccentricity of the strands used in the calculation
is 389mm. Figure 3.5 shows the distribution of the strands which results
in the required eccentricity. The center of gravity of the strands is can be
calculated with the distribution.

z =
3 · 47 + 2 · 60 + 3 · 100 + 4 · 150 + 2 · (200 + 250 + 360 + 660 + 900 + 1200)

24
= 346mm

Transmission length

The cantilevers at both sides of the girder function as length over which
the prestressing force can be transferred from the steel to the concrete.
According to NEN-EN-1992-1-1 cl. 8.10.2 the length of the cantilevers is
sufficient to transfer the prestressing force. The dimensions of the cantilever
are depicted in figure 3.4.

The stress in the prestressing cable:

σpm0 =
4951 · 103

24 · 150
= 1375N/mm2

σpm∞ =
0.85 · 4951 · 103

24 · 150
= 1169N/mm2

It is assumed that the full design value of the tensile strength of the pre-
stressing steel is activated (which is a conservative approach):

σpd =
1860

1.1
= 1691N/mm2

fctd(t) is the design tensile strength at time of release:

fctd(t) = αct · 0.7 ·
fctm
γc

= 1.0 · 0.7 · 4.16

1.5
= 1.94N/mm2
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Figure 3.5: The distribution of the strands
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At release of the strands, the prestressing force is assumed to be transferred
to the concrete by a constant bond stress fbpt:

fbpt = ηp1 · η1 · fctd(t) = 3.2 · 1.0 · 1.94 = 6.2N/mm2

The basic value of the transmission length lpt is:

lpt = α1 · α2 ·� ·
σpm0

fbpt
= 1.0 · 0.19 · 15.7 · 1375

6.2
= 662mm

lpt1 = 0.8 · lpt = 530mm

lpt2 = 1.2 · lpt = 795mm

The bond strength for anchorage in ultimate limit state is:

fbpd = ηp2 ·η1 ·fctd = 1.2 ·1.0 ·
fctk,0.05
γc

= 1.2 ·1.0 · 0.7 · 4.16

1.5
= 2.3N/mm2

The total anchorage length for anchoring a strand having a stress σpd:

lbpd = lpt2+α2·�·
(σpd − σpm∞)

fbpd
= 795+0.19·15.7· (1691− 1169)

2.3
= 1472mm

Figure 3.6 shows the transmission lengths and the anchorage length in ulti-
mate limit state. The dotted line represents the strands at release and the
other line the strands at ultimate limit state.

Figure 3.6: Ultimate limit state with respect to anchorage failure

The position of the first flexural crack in ultimate limit state has to be
determined. The cracking moment has to be based on the characteristic
tensile strength of the concrete fck,0.05.

Mcr,bottom = (fck,0.05 + σcp,bottom)Wc,bottom (3.13)
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Figure 3.7 shows the location of the first flexural crack in ultimate limit
state. The crack occurs under the point load when it is applied at 2900mm,
so outside the anchorage length lbpd = 1472mm.

Figure 3.7: Moment distribution at first flexural crack in ULS [Nmm]

Reinforcing steel

Determination of the shear capacity of the girder starts with checking if the
girder is cracked or uncracked in the ultimate limit state. Therefore the
cracking moment must be known. The design flexural cracking moment:

Mcr = fr ·
Ic
y

= (−σcp + fctd) ·Wc (3.14)

Mcr,top =

(
0.85 · 4951 · 103

342900
+

0.7 · 4.16

1.5

)
· 124.300 · 106 = 1766.8kNm

Mcr,bottom =

(
0.85 · 4951 · 103

342900
+

0.7 · 4.16

1.5

)
· 95.550 · 106 = 1358.2kNm

The force distribution in the ultimate limit state:

MEd ∼ 1.35 · qG+S + 1.35 · F + 1.0 · Pm∞ (3.15)

From these conditions the cracked and uncracked parts can be obtained
resulting in figure 3.8. The moment distribution is depicted in section B.4.
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Figure 3.8: Overview of the cracked and uncracked parts

Table B.4 shows the maximum values of the moments and shear force
in the ultimate limit state. The maximum amount of shear force in the un-
cracked zone occurs when the point load is applied at 2dp from the support:
VEd = 1280.2kN . In the zones which are uncracked in the ultimate limit
state, the design value for the shear resistance of the concrete is calculated
by NEN-EN-1992-1-1 cl. 6.2.2(2).

VRd,c =
I · bw
S

√
f2ctd + αl · σcp · fctd (3.16)

VRd,c =
70.2295 · 109 · 150

70.90 · 106

√
1.942 + 1.0 · 0.85 · 4951 · 103

342900
· 1.94 = 780kN

The shear resistance of the concrete is not high enough for the occurring
shear force. However, for the experiment the shear resistance can be deter-
mined by taking the mean value of axial tensile strength. This results in a
capacity which is sufficient for the experiment.

VRd,c =
70.2295 · 109 · 150

70.90 · 106

√
4.162 + 1.0 · 0.85 · 4951 · 103

342900
· 4.16 = 1229kN

Structures with shear reinforcement, prestressed with straight
prestressing In the zone cracked in bending the calculation of the re-
quired shear reinforcement is almost the same as for reinforced concrete.
The only difference is the presence of the axial compressive stress σcp which
results in an increase of shear resistance.

In the uncracked zone both the uncracked compression zone and the un-
cracked tensile zone contribute to shear resistance. Because the cracks do
not proceed to the outer fibres of the beam, they hardly open. Therefore
the crack width is small and the shear reinforcement is only lightly stressed.
If the shear force is higher than the force that causes tensile splitting shear
failure, which implies that shear reinforcement has to be applied, the con-
tribution of the concrete is somewhat higher than in case of shear bending
failure. NEN-EN 1992-1-1 could take this positive effect into account by
allowing for a larger rotation of the compressive diagonal concrete struts.
This is not accounted for in the code: it is prescribed that the calculation of
the required amount of shear reinforcement should be carried out following
the same procedure as for the cracked zone. The design value for the shear
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resistance of the concrete is calculated by NEN-EN-1992-1-1 cl. 6.2.2(1) and
is the maximum value of:

VRd,c =
[
CRd,c · k · (100 · ρl · fck)

1
3 + k1 · σcp

]
· bw · d (3.17)

VRd,c,min = (vmin + k1 · σcp) · bw · d (3.18)

The effective depth dp is determined for the strands in the tension zone only,
so the four strands at the top in figure 3.5 are not taken into account. The
calculation of the shear resistance:

d = 1300− 205 = 1095mm

k = 1 +

√
200

d
= 1 +

√
200

1095
= 1.43 < 2.0

ρl =
3600

342900
= 0.010

σcp =
0.85 · 4951 · 103

342900
= 12.3N/mm2 > 0.2 ·fcd = 0.2 · 53

1.5
= 7.1N/mm2

VRd,c =
[
0.12 · 1.43 · (100 · 0.010 · 53)

1
3 + 0.15 · 7.1

]
· 150 · 1095 = 281kN

vmin = 0.035 · k
3
2 · f

1
2
ck = 0.0035 · 1.43

3
2 · 53

1
2 = 0.44

VRd,c,min = (0.44 + 0.15 · 7.1) · 150 · 954 = 247kN

Since 247kN is much lower than the occurring shear force, stirrups have
to be applied. The amount of stirrups is calculated according to NEN-EN-
1992-1-1 cl. 6.2.3(3) For members with vertical shear reinforcement, the
shear resistance VRd is the smaller value of:

VRd,s =
Asw
s
· z · fywd · cot θ (3.19)

VRd,max = αcw · bw · z · v1 ·
fcd

cot θ + tan θ
(3.20)

This requirement sets the limits of VRd,s and VRd,max:

VEd ≤ VRd,s, VRd,max (3.21)

VEd is maximum at the location of the first flexural crack. The location is
depicted in figure 3.8 and the maximum value is calculated in section B.4.

VEd = 1187kN
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z = 0.9d = 0.9 · 1095 = 986mm

θ = 25.2◦

The applied stirrups have a diameter of 10mm.

Asw = 2 · 1

4
· π · 102 = 157mm2

The amount of shear reinforcement per mm is:

Asw
s

=
VEd

z · cot θ · fywd
=

1187 · 103

0.9 · 1095 · cot 25.2 · 500
1.15

= 1.304mm2/mm

So the maximum spacing of the stirrups is:

s =
157

1.304
= 120.4mm

sapplied = 120mm

The shear resistance VRd is the smaller value of:

VRd,s =
157

120
· 0.9 · 1095 · 500

1.15
· cot 25.2 = 1192kN

VRd,max = 1.25·150·0.9·1095·0.6·
(

1− 53

250

)
·

53
1.5

cot 25.2 + tan 25.2
= 1189kN

Figure 3.9 shows the shear reinforcement of the girders.

(a) Reinforcement midspan (b) Reinforcement support

Figure 3.9: Reinforcement of the girders by Spanbeton
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3.2.5 Transversely prestressed end cross beam

Cross section

After the prestressed girders are placed the end cross beams can be casted.
The end cross beams provide stiffness in transverse direction by stabilizing
the girders. The presence of transverse prestressing increases the restraint
of the girders. By scaling down the end cross beam of the Van Brienenoord
bridge, the dimensions can be determined.

wm =
wp
x

=
700

2
= 350mm

The width of the end cross beams is 350mm, the height is dependant of the
height of the girders. There are some restrictions to the height of the end
cross beams. During the experiment the bottom side of the slabs need to
be inspected to investigate the cracking pattern, so there has to be space
to reach the bottom side. Therefore an opening of 300mm is located at
the bottom, which is the same height as the bottom flange. Between the
top flange of the girder and the end cross beams there has to be space for
loading close to the support. If this space was filled by the end cross beams,
they would support the slabs and this results in a too favourable ultimate
load. By having openings at the top and bottom of the girder, the end cross
beams have a cross section of 350×810mm. Figure 3.10 depicts an overview
of the dimensions of the end cross beams.

Prestressing steel

Because of the presence of transverse prestressing in the bridge deck slab,
the end cross beams need to be transversely prestressed as well. The amount
of prestressing must be approximately the same for a proper force transfer.
The slab is prestressed to 2.50N/mm2, so the end cross beam will get the
same amount. The total force necessary to prestress one end cross beam to
the same level as the slabs is:

Pm = Ac · σcp = 350 · 810 · 2.5 = 708.8kN

To introduce the prestressing force uniform, eight bars per end cross beam
are present. Therefore the force per prestressing bar is:

Fbar =
708.8

8
= 88.6kN

Appendix G contains the documentation sheet of the DYWIDAG Prestress-
ing Steel Threadbar System.

28



Figure 3.10: Dimensions end cross beams

3.2.6 Concrete to concrete interface

The girders and the slabs are connected by a concrete to concrete interface,
so the interfaces act as boundary conditions on the slabs. Therefore the
bearing capacity of the slabs is highly influenced by the properties of the
interface. The properties can be split up into two main parameters, namely:
the roughness and the skewness of the interface. The calculations of the
influence on the bearing capacity are described in section 4.3, this section
describes the properties applied in the scale model.

Roughness

One of the basic mechanisms for shear transfer is frictional resistance in
joint interfaces. The resistance depends on concrete to concrete friction. In
joints to precast elements the roughness of the joint faces may vary and the
shear resistance may concern uncracked as well as cracked conditions. The
roughness of joint faces can be controlled by treatment of the fresh concrete.
Joint faces can by classified with regard to its natural roughness, roughness
after special treatment or even specially formed shear keys[7]. Eurocode 2
distinguishes four surface classes for concrete to concrete interfaces.

The roughness of the interface of the scale model is introduced by placing
specially formed shear keys in the moulds. Over the whole length of the
interface, this special pattern is present. The shear keys are have the shape
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of a teardrop and are positioned in a rotated pattern. The height of the
teardrops is 1−2mm and the length and width are 30×10mm. The pattern
is depicted in figure 3.11.

Figure 3.11: Ruukki DIN 59220 teardrop pattern

Skewness

The skewness of the interface in the Van Brienenoord bridge is caused by
two issues, the skewness of the edge of the girders and the slope of the deck.
The edge of the girders is not a vertical plane, but lies under an angle with
a slope of approximately 1 : 100. In addition, the slabs which connect with
the girders lie also under an angle. Because the slope of the deck is difficult
to obtain in the scale model, these properties are represented by a skew
interface. The skewness of the interface is 5mm over the height of 100mm,
so a slope of 1 : 20. To investigate the influence of the skewness, not all
interfaces are skew. The scale model consists of three slab of which two
have skew interfaces. Figure 3.12 shows the skewness of the interface and
figure 3.13 shows the location of the skew interfaces.

Figure 3.12: Skewness of the interface
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Figure 3.13: Location skew interfaces

3.3 Loading

The scale model will be subjected to two types of loading, namely: transverse
prestressing and a wheel load. The prestressing system is described in section
3.2.3. The wheel load will be represented by a jack which is hanging on a
frame. By varying the position of the load, the scale model can be tested
over the whole surface. The influence of the following parameters can be
investigated by changing the loading of the experiment:

• Transverse prestressing level

1. 1.25N/mm2

2. 2.50N/mm2

• Position of wheel load

1. Center of slab

2. Edge of slab

• Amount of wheel loads

1. One

2. Two

• Concrete to concrete interface

1. Straight

2. Skew

• Influence transverse prestressing steel

1. Between two prestressing bars

2. On top of a prestressing bar
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3.4 Overview experiment set-up

The drawings are made by A. Bosman.

Figure 3.14: Top view experiment set-up
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Figure 3.15: Side view experiment set-up
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Figure 3.16: Front view experiment set-up

34



Chapter 4

Analytical calculations

4.1 Bearing capacity deck slab

4.1.1 Introduction

The bearing capacity of the deck slab will be determined by an experiment.
The dimensions of the scale model which will be tested during the experi-
ment are determined in chapter 3. This chapter will give a prediction for the
failure load of the slab cast between the girders, calculated analytically. The
purpose of an analytical calculation is to verify the output of the finite ele-
ment analysis which will be done afterwards. It will also create more insight
in the occurring failure mechanisms and their theoretical background.

4.1.2 Calculation method

The starting point of the calculation of the bearing capacity is the report
of De Rooij: Loading capacity of laterally restrained prestressed concrete
slabs[10]. This report describes two failure mechanisms, namely: bend-
ing and punching shear failure. The theory of both failure mechanisms is
elaborated in this report. However, when the theory is compared with ex-
perimental findings, only punching shear failure is considered. All the slabs
tested in the experiments failed by punching shear, therefore only this fail-
ure mechanism is considered in the analytical findings. The report shows
a flowchart for calculating the punching capacity of a concrete slab and is
depicted in figure 4.1.

The flowchart is designed to calculate the ultimate punching load Pu on
a transversely prestressed concrete slab. The calculation is done by a script
written in Matlab, which solves the equations of the theory by iteration. The
script is based on the theory of the Kinnunen and Nylander punching model.
Hewitt and Batchelor modified the model, so it incorporated the effect of
compressive membrane action. Hewitt and Batchelor proposed the usage
of a restraint factor η to express unspecified values of the horizontal force
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Figure 4.1: Flowchart for calculating punching capacity of a concrete slab
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Fb and moment Mb caused by lateral restraint in terms of the maximum
possible values Fb,max and Mb,max.

In the thesis written by Wei, Assessment of real loading capacity of
concrete slabs[15], this theory is explained. In the report of He, Punching
behaviour of composite decks with transverse prestressing[6], the way to
make use of prestressing in the model is presented. De Rooij[10] adjusted the
script to meet the boundary conditions of the models evaluated in his thesis.
Various scripts have been elaborated and compared with the experiments
carried out by He[6]. By comparing various scripts and experiments, two
calculation methods fit the output best.

1. Hewitt & Batchelor model + manually adjusting the restraint factor

2. Hewitt & Batchelor model + variable restraint by calculation

The difference in the variants on the Hewitt and Batchelor model are the
use of the restraint factor. The prestressing force increases the compressive
membrane action and therefore the restraining of the slab. In all the variants
the restraint factor is dependent on the prestressing level of the concrete.

The first method uses a graph following from the experiment He [6]
did. He found a relation between the transverse prestressing force and the
restraint factor. Different values for the restraint factor η are taken depend-
ing on the level of prestressing. When the restraint factor value is chosen it
does not change during the calculation. The restraint factor represents the
total confinement level of the slab, including the prestressing force.

Figure 4.2: η-TPL Relationship [6]
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The second method uses the method of superposition. It consists of two
calculations done separately, which result in Pua and Pub. The difference is
the adjustment of the restraint factor η. Pua is calculated with a restraint
factor of 0.2, which corresponds with the proportion of the surrounding
concrete only. Pub corresponds with the proportion of the prestressing of
the concrete and is calculated with a restraint factor of:

η =
Fp

Fb,max
(4.1)

4.1.3 Input calculation

The Matlab scripts have to be adjusted for the scale model of the Van
Brienenoord bridge. Therefore all the properties have to be adjusted. The
input is listed in this section.

Description Sign Value Unit

Diameter of the slab c 1050 mm

Major axis load area r1 200 mm

Minor axis load area r2 200 mm

Area of prestressing steel Ap 0.4425 mm2/mm

Height of the slab h 100 mm

Compressive strength of concrete fck 45 N/mm2

Cube compressive strength of concrete fcube 55 N/mm2

Compressive stress of concrete sigmap 1.25 - 2.50 N/mm2

Tensile strength of prestressing steel fpk 1100 N/mm2

Young’s modulus of prestressing steel Es 195000 N/mm2

Restraint factor eta variable -

Table 4.1: Input of scale model for Matlab scripts

Method 1 uses figure 4.2 to determine the restraint factor.

σcp[N/mm
2] η[−]

1.25 0.35

2.50 0.45

Table 4.2: Determination restraint factor η

The parameters listed above are fixed values. The dimensions of the
scale model can be measured precisely. The transverse prestressing of the
concrete can be adjusted to the right magnitude during the experiment, so
that parameter is controlled as well. The concrete quality is the only pa-
rameter subjected to change. Although it can be changed in the calculation
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afterwards, it is useful to investigate the influence of the concrete quality
beforehand.

4.1.4 Eurocode 2

To draw conclusions from the results of the calculations, it is useful to com-
pare the output of the scripts with the calculation of punching shear from
the Eurocode. The maximum punching shear load is calculated according to
NEN-EN-1992-1-1 cl. 6.4.4. The punching shear resistance of a slab should
be assessed for the basic control section according to 6.4.2. The design
punching shear resistance may be calculated as follows:

vRd,c = CRd,c · k · (100ρl · fck)
1
3 + k1 · σcp ≥ (vmin + k1 · σcp) (4.2)

The perimeter of the load area u:

u = 2(c1 + c2) + 4πd = 2 · (200 + 200) + 4π · 50 = 1428mm

The scaling coefficient k:

k = 1 +

√
200

d
= 1 +

√
200

50
= 3→ k = 2.0

The reinforcement ratio ρl:

ρl =
√
ρly · ρlz =

√
0.4425

100
· 0 = 0

Due to the fact that the reinforcement ratio of the slab is zero, the gov-
erning capacity of the punching shear resistance depends only on vmin and
the amount of transverse prestressing σcp. The transverse prestressing level
differs between 1.25 N/mm2 and 2.50 N/mm2, which influences the resis-
tance against punching shear failure. The higher the transverse prestressing,
the higher the resistance against punching shear failure. Therefore the two
levels have to be considered separately, starting with 1.25 N/mm2:

σcp =
(σcy + σcz)

2
=

1.25 + 0

2
= 0.625N/mm2

The resistance against punching shear failure is:

vRd,c1.25,min = 0.035 · 2.0
3
2 ·
√

45 + 0.1 · 0.625 = 0.73N/mm2
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The resistance against punching shear failure when the transverse pre-
stressing level is 2.50 N/mm2:

σcp =
(σcy + σcz)

2
=

2.50 + 0

2
= 1.25N/mm2

The resistance against punching shear failure is:

vRd,c2.50,min = 0.035 · 2.0
3
2 ·
√

45 + 0.1 · 1.25 = 0.79N/mm2

The maximum punching shear load can be calculated according with:

vRd,c = vEd =
VEd
u · d

=
1.35 · Pu
1428 · 50

Pu,1.25 =
1428 · 50

1.35
· 0.73 = 38.6kN

Pu,2.50 =
1428 · 50

1.35
· 0.79 = 41.8kN

4.1.5 Results

Method 1: Manually adjusting the restraint factor

Concrete class σcp[N/mm
2] η[−] Pu[kN ]

C40/50 1.25 0.35 244.2

C40/50 2.50 0.45 295.7

C45/55 1.25 0.35 268.8

C45/55 2.50 0.45 328.5

C50/60 1.25 0.35 292.7

C50/60 2.50 0.45 361.2

Table 4.3: Method 1: Pu for various concrete classes
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Figure 4.3: Method 1: Pu for various concrete classes

Method 2: Variable restraint by calculation

In method 2 the restraint factor η is output from the calculation.

Concrete class σcp[N/mm
2] η[−] Pu[kN ]

C40/50 1.25 0.35 315.4

C40/50 2.50 0.48 362.9

C45/55 1.25 0.33 329.3

C45/55 2.50 0.45 377.5

C50/60 1.25 0.32 343.5

C50/60 2.50 0.42 392.3

Table 4.4: Method 2: Pu for various concrete classes
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Figure 4.4: Method 2: Pu for various concrete classes

Supplemental results

The results described in the previous paragraph are calculated with fck and
d = 50mm. However, in the experiment the results can be higher, because
the mean value of the compressive strength is higher than the characteristic
value. Therefore the calculations have also been made with fcm. Another
influencing parameter is the effective depth. With the approximation of
d = 50mm a lower bound for the bearing capacity is found, because in this
approximation the lower half does not contribute to the strength. However,
during the experiment the lower half of the slab will also contribute to the
strength, so also the upper bound of the bearing capacity will be determined
with d = 100mm. The concrete class of the slab in the experiment is C45/55,
this is not adapted in the supplemental results.

Method 1 with fcm η [−] Pu [kN ]

σcp = 1.25N/mm2, d = 50mm 0.35 307.5

σcp = 2.50N/mm2, d = 50mm 0.45 381.0

σcp = 1.25N/mm2, d = 100mm 0.35 509.4

σcp = 2.50N/mm2, d = 100mm 0.45 535.1

Table 4.5: Supplemental results Method 1
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Method 2 with fcm η [−] Pu [kN ]

σcp = 1.25N/mm2, d = 50mm 0.31 352.4

σcp = 2.50N/mm2, d = 50mm 0.41 401.4

σcp = 1.25N/mm2, d = 100mm 0.33 616.2

σcp = 2.50N/mm2, d = 100mm 0.42 701.9

Table 4.6: Supplemental results Method 2

Horizontal restraining force

The horizontal force which restrains the slab is output from the scripts.
This value is important for the shear capacity of the concrete to concrete
interface because the extra membrane force increases the capacity.

σcp [N/mm2] Fb [kN ] Pu [kN ]

1.25 339.1 268.8

2.50 467.4 328.5

Table 4.7: Membrane force at failure

4.1.6 Conclusion

From the comparison with the Eurocode it can be concluded that both mod-
els result in a higher resistance against punching shear failure. This result
can be explained by the conservative calculation in the Eurocode. Both
models take into account the full prestressing in contrary to the Eurocode
which uses: k1 ·σcp = 0.1σcp. So only 10% of the prestressing is used for the
resistance against punching shear. The ratio between calculation method
1 and the Eurocode is approximately 7 and the ratio between calculation
method 2 and the Eurocode is approximately 9.

Some notes have to be added to the calculation methods using the Matlab
scripts. In the report of De Rooij[10], the lowest transverse prestressing level
is 2 N/mm2. Below that value the calculation methods are not compared
with experimental data. When method 1 is evaluated in the report, it can
be seen that the results differ the most at low levels of prestressing. The
accuracy improves when the prestressing increases. Method 2 overestimates
the maximum punching load with approximately 10%, but the results have
the same behaviour as the experimental data. The difference between the
experiments and the calculation method is constant at every prestressing
level.

Another note to the calculation methods is the use of a restraint factor.
In method 1 this factor is chosen in accordance with empirical data. In
method 2 the restraint factor is calculated and depends on the prestressing
force, which is added to the empirical data representing the surrounding
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concrete. Therefore the restraint factor is higher. However, the effect of
the surrounding concrete is not calculated accurately in both calculation
methods. So the exact restraint factor can only be obtained by comparing
the experimental results with the theoretical results afterwards. For this
comparison the transverse displacement of the girders should be monitored
during the experiment.

Figure 4.5: Results De Rooij: method 1
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Figure 4.6: Results De Rooij: method 2

4.2 Capacity Van Brienenoord bridge

The bearing capacity of the Van Brienenoord bridge is the final output of the
experiment. The results obtained by the Matlab scripts can be calculated
back to the ultimate load on the bridge. Several methods can be used to do
the calculation of scaling the results of the experiment:

• Scaling according to the size effect coefficient k

• Input of Van Brienenoord bridge into Matlab scripts

The slab in the scale model is unreinforced, so the effective depth of the
slab is small. In the Van Brienenoord bridge some reinforcement is present,
which enlarges the effective depth and therefore the scaling factor. If the
reinforcement of the Van Brienenoord bridge would be neglected, the com-
parison with the scale model is more realistic. Neglecting the reinforcement
of the Van Brienenoord bridge will result in a lower bound of the real ca-
pacity of the deck. Another reason to neglect the reinforcement is the fact
that the Matlab scripts do not take into account the reinforcing steel.
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4.2.1 Scaling according to the size effect coefficient k

Determination of the size effect coefficient:

Scale model: d = 100
2 = 50mm

k = 1 +
√

200
d = 1 +

√
200
50 = 3.0→ k = 2.0

u = 2 · (200 + 200) + 4π · 50 = 1428mm
Van Brienenoord bridge: d = 200

2 = 100mm

k = 1 +
√

200
d = 1 +

√
200
100 = 2.4→ k = 2.0

u = 2 · (200 + 200) + 4π · 100 = 2057mm

The size effect coefficient is equal for both the scale model and the Van
Brienenoord bridge. Therefore also the resistance against shear is the same,
because k is the only parameter which is dependent on the dimensions. The
ultimate load can be determined by vRd,c = vEd. Due to the fact that the
resistance is equal, also the stress due to the load must be equal.

vEd,scalemodel = vEd,V anBrienenoordbridge (4.3)

1.35 · Pu,scale
u · d

=
1.35 · Pu,V anBr

u · d
→

Pu,scale
1428 · 50

=
Pu,V anBr
2057 · 100

Pu,V anBr =
2057 · 100

1428 · 50
· Pu,scale = 2.880 · Pu,scale (4.4)

Calculation method 1 Pu,scalemodel[kN ] Pu,V anBrienenoordbridge[kN ]

σcp = 1.25N/mm2 268.8 774.1

σcp = 2.50N/mm2 328.5 946.1

Calculation method 2

σcp = 1.25N/mm2 329.3 948.4

σcp = 2.50N/mm2 377.5 1087.2

Table 4.8: Scaling back ultimate load Van Brienenoord bridge

46



4.2.2 Van Brienenoord bridge into Matlab scripts

Input

Description Sign Value Unit

Diameter of the slab c 2100 mm

Major axis load area r1 200 mm

Minor axis load area r2 200 mm

Area of prestressing steel Ap 0.4884 mm2/mm

Height of the slab h 200 mm

Compressive strength of concrete fck 45 N/mm2

Cube compressive strength of concrete fcube 55 N/mm2

Compressive stress of concrete sigmap 1.25 - 2.50 N/mm2

Tensile strength of prestressing steel fpk 1262 N/mm2

Young’s modulus of prestressing steel Es 195000 N/mm2

Restraint factor eta variable -

Table 4.9: Input of Van Brienenoord bridge for Matlab scripts

Results

Calculation method 1 Pu,V anBrienenoordbridge[kN ]

σcp = 1.25N/mm2 883.1

σcp = 2.50N/mm2 1138.6

Calculation method 2

σcp = 1.25N/mm2 850.8

σcp = 2.50N/mm2 1124.9

Table 4.10: Ultimate load Van Brienenoord bridge, loading plate 200× 200

The results of table 4.10 are calculated with a loading plate of 200mm ×
200mm. However, according to NEN-EN 1991-2 cl. 4.3.2, Load Model
1 consists of four wheel loads with a surface of 400mm × 400mm. The
bigger loading surface influences the bearing capacity of the slab positively.
Therefore the calculations are also done with a bigger loading surface, the
results are in table 4.11.

47



Calculation method 1 Pu,V anBrienenoordbridge[kN ]

σcp = 1.25N/mm2 1008.7

σcp = 2.50N/mm2 1324.1

Calculation method 2

σcp = 1.25N/mm2 1014.8

σcp = 2.50N/mm2 1384.3

Table 4.11: Ultimate load Van Brienenoord bridge, loading plate 400× 400

4.2.3 Conclusion

The difference between the up-scaled value of the scale model and the value
of the Van Brienenoord bridge can be explained by the amount and type
of prestressing steel applied. When the Van Brienenoord bridge dimensions
are inserted in the Matlab script, strands are used so the steel quality is
higher. On the other hand, the amount of steel per millimeter is less than
in the scale model. The prestressing level of the concrete remains the same.
When comparing the calculation methods, method 2 matches the outcome
of the scale model and the Van Brienenoord bridge best.

Using a larger loading plate influences the bearing capacity of the slab.
From the calculations with plates of 200 × 200 and 400 × 400, it results in
an increase of approximately 15% with the larger plates. This increase is
important when the experimental results are known. Then the results can
be scaled to determine the bearing capacity of the Van Brienenoord brigde.

4.3 Concrete to concrete interface

In a concrete to concrete interface subjected to shear loading, various mech-
anisms interact and influence each other. The occurring mechanisms are:

• Adhesive bonding

• Mechanical interlocking

• Friction

• Dowel action

When no interface reinforcement is applied in the interface, the behaviour
is brittle. Failure occurs at small slips of the interface. However, when
reinforcement is applied the behaviour of the interface becomes more ductile.
This results in larger slip of the interface at failure.
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Figure 4.7: Dimensions + shear distribution of the interface

4.3.1 Capacity of vertical interface

The maximum punching shear load is calculated according to NEN-EN-
1992-1-1 cl. 6.2.5:

vRdi = c · fctd + µ · σn + ρ · fyd · (µ sinα+ cosα) ≤ 0.5 · v · fcd (4.5)

fctd = αct ·
fctk,0.05
γc

= 1.0 · 2.7

1.5
= 1.8N/mm2

The stress per unit area caused by the minimum external normal force
across the interface that can act simultaneously with the shear force is σn.
This normal force can be caused by the transverse prestressing, but also
from the compressive membrane action. The minimum external force is
the prestressing. The calculation of the capacity of the interface with the
prestressing only results in a lower bound. If the compressive membrane
action is also taken into account, this results in an upper bound. The values
of the restraining force are given in table 4.7.

The calculations of the upper bound are done with fctd = fctm, because
fctd is too conservative for the experiment. This approximation causes an-
other increase of the capacity of the upper bound.
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Prestressing (lower bound)

• σn1.25 = 1.25N/mm2

• σn2.50 = 2.50N/mm2

Prestressing + compressive membrane action (upper bound)

• σn1.25 = 339.1·103
1450·100 = 2.34N/mm2

• σn2.50 = 467.4·103
1450·100 = 3.22N/mm2

The reinforcement which crosses the interface is not bonded to the con-
crete. Therefore the steel cannot be taken into account for shear capacity.

ρ = 0

v = 0.6 · (1− fck
250

) = 0.6 · (1− 45

250
) = 0.48

vRd,max = 0.5 · 0.48 · 50

1.5
= 8.0N/mm2

The maximum applied load can be calculated with:

vEd =
β · VEd
z · b

=
1.0 · 1.35 · 12 · Pu,i

100 · 1450
< vRdi

Pui <
2 · 100 · 1450

1.35
· vRdi

The area loaded in shear is determined by spreading of the load under
45◦. Half of the total load is taken by b = 1450mm and the height z =
100mm. Figure 4.7 shows the distribution of spreading.

Surface class c µ vRd,1.25 vRd,2.50 Pu,1.25[kN ] Pu,2.50[kN ]

Very smooth 0.25 0.5 1.08 1.70 230.9 365.2

Smooth 0.35 0.6 1.38 2.13 296.4 457.6

Rough 0.45 0.7 1.69 2.56 362.0 549.9

Indented 0.50 0.9 2.03 3.15 435.0 676.7

Table 4.12: Capacity of vertical interface (lower bound)
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Surface class c µ vRd,1.25 vRd,2.50 Pu,1.25[kN ] Pu,2.50[kN ]

Very smooth 0.25 0.5 1.85 2.29 396.3 490.9

Smooth 0.35 0.6 2.35 2.88 504.6 618.0

Rough 0.45 0.7 2.85 3.47 612.9 745.2

Indented 0.50 0.9 3.46 4.25 742.4 912.5

Table 4.13: Capacity of vertical interface (upper bound)

4.3.2 Skewness of the interface

The concrete to concrete interface is not a connection between two vertical
planes. A certain amount of skewness is present. The skewness of the
interface is 5mm horizontal over the height of 100mm, so 1:20. Therefore
an additional vertical force loads the concrete deck slab, which reduces the
shear capacity.

Figure 4.8: Skewness of the interface

Figure 4.9: Decomposition of forces

The vertical component created by the shape of the interface can be
calculated according to figure 4.9:
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• FH is the force caused by transverse prestressing.

• FV is the vertical component caused by the shape of the interface.

• F⊥ is the force working perpendicular to the plane of the interface.

tanα =
Fv
FH

=
5

100
(4.6)

fV = fH ·
5

100
(4.7)

The total reduction has to be calculated over the length of the interface:

1

2
· FV = fV · linterface = fV · 1450 (4.8)

4.3.3 Capacity of skew interface

Reduction due to transverse prestressing

The presence of transverse prestressing causes a horizontal force in the deck
slab. Due to the skewness of the interface a part of the prestressing loads
the slab extra in vertical direction. This extra load reduces the resistance
of the interface.

1

2
· FV = fV · linterface (4.9)

FV,1.25 = 2 · 100 · 1.25 · 5

100
· 1450 = 18.1kN

FV,2.50 = 2 · 100 · 2.50 · 5

100
· 1450 = 36.3kN

Reduction due to membrane action

Just like the transverse prestressing, the membrane forces causes an extra
reduction of the resistance of the interface.

1

2
· FV = fV · linterface (4.10)

FV,1.25 = 2 · 339.1 · 5

100
· 1450 = 49.2kN

FV,2.50 = 2 · 467.4 · 5

100
· 1450 = 67.8kN
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Capacity of the skew interface

The capacity of the skew interface can be calculated by taking the vertical
interface and reducing the capacity with the losses due to transverse pre-
stressing and membrane action. The results are collected in table 4.14 and
4.15.

Surface class Pu,1.25 [kN ] Pu,1.25,skew [kN ] Pu,2.50 [kN ] Pu,2.50,skew [kN ]

Very smooth 230.9 212.8 365.2 328.9

Smooth 296.4 278.3 457.6 421.3

Rough 362.0 343.9 549.9 531.6

Indented 435.0 416.9 676.7 640.4

Table 4.14: Capacity skew interface (lower bound)

Surface class Pu,1.25 [kN ] Pu,1.25,skew [kN ] Pu,2.50 [kN ] Pu,2.50,skew [kN ]

Very smooth 396.3 347.1 490.9 423.1

Smooth 504.6 455.4 618.0 550.2

Rough 612.9 563.7 745.2 677.4

Indented 742.4 693.2 912.5 844.7

Table 4.15: Capacity skew interface (upper bound)

4.3.4 Conclusion

According to section 3.2.6 the interface used in the scale model belongs to
surface class “smooth” of Eurocode 2. The height of the teardrops in the
patterned plate is 2mm, the interface would belong to surface class “rough”
if the roughness is at least 3mm. Eurocode 2 describes the surface class
‘smooth’ as follows:

“a slipformed or extruded surface, or a free surface left without further
treatment after vibration”

When the values of the lower bounds in tables 4.3, 4.4 and 4.15 are com-
pared, it can be concluded that the interface has enough capacity to resist
the wheel load until failure when the high level of prestressing is applied. If
the prestressing level is lowered to 1.25N/mm2 the capacity of the interface
is lower than the bearing capacity of the slab, so the scale model will fail at
the interfaces.

Comparing the values of the upper bounds in tables 4.5, 4.6 and 4.15, it can
be concluded that the capacity of the interface is enough when the effective
depth d is 50mm. When the maximum value is taken for d (= 100mm),
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the results of method 1 (table 4.5) can be taken only by the straight inter-
faces. However, the results of method 2 (table 4.6) are too high even for the
straight interfaces, so the scale model fails at the interfaces.
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Chapter 5

Finite Element Analysis

5.1 Introduction

The test set-up of the scale model is not only analysed analytically, but also
by using a finite element model. During this analysis it is possible to inves-
tigate the behaviour of the concrete slab which is loaded. Using incremental
step sizes, the decrease of stiffness due to cracking can be found. Also the
influence of the interface between the slab and the girder can be investi-
gated. The results will be presented in load-displacement curves which can
depict the different stages of the structure.

The software used to analyse the finite element models are:

• midas FX+ Version 3.1.0

• Mesh Editor Release 9.4.4

• DIANA Release 9.4.4

5.2 Model theses Bakker and De Rooij

5.2.1 Thesis Bakker

Bakker[2] investigated the influence of compressive membrane action in both
2D and 3D models. The 2D model consists of plane stress elements and
focuses on the failure mechanism bending. For the 3D model, Bakker used
an axisymmetric model which represents punch or a combination between
punch and bending. Figure 5.1 shows the plane stress model and figure 5.2
shows the axisymmetric model.
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Figure 5.1: Plane stress model Bakker

Figure 5.2: Axisymmetric model Bakker

One of the parameters Bakker investigated is the influence of tension soft-
ening on the failure mechanism. When comparing the finite element models
with experiments, Bakker found a change in failure mechanism. Making use
of tension softening instead of brittle material behaviour results in a struc-
ture which is too ductile. The models do not fail in punching shear, but fail
in bending. This is contradicting with the experiments.

5.2.2 Thesis De Rooij

De Rooij[10] investigated the presence of transverse prestressing on con-
crete slabs. Starting point of his investigation is the axisymmetric model
of Bakker. De Rooij added transverse prestressing to this model. Problem
with the model is the fact that it is axisymmetric, so the prestressing is ap-
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plied in radial direction to guarantee equally distribution. The prestressing
force is not inserted as an external force but as an imposed deformation
which introduces the right amount of prestressing. The model with imposed
deformation as prestressing is depicted in figure 5.3.

Figure 5.3: Axisymmetric model De Rooij

De Rooij compared the finite element model with the experiments carried
out by He[6]. At higher prestress levels, De Rooij found lower values for
the ultimate capacity than He. From this can be concluded that the 2D
axisymmetric model does not give a good indication of the behaviour of a
transverse prestressed concrete slab. De Rooij recommends to investigate
the influence of prestressing in a 3D model. In this way the prestressing
cables can be inserted in only one direction instead of radial direction. The
advantage is that the concrete is not influenced by the favourable uniform
prestressing in the other direction. Also the boundary conditions can be
modelled more realistically in a 3D model.

5.3 2D model

5.3.1 Introduction

Although the recommendation is to create a 3D model of the scale model
to investigate the bearing capacity of the slab, the starting point of the
finite element analysis will be a 2D model. This model is a cross section in
transverse direction of the deck and will give information about the amount
of arching action in the slab.

5.3.2 Properties

Plane strain

The 2D model represents a cross section of the scale model. Using the plane
strain state the cross section is approximated most realistic. Plane strain is
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defined to be a state of strain in which the strain normal to the x-y plane,
εz, and the shear strain γxz and γyz are assumed to be zero. In plane strain,
one deals with a situation in which the dimension of the structure in one
direction, the z-coordinate direction, is very large in comparison with the
dimensions of the structure in the other two directions (x- and y-coordinate
axes). The applied forces act in the x-y plane and do not vary in the z direc-
tion, the loads are uniformly distributed with respect to the large dimension
and act perpendicular to it. Plane strain elements are characterized by the
fact that their thickness t is equal to unity and that the strain components
perpendicular to the element face are zero: εzz = 0. Figure 5.4[4] shows the
conditions with respect to position and loading plane strain elements must
fulfil.

Figure 5.4: Characteristics of plane strain elements

Geometry

The 2D model represents a cross section of the scale model. The scale model
consists of four girders connected by three slabs cast in between. To provide
stiffness in transverse direction, end cross beams are applied at the ends of
the supports. The influence of these end cross beams is difficult to model in a
2D model, since their influence is not constant over the length of the girders.
The influence of the end cross beams is averaged out over the length of the
girders by filling the space between the girders with an elastic material. The
properties of the elastic material are discussed in the paragraph of materials.
Figure 5.5 shows the geometry of the 2D model. The units used to create
the model are N for the forces and mm for the dimensions. Plane strain
elements have a unit thickness, so the thickness of the 2D model is 1 mm.
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Figure 5.5: Geometry 2D model

Elements

The elements used for the 2D model have to be plane strain elements.

(a) CT12E (b) CQ16E

Figure 5.6: Plane strain elements for 2D model

The CT12E element (figure 5.6a) is a six-node triangular isoparametric
plane strain element. It is based on quadratic interpolation and area inte-
gration. This is done because triangular elements are integrated with an
integration rule different from the Gauss rule, which is a two dimensional
integration rule specifically for triangles. The area coordinates correspond
in a natural way to this integration scheme. The polynomial for the dis-
placements uX and uY can be expressed as:

ui(ξ, η) = a0 + a1ξ + a2η + a3ξη + a4ξ
2 + a5η

2 (5.1)

The CQ16E element (figure 5.6b) is an eight-node quadrilateral isopara-
metric plane strain element. It is based on quadratic interpolation and
Gauss integration. The polynomial for the displacements uX and uY can be
expressed as:

ui(ξ, η) = a0 + a1ξ + a2η + a3ξη + a4ξ
2 + a5η

2 + a6ξ
2η + a7ξη

2 (5.2)
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Materials

The materials used in the 2D model are two different strength classes for
concrete. The slab consists of C45/55 and the girder consist of C53/65. The
tabulated properties:

C45/55

Young’s Modulus Ecm 36000 N/mm2

Characteristic compressive cylinder strength fcm 53 N/mm2

Mean value of axial tensile strength fctm 3.8 N/mm2

Table 5.1: Properties concrete C45/55

C53/65

Young’s Modulus Ecm 37846 N/mm2

Characteristic compressive cylinder strength fcm 61 N/mm2

Mean value of axial tensile strength fctm 4.2 N/mm2

Table 5.2: Properties concrete C53/65

The presence of the end cross beam is included via an elastic material
connecting the girders. This material represents the influence of the end
cross beams at the supports of the scale model, to the area which is loaded.
The width over which the end cross beam is smeared out is determined in
figure 5.7. By spreading over an angle of 45◦ the width becomes 1450mm.
The total width of both end cross beams is 2 · 350 = 700mm. The elastic
material consists of plane strain elements, so they have a unit thickness.
Therefore the properties have to be inserted in the Young’s modulus.

Eendcrossbeams =
700

1450
· 37846 = 18270N/mm2
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Figure 5.7: Width over which the end cross beams are smeared out

Non-linear material properties Compressive membrane action can only
occur when the concrete structure behaves non-linear, the concrete cracks
under a certain amount of deformation resulting in membrane forces. To
include the non-linearity, both physical and geometrical non-linearity are
applied in the 2D model. The physical non-linear properties of concrete
define the behaviour of the concrete if the maximum compressive or ten-
sile stress is reached. DIANA [4] has several models based on total strain,
also called the ‘Total Strain crack models’, which describe the tensile and
compressive behaviour of a material with one stress-strain relationship.

(a) Tension curve: brittle (b) Compression curve: ideal

Figure 5.8: Physical non-linearity concrete

As described in section 5.2.1, Bakker[2] recommends to use brittle be-
haviour of concrete in tension. Figure 5.8a shows the predefined tension
softening function of this behaviour. The stress drops to zero when the
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cracking strain is reached. Due to the sudden drop of stress, this material
property can require a lot of iterations, because new equilibrium has to be
obtained.

For concrete in compression the constant compression function is chosen
to model the crushing behaviour of concrete. Figure 5.8b shows the prede-
fined compression function of this behaviour. This model is chosen because
of the uncertainties in the strength of the concrete. The prescribed strength
class used for the slabs is C45/55. However, in the experiment the actual
strength of the concrete is probably higher and will be determined by taking
test cubes. The actual strength can be included into a model to analyse the
experiment results.

Mesh

The experiment focuses mainly on the slabs between the girders. According
to the theory, the slabs have to crack before the phenomenon of compressive
membrane action is activated. To investigate the cracking of the slabs in
detail a fine mesh is chosen, five elements over the height of the slabs. The
girders and the end cross beams are designed to remain uncracked during
the experiment, meaning they will behave elastic. Therefore a more coarse
mesh is chosen for these materials. Figure 5.9 shows the mesh of the 2D
model.

Figure 5.9: Mesh + supports 2D model

Supports

The supports of the scale model are positioned at the end cross beams.
Because the 2D model is a cross section of the scale model, it is difficult to
specify the boundary conditions. The girders will deform due to the point
load applied on the slab, but this will have minor influence on the slabs.
Therefore it is a justifiable assumption to pin one girder and apply rollers
on the others. In this way the point load will go from the slab through
the girders to the supports in stead of via bending to the support in the
experiment. The supports are depicted in figure 5.9.
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Loads

The first load applied to the scale model is transverse prestressing. This will
load the slabs between the girders to enhance the bearing capacity. The load
is varied between 1.25N/mm2 and 2.50N/mm2. Also the end cross beams
are prestressed during the experiment. They will have the same amount of
prestressing as the slabs, so a maximum of 2.50N/mm2. Taking into account
this amount of prestressing, the elastic material between the girders must
be prestressed as well. Not the full prestressing will be present, but it will
be smeared out just like the calculation of the Young’s modulus.

σcp,endcrossbeams =
700

1450
· 2.50 = 1.21N/mm2

The point load will determine the bearing capacity of the concrete slabs.
This load is introduced as a displacement to the nodes which are loaded.
The surface loaded by the jack is 200 × 200mm, so in the 2D model the
displacement has a lenght of 200mm. In plane strain the assumption is
that the load is present over the whole length of the structure in stead of a
square 200 × 200. This is one of the disadvantages of using the 2D model.
By taking into account an effective width over which the load is distributed
like in figure 5.7, the load can be calculated back to the failure load of the
scale model. Figure 5.10 shows the loads on the 2D model.

Figure 5.10: Loads 2D model

Calculation method

The numerical method which is used is Regular Newton-Raphson and the
convergence criterion is the displacement norm. The loads are applied in
midas FX+ for DIANA. With Mesh Editor the loads are reduced to load
increments. The size of the increments is determined by trial and error. The
transverse prestressing force is applied in one load step, the displacement
representing the wheel load is applied in steps of 0.01mm. Appendix F
shows the DCF-file in which the exact loading of the 2D model is given.
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To determine the load caused by the increasing displacement, the reaction
forces in y-direction are summed. Then the results can be presented in
load-displacement curves.

5.3.3 Results

The results from the 2D model are load-displacement curves from the plane
strain state. However, the approximation is that there is an effective width
over which the load is spread. Therefore the load in the load-displacement
curves are multiplied with the effective width. In this way the influence of
spreading is taken into account.

Parametric study

To investigate the main factors influencing the bearing capacity of the slabs
a parametric study was conducted. The influence of the variables transverse
prestressing level and angle of spreading were investigated by comparing var-
ious values. For every set of parameters, the legend shows what is changed
in the set.

Restraint by surrounding concrete

By comparing a simple supported transversely prestressed slab with the scale
model will show the influence of lateral restraint. The dimensions of the slab
are the same as the slab in the scale model. Also the transverse prestressing
level is identical σcp = 2, 50N/mm2. Only the boundary conditions vary.
Figure 5.11 depicts the simple supported slab.

Figure 5.11: Simple supported transversely prestressed slab
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Figure 5.12: Results influence surrounding concrete

The influence of the surrounding concrete is clearly visible in figure 5.12.
By laterally restraining the concrete the slab has a higher stiffness, which
is due to the occurring phenomenon of compressive membrane action. The
graph of the unrestrained slab only has one drop in stiffness. This is because
the second drop represents the cracking of the slab at the supports, which
does not happen when the slab can rotate freely.

Transverse prestressing level

Another important parameter for the experiment is the transverse prestress-
ing level. As stated in previous sections, this level varies from 1.25N/mm2 to
2.50N/mm2. During the finite element analysis also a model is tested which
is not prestressed. This clearly shows the effect of transverse prestressing.
The load is positioned at the center slab at midspan.
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Figure 5.13: Results influence transverse prestressing level

One can easily see the influence of the transverse prestressing level in
figure 5.13. By increasing the prestressing level, the bearing capacity in-
creases. The slope of the graphs are equal, because the same amount of
restraint is present. The difference between the models is the elastic branch
of the load-displacement curves. With an increasing transverse prestressing
level, the elastic branch extends. In other words, the first crack is being
delayed when the transverse prestressing level increases. Another positive
effect of increasing the transverse prestressing level is the drop in force when
a crack occurs. Because the drop is smaller, the bearing capacity is higher
at the same displacement.

Both the delaying of cracks and small losses of stiffness are beneficial for
the serviceability limit state, because higher loads can be applied with the
same deflections of the slab.
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(a) εxx at disp = 0.35mm

(b) Crack pattern at disp = 0.35mm

(c) εxx at disp = 0.36mm

(d) Crack pattern at disp = 0.36mm

(e) εxx at disp = 0.49mm

(f) Crack pattern at disp = 0.49mm

(g) εxx at disp = 1.57mm

(h) Crack pattern at disp = 1.57mm

Figure 5.14: Strains and corresponding crack pattern at various load steps
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Figure 5.14 depicts the strains and corresponding crack pattern at vari-
ous load steps. These figures show the behaviour of the concrete slabs under
the wheel load. The elastic branch of the load-displacement curve ranges
from 0mm to 0.35mm. During the elastic branch the stiffness of the slab is
constant, because of the absence of cracks (figure 5.14b). The strains in this
part are all below the cracking strains which gives a smooth distribution.
The maximum strains are located at the edges of the wheel load and at the
connection with the girder (figure 5.14a). The compression arch is becoming
visible.
When the displacement of the wheel load is growing from 0.35mm to 0.36mm
the tensile strength of the concrete is exceeded. Due to the brittle tension
curve, the stress at that position drops to zero which results in a crack. The
cracks are located at the bottom of the slab under the edges of the wheel
load (figure 5.14d). The compression arch becomes more visible, because
the concrete part under the load contributes less to the total stiffness (fig-
ure 5.14c).
After the first crack occurred, the slab picks up stiffness again until the ten-
sile strength of the concrete is exceeded at the connection with the girder.
Figure 5.14f shows also cracks at both connections with the girders. From
this moment on the compression arch becomes most beneficial, because
mostly compression is present in the concrete. Only at the start of the
cracks, the concrete is in tension. Figure 5.14e shows the compression arch
clearly in dark blue. Only a few irregularities are present, which represent
the cracks.
The final stage is when the slab fails. Figure 5.14h shows that the concrete
under the wheel load is failed in tension. Therefore the model can not find
equilibrium any more and stops the calculation.
NOTE: When the experiment is carried out, a rubber block is used as load
surface to simulate a tire. This will result in a less sharp displacement
field and also a crack under the center of the load. Therefore applying the
load directly at the slab underestimates the capacity in comparison with the
experiment.

Angle of spreading

The angle of spreading is assumed to be 45◦ in figure 5.7. However, the effec-
tive width of the slab can only be obtained from the experiment. Therefore
this parameter is also investigated in advance. Three angles of spreading
are investigated, namely: 30◦, 45◦ and 60◦. These are assumed to be the
lower and upper bounds of the spreading angle.

By changing the angle of spreading, also the effective width over which
the spreading occurs changes. The effective width is calculated with the

68



following equation:

effective width = 200 + 2 ·
(

100 +
1050

2

)
· tanα (5.3)

With the new effective width, the corresponding influence of the end cross
beams can be calculated. Table 5.3 shows the properties for the Young’s
modulus and transverse prestressing level of the end cross beams for various
amounts of spreading.

Angle of spreading [◦] Effective width [mm] E [N/mm2] σcp [N/mm2]

30 922 28733 1.90

45 1450 18270 1.21

60 2365 11202 0.74

Table 5.3: Properties of end cross beams for various amounts of spreading

Figure 5.15: Results influence angle of spreading

Although the properties of the end cross beams are less rigid with an
increasing angle of spreading, the total stiffness of the structure is higher.
This is due to the multiplication with the larger effective width. The larger
effective width lowers the stresses in the concrete, which results in a higher
bearing capacity at a certain displacement of the wheel load. The actual
amount of spreading can be determined in the experiment, but can also be
output of a 3D model.
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Angle [◦] Load [kN] Ratio [-] Effective width [mm] Ratio [-]

30 223.0 0.63 922 0.64

45 354.2 1.00 1450 1.00

60 580.1 1.64 2365 1.63

Table 5.4: Comparison ratio capacity and effective width

Table 5.4 shows the ratios of the capacity and the effective width. The
increase in capacity should be directly related with the increase in effective
width, due to the extra portion of the slab which is taken into account. Table
5.4 shows the ratios numerically and figure 5.16 shows the ratios graphically.
In both comparisons the ratios are determined by dividing the results with
the values of 45◦. The ratio of the effective width can be calculated easily for
every value of the angle, but a change in angle requires an extra analysis of
the model to determine the capacity. Therefore only three angles are tested.
Figure 5.16 shows that the ratios are directly related.

Figure 5.16: Comparison ratio capacity and effective width

Loading center or outer slab

The position of the load is important for the experiment, if one situation
gives a very high result this should be known. Therefore the influence of
loading the different slabs is investigated. Both variants have a transverse
prestressing level of 2.50N/mm2 and the wheel load is applied at the middle
of the slab.
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Figure 5.17: Results influence loading center or outer slab

Between the two loading positions is a small difference in stiffness. This
difference can be explained by the amount of restraint given by the surround-
ing concrete. The center slab is located between two slabs and four girders,
so the horizontal support is more than for the outer slab where only one
girder gives horizontal support. However, the difference is not very large,
which means that the extra parts cast at the sides of the outer girders are
functioning. They are placed to introduce horizontal support and thereby
introduce compressive membrane action.

5.4 Influence concrete to concrete interface

In section 3.2.6 and 4.3 the properties of the concrete to concrete interface
are described. In this section the properties are inserted in the 2D model of
section 5.3.

5.4.1 Interface elements

The CL12I element (figure 5.18) is an interface element between two lines
in a two-dimensional configuration. The local xy axes for the displacements
are evaluated in the first node with x from node 1 to node 2. Variables are
oriented in the xy axes. The element is based on quadratic interpolation.
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(a) Topology (b) Displacements

Figure 5.18: Interface elements for 2D model

5.4.2 Coulomb friction criterion

The behaviour of the interface between the slabs and the girders is governed
by a frictional behaviour. Dry friction resists relative lateral motion of two
solid surfaces in contact. Coulomb friction is a model used to calculate the
force of dry friction. It is governed by the equation:

Ft = µFn (5.4)

where:

• Ft is the force of friction exerted by each surface on the other. It is
parallel to the surface, in a direction opposite to the net applied force.

• µ is the coefficient of friction, which is an empirical property of the
contacting materials.

• Fn is the normal force exerted by each surface on the other, directed
perpendicular (normal) to the surface.

Figure 5.19: Coulomb friction criterion

In DIANA the Coulomb friction model can be adapted by varying the
cohesion c and the coefficient of friction µ. It is also possible to introduce
a cut-off tensile strength, because the default value corresponds to the apex
of the Coulomb friction criterion ft = c/ tanφ.
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5.4.3 Properties

The properties of the concrete to concrete interface are specified in this sec-
tion, starting with the stiffness of the interface elements. An initial dummy
penalty stiffness is given to the interface elements in order to keep them ini-
tially inactive before the cut-off is reached. The dummy stiffness in normal
and tangential directions are determined with the following formulas:

kn = 1000 · Eelement
lelement

(5.5)

kt = 1000 · Gelement
lelement

(5.6)

kn = 1000 · 36000

20
= 1.8 · 106N/mm3

kt = 1000 · 15000

20
= 0.75 · 106N/mm3

The cut-off tensile strength is in case of a concrete to concrete interface not
fctm, because the bonding strength is lower than in ordinary concrete. For
the cut-off strength a value of fctk,0.05 is used.

fctk,0.05 = 2.7N/mm2

The properties of the roughness of the interface are determined in section
4.3. From the patterned plates used in the mould follows that the roughness
is of category ‘Smooth’ in Eurocode 2. The corresponding parameters are:

c = 0.35 · fctm = 0.35 · 3, 8 = 1, 33N/mm2

µ = tanφ = 0.6

Behaviour after gap appearance

For the behaviour after cracking of the interface, three Mode-II models are
examined:

• Brittle

• Constant Shear Retention

• Aggregate interlock relation of Walraven and Reinhardt

For the brittle model, no properties have to be inserted. The calculation
just ends when somewhere in the interface the limit stress is reached. The
Constant Shear Retention model requires a value for the reduced stiffness
after occurrence of a gap. Two values are examined, 1% and 10% of the
tangential stiffness. The aggregate interlock model of Walraven and Rein-
hardt requires the compressive strength of the concrete as input, which is
fcm = 53N/mm2.
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5.4.4 Results

Before the parametric study can be conducted, the influence of the four
Mode-II models has to be investigated. Figure 5.20 shows the load-displacement
curves of the models with a straight interface and a transverse prestressing
level of 2.50N/mm2.

Figure 5.20: Influence Mode-II models after gap appearance

From the graphs the behaviour of the different models can be obtained.
By comparing each model with the curve where no interface is applied, the
influence of the interface properties can be investigated. The brittle curve
immediately ends when it starts to deviate from the one without interfaces.
The explanation for the sudden stop is the brittle behaviour of the model,
it ends the calculation when the limit stress is reached. The behaviour
underestimates the capacity of the interface, because some shear capacity is
present when the interface opens. Therefore one of the other models is more
appropriate.

The Constant Shear Retention model allows some shear capacity when
the interface opens. The amount of resistance can be inserted via the reduced
stiffness. From the graphs can be obtained that a reduced stiffness of 1%
of the tangential stiffness results in an interface which is decisive for the
failure load. The 2D model fails at the positions of the interface due to
the interface properties. However, when a reduced stiffness of 10% of the
tangential stiffness is inserted in the 2D model, the interface is not decisive
any more, the slab fails due to cracking. During the experiment can be
obtained whether the interface or the slab fails, and then the percentage
can be adapted in the Constant Shear Retention model to the correct value.

Also in the aggregate interlock model of Walraven and Reinhardt the
interface is decisive for failure of the 2D model. Via the input of the com-
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pressive strength of the slab, the amount of shear resistance is calculated.
After comparison of the different Mode-II models, both Constant Shear

Retention models are used to conduct the parametric study. By taking both
models, two situations are investigated: one where the interface is decisive
and one where the slab is decisive.

Constant Shear Retention 10%

By investigating the development of membrane force in the slabs, the capac-
ity of the interface can be calculated. Figure 5.21 depicts the development
of the membrane force plotted against the displacement of the wheel load.
The shear capacity of the Coulomb friction model can be calculated with:

tt = c+ µ · tn (5.7)

Following from figure 5.20 the capacity of the interface is enough to
make the slab decisive for the failure load. However, figure 5.22 shows that
the capacity of the interface crosses the line of the loading. The crossing
represents the loading exceeds the capacity of the interface, which would
mean that the interface is decisive. The explanation for this contradiction
is equation 5.7, due to the properties of the interface after reaching the
limit stress, equation 5.7 can not be used any more. The capacity of the
interface is larger than calculated with the equation, due to the constant
shear retention part.

Figure 5.21: Membrane force development CSR 10%
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Figure 5.22: Capacity total deck CSR 10%

If the slab is decisive for the failure load, the finite element analysis can
be compared with the failure load calculated in tables 4.5 and 4.6. The
values of those tables are added to figure 5.22. From the graphs can be seen
that the loading almost reaches the capacity of the analytical results, which
is promising for both predictions.

The capacity of the failure load is also calculated according to Eurocode
2. By inserting the transverse prestressing force and the membrane action
into the equation, the capacity exceeds the value of section 4.1.4. Eurocode
2 still underestimates the capacity of the slab when it is compared with the
other methods.

Figure 5.23: Horizontal opening interface CSR 10%

Figure 5.23 shows the horizontal opening of the interface plotted against
the vertical displacement of the wheel load. The interface starts to open
when the wheel load has a vertical displacement of 0.3mm, from that point
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on the horizontal opening of the interface increases. The maximum opening
of the interface is 0.21mm.

Constant Shear Retention 1%

From figure 5.20 can be seen that the capacity of the interface is decisive
for the failure load. Also for the constant shear retention value of 1% of
the tangential stiffness the development of membrane action is investigated.
Figure 5.24 shows the development and with equation 5.7 the capacity of
the interface is calculated. Because the interface is decisive for the failure
load, the loading can not grow after the capacity of the interface is reached.
When the graphs of the capacity of the interface and the loading cross, the
calculation ends.

Figure 5.24: Membrane force development CSR 1%

Figure 5.25: Capacity total deck CSR 1%

Again, the capacity of the failure load is calculated according to Eu-
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rocode 2. Also in this comparison Eurocode 2 underestimates the capacity
of the slab, which can be seen by the crossing of the graphs of capacity and
loading.

Figure 5.26: Horizontal opening interface CSR 1%

Figure 5.26 shows the horizontal opening of the interface plotted against
the vertical displacement of the wheel load. The interface starts to open
when the wheel load has a vertical displacement of 0.3mm, from that point
on the horizontal opening of the interface increases. The maximum opening
of the interface is less than the Constant Shear Retention model with 10%
stiffness, because shear failure of the interface occurs at a lower displacement
of the wheel load.

Parametric study

After the taking a closer look to the capacity of the slabs and interfaces, the
parametric study can be conducted. Two parameters will be investigated,
namely:

• Influence of skewness interface

• Influence of distance between load and interface

Both investigations will be conducted with the Constant Shear Retention
of 1%, because if the interface is not decisive there will not be a difference
in bearing capacity. The transverse prestressing level will be 2.50N/mm2

during the investigation.

Skewness of interface

The skewness of the interface will be investigated by loading the two outer
slabs of the 2D model, in order to ensure the equal amount of restraint.
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Figure 5.27: Results influence skewness of interface

Figure 5.27 shows the comparison between the skew and the straight
interface. In chapter 4 it was determined that the capacity of the skew
interface would be lower, due to the extra vertical force. This reduction in
capacity is demonstrated again with this comparison of interface skewness.
However, the amount of reduction is very much depending on the input
parameters.

Distance load to interface

The distance between the load and the interface is an important parameter,
because this also influences the effective width of the slab. When the load is
positioned next to the interface, the amount of spreading is limited, which
results in a lower capacity. The investigation is performed on the skew inter-
face, because the previous parametric study stated that the skew interface
has the lowest capacity. Also the influence of the position of the interface is
investigated, both the interfaces next to the center girders as well as next
to the outer girders are tested. Assuming that the load is positioned next
to the interface, the amount of spreading is minimum.

effective width = 200 + 2 ·
(

100 +
200

2

)
· tan 45 = 600mm

Eendcrossbeams =
700

600
· 37846 = 44154N/mm2

σcp,endcrossbeams =
700

600
· 2.50 = 2.92N/mm2
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Figure 5.28: Influence of distance load to interface

Figure 5.28 shows the influence of the position of the load. When the
load is applied close to the interface the connection behaves brittle. This
brittle behaviour can be explained by the fact that the interface is loaded
in almost pure shear. Failure occurs even before the first crack in the slab
occurs, this results in a lower failure load of the 2D model when loading
next to the interface.

The influence of loading next to the center or outer girder is small. The
amount of horizontal restraint is different in both cases, but the difference in
stiffness is small. The minor difference can be explained by the fact that the
interface is loaded in almost pure shear, the influence of restraint contributes
less in this situation.

5.5 Conclusion

In this chapter various parameters which influence the behaviour of the
transversely prestressed concrete deck slabs are investigated. The model is
a 2D model and represents a cross section of the scale model in longitudinal
direction. Due to this assumption only in plane forces can be evaluated.

Both the influence of lateral restraint and an increasing level of trans-
verse prestressing enhances the behaviour of the concrete slabs. The lateral
restraint ensures an overall higher stiffness of the structure, while the in-
creasing transverse prestressing level delays the moment when the first crack
occurs. Both enhancements are very beneficial for the serviceability limit
state, because a higher load can be applied to an uncracked structure.

An important parameter to investigate during the experiment is the
angle of spreading of the load. This angle determines the effective width
and has a large influence on both the stiffness of the structure as well as
the bearing capacity. Because a larger concrete area is taken into account
with a larger angle, the stresses are lower which results in a higher bearing
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capacity.
A limitation of the model is the selected compression curve for the con-

crete. The ideal compression curve was chosen because the exact properties
of the concrete are still unknown. By using this curve only a maximum
stress is introduced. After reaching this value, the strains can increase and
the stress remains constant. This results in equal failure loads when differ-
ent levels of transverse prestressing are applied, because the slabs only fail
in tension. In reality the concrete would also crush in compression.

The properties of the interface between the girders and the slabs are very
important for both the stiffness of the 2D model as well as the failure load.
Various models have been investigated for the behaviour of the interface after
a gap appears. The Constant Shear Retention model has been investigated
in more detail. Two values of the input parameter ‘reduced stiffness’ resulted
in two different failure mechanisms. When the parameter is 10% of the
interface stiffness, the slab is decisive for the failure load. But when the
parameter is 1% of the interface stiffness, the interface becomes decisive.
During the experiment can be obtained which failure mechanism occurs and
then the model can be fine tuned.

A very important parameter of the experiment is the skewness of the
interface. In the previous chapter the forces of the skew interface are de-
composed, which resulted in an extra vertical force on the slabs. The extra
loading resulted in a lower capacity of the interface. The investigation of this
parameter via finite element analysis demonstrated again that the capacity
of the skew interface is considerably lower than the capacity of a straight
interface.

The punching capacity is the lowest when loading next to the interface.
When the load is applied close to the interface the connection behaves brittle.
This brittle behaviour can be explained by the fact that the interface is
loaded in almost pure shear. Failure occurs even before the first crack in
the slab occurs, which results in a lower failure load of the 2D model.
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Chapter 6

Conclusions and
recommendations

6.1 Conclusions

The main part of the research project is the effect of transverse prestressing
on compressive membrane action in the slender slabs of the Van Brienenoord
bridge. Due to the high slenderness of the slabs, the foreign design codes
state that the amount of compressive membrane action is too small to take
into account. However, the hypothesis is that the transverse prestressing
would enhance the compressive membrane action.

Two analytical methods are used to calculate the bearing capacity of the
slabs. Although these methods have not been validated with a lot of tests,
the results are promising. Especially in comparison with Eurocode 2, the
methods give results which are 7 to 9 times higher. This increase in capacity
can be explained by the occurring phenomenon of compressive membrane
action.

During the finite element analysis it is demonstrated that the transverse
prestressing level influences the bearing capacity of the slabs. The occur-
rence of a compression arch is clearly visible when the strains are examined.
Also the behaviour of the slabs changes when the level is adapted. The first
moment of cracking delays when the prestressing level increases, which is
beneficial in the serviceability limit state. A disadvantage of a higher pre-
stressing level is a more brittle behaviour of the structure, the failure load
is reached at a smaller deflection of the slab.

The properties of the interface between the girders and the slabs are very
important for both the stiffness of the 2D model as well as the failure load.
Various models have been investigated for the behaviour of the interface after
a gap appears. The Constant Shear Retention model has been investigated
in more detail. Two values of the input parameter ‘reduced stiffness’ resulted
in two different failure mechanisms. When the parameter is 10% of the
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interface stiffness, the slab is decisive for the failure load. But when the
parameter is 1% of the interface stiffness, the interface becomes decisive.
Because the capacity of the interface can change the failure mechanism, it
is very important to monitor the occurring failure mechanism during the
experiment. Afterwards, the parameter of the interface can be obtained by
comparing the experiment and finite element model.

A very important parameter of the experiment is the skewness of the
interface. When the forces of the skew interface are decomposed, an extra
vertical force loads the slabs. The extra loading results in a lower capac-
ity of the interface. The investigation of this parameter via finite element
analysis demonstrates that the capacity of the skew interface is considerably
lower than the capacity of a straight interface. Therefore the tests on the
slabs supported by skew interfaces is indispensable and determines the lower
bound of the capacity of the scale model.

The experiment will be carried out to determine the remaining bearing
capacity of the Van Brienenoord bridge. When the failure loads during
the experiment reach the values of the prediction in this thesis, the Van
Brienenoord bridge will meet the requirements of structural safety. This
is demonstrated by scaling back to the dimensions of the bridge. Add to
this the increased concrete quality due to ongoing hydration and then the
capacity increases even more. That would mean that strengthening the
bridge is not necessary yet.

6.2 Recommendations

The recommendations focus on the finite element analysis. Two modifica-
tions can be made to improve the 2D model. The first modification is taking
another compression curve for the concrete slabs. The ideal plastic compres-
sion curve just introduces a maximum value for the compressive strength.
When that value is reached, the compressive strain increases while the stress
remains constant. This results in similar failure loads with varying trans-
verse prestressing levels. The only difference is that the failure load occurs
at a larger displacement. By taking test cubes from the concrete of the
slabs during the experiment set-up and inserting these properties into the
2D model, the failure load will not be equal at varying prestressing levels
due to crushing of the concrete.

The second modification to the 2D model is to use the exact angle of
spreading which can be measured during the experiment. In the finite ele-
ment analysis a lower and upper bound are taken, which results in a certain
range of effective widths. By measuring the effective width in the experi-
ment and inserting this value in the 2D model’s properties, the output from
the calculation is more accurate.

Although the two modifications improve the 2D model, it still does not
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represent the experiment accurately. The explanation for this is the absence
of the failure mechanism punching shear in a 2D model. Because only a
cross section of the scale model is analysed, the three dimensional effect is
not included in the finite element analysis. The only way to include this
mechanism is to create a 3D model.
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Appendix A

Maple force distribution
girders

r e s t a r t :
w1 := (C1∗xˆ3+C2∗xˆ2+C3∗x+C4+(1/24)∗q∗xˆ4)/ EI :
w2 := (C5∗xˆ3+C6∗xˆ2+C7∗x+C8+(1/24)∗q∗xˆ4)/ EI :
w3 := (C9∗xˆ3+C10∗xˆ2+C11∗x+C12+(1/24)∗q∗xˆ4)/ EI :
w4 := (C13∗xˆ3+C14∗xˆ2+C15∗x+C16+(1/24)∗q∗xˆ4)/ EI :

phi1 := −( d i f f (w1 , x ) ) :
phi2 := −( d i f f (w2 , x ) ) :
phi3 := −( d i f f (w3 , x ) ) :
phi4 := −( d i f f (w4 , x ) ) :

M1 := EI ∗( d i f f ( phi1 , x ) ) :
M2 := EI ∗( d i f f ( phi2 , x ) ) :
M3 := EI ∗( d i f f ( phi3 , x ) ) :
M4 := EI ∗( d i f f ( phi4 , x ) ) :

V1 := d i f f (M1, x ) :
V2 := d i f f (M2, x ) :
V3 := d i f f (M3, x ) :
V4 := d i f f (M4, x ) :

x := 0 :
eq1 := M1 = −P∗e :
eq2 := V1 = 0 :

x := x1 :
eq3 := w1 = 0 :
eq4 := w1 = w2 :
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eq5 := phi1 = phi2 :
eq6 := M1 = M2:

x := x2 :
eq7 := w2 = w3 :
eq8 := phi2 = phi3 :
eq9 := M2 = M3:
eq10 := V2 = V3+F:

x := x3 :
eq11 := w3 = 0 :
eq12 := w3 = w4 :
eq13 := phi3 = phi4 :
eq14 := M3 = M4:

x := l :
eq15 := M4 = −P∗e :
eq16 := V4 = 0 :

s o l u t i o n := s o l v e ({ eq1 , eq2 , eq3 , eq4 , eq5 , eq6 , eq7 , eq8 ,
eq9 , eq10 , eq11 , eq12 , eq13 , eq14 , eq15 , eq16 } ,
{C1 , C10 , C11 , C12 , C13 , C14 , C15 , C16 , C2 , C3 , C4 , C5 ,
C6 , C7 , C8 , C9 } ) : a s s i g n ( s o l u t i o n ) : x := ’x ’ :

w := p i e c e w i s e ( x < x1 , w1 , x1 < x and x < x2 , w2 ,
x2 < x and x < x3 , w3 , x > x3 , w4 ) :
M := p i e c e w i s e ( x < x1 , M1, x1 < x and x < x2 , M2,
x2 < x and x < x3 , M3, x > x3 , M4) :
V := p i e c e w i s e ( x < x1 , V1 , x1 < x and x < x2 , V2 ,
x2 < x and x < x3 , V3 , x > x3 , V4 ) :

x1 := 525 :
x2 := 6000 :
x3 := l−x1 :
l := 12000 :

# Parameters
# t=0
A := 342900:
E := 37846 :
I c := 70.229454348∗10ˆ9 :
EI := E∗ I c :
l := 12000 :
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zctop := 565 :
zcbot := 1300− zctop :
e := zcbot −346;
Wcbot := Ic / zcbot ;
Wctop := Ic / zctop ;

Mcrt := (4.155+P/( . 85∗A))∗Wctop :
Mcrb := (4.155+P/( . 85∗A))∗Wcbot :

q := 25 .0∗A∗10ˆ(−6):
P := 0 :
F := 0∗10ˆ3:

p l o t (−w, x = 0 . . l ) ;

p l o t ({Mcrt , −M, −Mcrb} , x = 0 . . l ) ;
x := x1 : p r i n t (M2) : x := x2 : p r i n t (M2) : x := ’x ’ :

p l o t (V, x = 0 . . l ) ;
x := x1 : p r i n t (V1 , V2 ) : x := x2 : p r i n t (V2 ) : x := ’x ’ :

# t=i n f i n i t y
q := ( (A+1050∗100)∗25.0)∗10ˆ(−6):
P := (1− .15)∗P:
F := 1100∗10ˆ3:

p l o t (−w, x = 0 . . l ) ;

p l o t ({Mcrt , −M, −Mcrb} , x = 0 . . l ) ;
x := x1 : p r i n t (M2) : x := x2 : p r i n t (M2) : x := ’x ’ :

p l o t (V, x = 0 . . l ) ;
x := x1 : p r i n t (V1 , V2 ) : x := x2 : p r i n t (V2 ) : x := ’x ’ :

# Shear f o r c e
x2 := x1+2∗( zctop+e ) ;
q := 2 5 . 0∗ ( 1 . 3 5∗ (A+1050∗100))∗10ˆ(−6):
P := 4951∗(1− .15)∗10ˆ3:
F := (1 .35∗1100)∗10ˆ3 :

p l o t ({Mcrt , −M, −Mcrb} , x = 0 . . l ) ;
x := x1 : p r i n t (M2) : x := x2 : p r i n t (M2) : x := ’x ’ :

p l o t (V, x = 0 . . l ) ; x := x2 : p r i n t (V2 ) : x := ’x ’ :
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Appendix B

Force distribution girders

Appendix A contains a Maple file which describes the force distribution of
the girder. The results of the file, the force distribution of the girder, are
discussed in this appendix. The following parameters were adapted to find
the correct stress distribution:

Description Sign V alue Unit

Prestressing force Pm0 4951 kN

Eccentricity e 389 mm

Applied point load F 1100 kN

Table B.1: Parameters adapted for design girders

In the figures below all the situations are reviewed. The effect of pre-
stressing is not taken into account in the distribution, it is included when
the stresses are calculated.

B.1 Determination maximum prestressing force

t=0: Self weight of the girder + prestressing force Pm0

Figure B.1: Structural model at t = 0
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Figure B.2: Moment distribution at t = 0 [Nmm]

Figure B.3: Shear distribution at t = 0 [N]
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Figure B.4: The location of the cross sections

t = 0 CrosssectionA CrosssectionB

Moment [kNm] -1.2 127.3

Shear force [kN] 46.9 0.0

Table B.2: Values at cross sections t = 0

Values at cross sections

Cross section A

σc,top = −Pm0

Ac
+
Pm0 · e
Wc,top

− MG

Wc,top

σc,top = −4951 · 103

342900
+

4951 · 103 · 389

124.300 · 106
− −1.2 · 106

124.300 · 106
= 0.99N/mm2

σc,bottom = −Pm0

Ac
− Pm0 · e
Wc,bottom

+
MG

Wc,bottom

σc,bottom = −4951 · 103

342900
+

4951 · 103 · 389

95.550 · 106
− −1.2 · 106

95.550 · 106
= −34.50N/mm2

Cross section B

σc,top = −Pm0

Ac
+
Pm0 · e
Wc,top

− MG

Wc,top

σc,top = −4951 · 103

342900
+

4951 · 103 · 389

124.300 · 106
− 127.3 · 106

124.300 · 106
= −0.05N/mm2

σc,bottom = −Pm0

Ac
− Pm0 · e
Wc,bottom

+
MG

Wc,bottom

σc,bottom = −4951 · 103

342900
+

4951 · 103 · 389

95.550 · 106
− 127.3 · 106

95.550 · 106
= −33.16N/mm2
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B.2 Determination minimum prestressing force

t=∞: 1.35× Self weight of the girder + 1.0× prestressing force Pm∞
+ 1.35× weight of slabs + 1.35× point load)

Figure B.5: Structural model at t =∞ situation 1

Figure B.6: Moment distribution at t =∞ situation 1 [Nmm]
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Figure B.7: Shear distribution at t =∞ situation 1 [N]

Figure B.8: The location of the cross sections

t =∞situation1 CrosssectionA CrosssectionB

Moment [kNm] -1.6 3177.5

Shear force [kN] 611.3 550.0

Table B.3: Values at cross sections t =∞ situation 1

Values at cross sections

Cross section A

σc,top = −Pm∞
Ac

+
Pm∞ · e
Wc,top

−
MG +MS +MQ

Wc,top
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σc,top = −0.85 · 4951 · 103

342900
+

4951 · 103 · 389

124.300 · 106
− −1.6 · 106

124.300 · 106
= 0.84N/mm2

σc,bottom = −Pm∞
Ac
− Pm∞ · e
Wc,bottom

+
MG +MS +MQ

Wc,bottom

σc,bottom = −0.85 · 4951 · 103

342900
+

4951 · 103 · 389

95.550 · 106
− −1.6 · 106

95.550 · 106
= −29.33N/mm2

Cross section B

σc,top = −Pm∞
Ac

+
Pm∞ · e
Wc,top

−
MG +MS +MQ

Wc,top

σc,top = −0.85 · 4951 · 103

342900
+

4951 · 103 · 389

124.300 · 106
− 3177.5 · 106

124.300 · 106
= −24.73N/mm2

σc,bottom = −Pm∞
Ac
− Pm∞ · e
Wc,bottom

+
MG +MS +MQ

Wc,bottom

σc,bottom = −0.85 · 4951 · 103

342900
+

4951 · 103 · 389

95.550 · 106
−3177.5 · 106

95.550 · 106
= 3.94N/mm2

B.3 Determination maximum shear force

t=∞: 1.35× Self weight of the girder + 1.0× prestressing force Pm∞
+ 1.35× weight of slabs + 1.35× point load)

Figure B.9: Structural model at t =∞ situation 2

The purpose of this stage is to calculate the maximum shear force working
on the scale model. For this calculation the ultimate limit state is required.
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Therefore the load factors are included which are 1.35. Only the value at
cross section D is of interest according to NEN-EN-1992-1-1 cl. 6.2.2(6).
Cross section D is located at 2d from the support, which results in the
highest value of VEd because the reduction factor is 1.0 at 2d.

Figure B.10: Shear distribution at t =∞ situation 2 [N]

Figure B.11: The location of the cross sections

t =∞situation2 CrosssectionA CrosssectionD

Moment [kNm] -2.1 2468.0

Shear force [kN] 1309.0 1280.2

Table B.4: Values at cross sections t =∞ situation 2
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B.4 Determination location first flexural crack in
ULS

t=∞: 1.35× Self weight of the girder + 1.0× prestressing force Pm∞
+ 1.35× weight of slabs + 1.35× point load)

The cracking moment of the bottom part of the girder is:

Mcr,bottom =

(
0.85 · 4951 · 103

342900
+ 4.16

)
· 95.550 · 106 = 1570kNm

The first flexural crack in the ultimate limit state occurs at 3050mm
according to figure B.12. The shear force at that location is depicted in
figure B.13 and is VEd = 1187kN .

Figure B.12: Location of the first flexural crack in ULS
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Figure B.13: Shear force at location of the first flexural crack in ULS
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Appendix C

Matlab method 1

f unc t i on [Pu ] = KN ( c ,B, d , rho , fck , f sy , Es , eta , fcube , h)
% c = diameter o f the s lab , g iven in [mm]
% r1 = major ax i s e l l i p s o f load area [mm]
% r2 = minor ax i s e l l i p s o f load area [mm]
% B = f i c t i o u s diameter o f the load area , g iven in [mm]
% Ap = area o f p r e s t r e s s i n g s t e e l [mm2]
% h = he ight o f conre te s l ab [mm]
% rho = re in fo r cement percentage
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fck = compress ive s t r ength o f concrete , g iven in [N/mm2]
% sigmap = compress ive s t r e s s in conc re t e due to p r e s t r e s s i n g [N/mm2]
% Fp = p r e s t r e s s i n g f o r c e [N]
% fpk = c h a r a c t e r i s t i c t e n s i l e s t r ength o f p r e s t r e s s i n g s t e e l [N/mm2]
% f sy = remaining capac i ty o f y i e l d s t r e s s o f p r e s t r e s s i n g s t e e l [N/mm2]
% Es = modulus o f e l a s t i c i t y o f p r e s t r e s s i n g s t e e l [N/mm2]
% eta = r e s t r a i n t f a c t o r
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
%
% The value o f Pu w i l l be re turn in [kN ]
%
% Sta r t i ng Assumption
c = 1050 ;
r1 = 200 ;
r2 = 200 ;
B = ( r1 ∗ r2 ) ˆ 0 . 5 ;
Ap = 0 . 4425 ;
h = 100 ;
rho = Ap / h ;
d = h / 2 ;
f ck = 45 ;
fcube = 55 ;
sigmap = 2 . 5 ;
Fp = sigmap ∗ h ;
fpk = 1100 ;
f s y = fpk − (Fp / Ap) ;
Es = 1.95 ∗ 10ˆ5 ;
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eta = 0 . 4 5 ;
dde l ta = 1 ;
j = 0 ;
d e l t a = 0.99∗h ;
whi l e abs ( dde l ta / de l t a ) > 0 .01
j = j + 1 ;
i f j > 300
break
end
Fc = 0 .8 ∗ 2/3 ∗ f ck ∗ (h/2 − de l t a / 4 ) ;
Ft = d ∗ rho ∗ f s y ;
Fbmax = Fc − Ft ;
Mbmax = (Ft ∗ (2 ∗ d − h) − Fc ∗ (d − 13∗h/16 − 3 ∗ de l t a / 3 2 ) ) ;
Fb = eta ∗ Fbmax
Mb = eta ∗ Mbmax;
X = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb) ;
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
de l t a1 = 1/2∗ t a s i ∗( c−B) ;
dde l ta = de l t a − de l ta1 ;
d e l t a = de l ta1 ;
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
Pu = (p1+p2 ) /2 ;
f unc t i on [ P1 ] = P1 (B, y , d , fcube ,TA)
% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
% TA = tan ( alpha )
%
% ca l c u l a t e f t
%
i f B/d < 2
f t = 825 ∗ ( 0 . 35 + 0.3∗ ( fcube /150))∗ (1 − 0 .22 ∗ (B / d ) ) ;
e l s e
f t = 460 ∗ ( 0 . 35 + 0 .3 ∗ ( fcube /150 ) ) ;
end
%
% ca l c u l a t e fa lpha
%
fa lpha = TA ∗ (1 − TA)/(1 + TA ∗ TA) ;
%
% ca l c u l a t e P1
P1 = pi ∗ (B / d) ∗ ( y / d) ∗ (B + 2 ∗ y ) / (B + y) ∗ f t ∗ f a lpha ∗ d ∗ d /1000 ;
func t i on [ P2 ] = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb)
% c = diameter o f the s lab , g iven in [mm]
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% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% f sy = y i e l d s t r e s s o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% Es = modulus o f e l a s t i s i t y o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% X = boundary moment and normal f o r c e r a t i o
% rho = re in fo r cement percentage
% Fb = ho r i z on t a l l a t e r a l normal f o r c e , g iven in [kN ]
%
% Calcu la t e kz
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
% Calcu la t e R1 R2overBeta
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
r s = Es / f s y ∗ t a s i ∗ (d − y ) ;
C0 = B/2 + 1 .8 ∗ d ;
i f r s > C0
R1 = rho ∗ f s y ∗ d ∗ ( ( r s − C0) + r s ∗ l og ( c /(2 ∗ r s ) ) ) / 1 000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ C0/1000 ;
e l s e
R1 = rho ∗ f s y ∗ d ∗ r s ∗ l og ( c /(2∗C0) )/1000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ r s /1000 ;
end
%
% Calcu la t e P2
%
P2 = 2 ∗ pi / kz ∗ (R1 + R2overBeta + Fb ∗ ( c /2/1000) ) ;
f unc t i on [ ta ] = calTA ( c ,B, d , y ,X)
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
A = 1/4.7∗(1+y/B)∗ l og ( c /(B+2∗y ) ) ;
ta = ( ( kz + 1)− s q r t ( ( kz + 1)∗ ( kz + 1) − 4 ∗ ( kz + A)∗ (A + 1) ) ) / ( 2∗ ( kz+A) ) ;
f unc t i on [ y ] = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X)
dp = 10 ;
n = 0 ;
y = d ;
whi l e abs (dp)>0.1
n = n+1;
i f n > 300
break
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1(B, y , d , fcube ,TA) ;
p2 = P2( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
dp = p1 − p2 ;
y = y − dp/100 ;
end
func t i on [X] = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb)
dX = 1 ;
k = 0 ;
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X = 0 ;
X1 = 1 ;
whi l e abs (dX) > 0.0000001
k = k + 1 ;
i f k > 300 ;
break
end
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
X1 = 4∗ pi ∗(Mb/( ( p1+p2 )∗1000/2 ) ) ;
dX = X1 − X;
X = X + dX/20 ;
end
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Appendix D

Matlab method 2

D.1 Part A

f unc t i on [Pu ] = KN ( c ,B, d , rho , fck , f sy , Es , eta , fcube , h)
% c = diameter o f the s lab , g iven in [mm]
% r1 = major ax i s e l l i p s o f load area [mm]
% r2 = minor ax i s e l l i p s o f load area [mm]
% B = f i c t i o u s diameter o f the load area , g iven in [mm]
% Ap = area o f p r e s t r e s s i n g s t e e l [mm2]
% h = he ight o f conre te s l ab [mm]
% rho = re in fo r cement percentage
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fck = compress ive s t r ength o f concrete , g iven in [N/mm2]
% sigmap = compress ive s t r e s s in conc re t e due to p r e s t r e s s i n g [N/mm2]
% Fp = p r e s t r e s s i n g f o r c e [N]
% fpk = c h a r a c t e r i s t i c t e n s i l e s t r ength o f p r e s t r e s s i n g s t e e l [N/mm2]
% f sy = remaining capac i ty o f y i e l d s t r e s s o f p r e s t r e s s i n g s t e e l [N/mm2]
% Es = modulus o f e l a s t i c i t y o f p r e s t r e s s i n g s t e e l [N/mm2]
% eta = r e s t r a i n t f a c t o r
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
%
% The value o f Pu w i l l be re turn in [kN ]
%
% Sta r t i ng Assumption
c = 1050 ;
r1 = 200 ;
r2 = 200 ;
B = ( r1 ∗ r2 ) ˆ 0 . 5 ;
Ap = 0 . 4425 ;
h = 100 ;
rho = Ap / h ;
d = h / 2 ;
f ck = 45 ;
fcube = 55 ;
sigmap = 2 . 5 ;
Fp = sigmap ∗ h ;
fpk = 1100 ;
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f s y = fpk − (Fp / Ap) ;
Es = 1.95 ∗ 10ˆ5 ;
eta = 0 . 2 ;
dde l ta = 1 ;
j = 0 ;
d e l t a = 0.99 ∗ h ;
whi l e abs ( dde l ta / de l t a ) > 0 .01
j = j + 1 ;
i f j > 300
break
end
Fc = 0 .8 ∗ 2/3 ∗ f ck ∗ (h/2 − de l t a / 4 ) ;
Ft = d ∗ rho ∗ f s y ;
Fbmax = Fc − Ft ;
Mbmax = (Ft ∗ (2 ∗ d − h) − Fc ∗ (d − 13∗h/16 − 3 ∗ de l t a / 3 2 ) ) ;
Fb = eta ∗ Fbmax ;
Mb = eta ∗ Mbmax;
X = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb) ;
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
de l t a1 = 1/2∗ t a s i ∗( c−B) ;
dde l ta = de l t a − de l ta1 ;
d e l t a = de l ta1 ;
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
Pu = (p1+p2 ) /2 ;
Fb , de l ta , p1 , p2
func t i on [ P1 ] = P1 (B, y , d , fcube ,TA)
% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
% TA = tan ( alpha )
%
% ca l c u l a t e f t
%
i f B/d < 2
f t = 825 ∗ ( 0 . 35 + 0.3∗ ( fcube /150))∗ (1 − 0 .22 ∗ (B / d ) ) ;
e l s e
f t = 460 ∗ ( 0 . 35 + 0 .3 ∗ ( fcube /150 ) ) ;
end
%
% ca l c u l a t e fa lpha
%
fa lpha = TA ∗ (1 − TA)/(1 + TA ∗ TA) ;
%
% ca l c u l a t e P1
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P1 = pi ∗ (B / d) ∗ ( y / d) ∗ (B + 2 ∗ y ) / (B + y) ∗ f t ∗ f a lpha ∗ d ∗ d /1000 ;
func t i on [ P2 ] = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb)
% c = diameter o f the s lab , g iven in [mm]
% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% f sy = y i e l d s t r e s s o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% Es = modulus o f e l a s t i s i t y o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% X = boundary moment and normal f o r c e r a t i o
% rho = re in fo r cement percentage
% Fb = ho r i z on t a l l a t e r a l normal f o r c e , g iven in [kN ]
%
% Calcu la t e kz
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
% Calcu la t e R1 R2overBeta
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
r s = Es / f s y ∗ t a s i ∗ (d − y ) ;
C0 = B/2 + 1 .8 ∗ d ;
i f r s > C0
R1 = rho ∗ f s y ∗ d ∗ ( ( r s − C0) + r s ∗ l og ( c /(2 ∗ r s ) ) ) / 1 000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ C0/1000 ;
e l s e
R1 = rho ∗ f s y ∗ d ∗ r s ∗ l og ( c /(2∗C0) )/1000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ r s /1000 ;
end
%
% Calcu la t e P2
%
P2 = 2 ∗ pi / kz ∗ (R1 + R2overBeta + Fb ∗ ( c /2/1000) ) ;
f unc t i on [ ta ] = calTA ( c ,B, d , y ,X)
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
A = 1/4.7∗(1+y/B)∗ l og ( c /(B+2∗y ) ) ;
ta = ( ( kz + 1)− s q r t ( ( kz + 1)∗ ( kz + 1) − 4 ∗ ( kz + A)∗ (A + 1) ) ) / ( 2∗ ( kz+A) ) ;
f unc t i on [ y ] = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X)
dp = 10 ;
n = 0 ;
y = d ;
whi l e abs (dp)>0.1
n = n+1;
i f n > 300
break
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1(B, y , d , fcube ,TA) ;
p2 = P2( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
dp = p1 − p2 ;
y = y − dp/100 ;
end
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f unc t i on [X] = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb)
dX = 1 ;
k = 0 ;
X = 0 ;
X1 = 1 ;
whi l e abs (dX) > 0.0000001
k = k + 1 ;
i f k > 300 ;
break
end
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
X1 = 4∗ pi ∗(Mb/( ( p1+p2 )∗1000/2 ) ) ;
dX = X1 − X;
X = X + dX/20 ;
end

D.2 Part B

f unc t i on [Pu ] = KN ( c ,B, d , rho , fck , f sy , Es , eta , fcube , h)
% c = diameter o f the s lab , g iven in [mm]
% r1 = major ax i s e l l i p s o f load area [mm]
% r2 = minor ax i s e l l i p s o f load area [mm]
% B = f i c t i o u s diameter o f the load area , g iven in [mm]
% Ap = area o f p r e s t r e s s i n g s t e e l [mm2]
% h = he ight o f conre te s l ab [mm]
% rho = re in fo r cement percentage
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fck = compress ive s t r ength o f concrete , g iven in [N/mm2]
% sigmap = compress ive s t r e s s in conc re t e due to p r e s t r e s s i n g [N/mm2]
% Fp = p r e s t r e s s i n g f o r c e [N]
% fpk = c h a r a c t e r i s t i c t e n s i l e s t r ength o f p r e s t r e s s i n g s t e e l [N/mm2]
% f sy = remaining capac i ty o f y i e l d s t r e s s o f p r e s t r e s s i n g s t e e l [N/mm2]
% Es = modulus o f e l a s t i c i t y o f p r e s t r e s s i n g s t e e l [N/mm2]
% eta = r e s t r a i n t f a c t o r
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
%
% The value o f Pu w i l l be re turn in [kN ]
%
% Sta r t i ng Assumption
c = 1050 ;
r1 = 200 ;
r2 = 200 ;
B = ( r1 ∗ r2 ) ˆ 0 . 5 ;
Ap = 0 . 4425 ;
h = 100 ;
rho = Ap / h ;
d = h / 2 ;
f ck = 45 ;
fcube = 55 ;
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sigmap = 2 . 5 ;
Fp = sigmap ∗ h
fpk = 1100 ;
f s y = fpk − (Fp / Ap)
Es = 1.95 ∗ 10ˆ5 ;
dde l ta = 1 ;
j = 0 ;
d e l t a = 0.99 ∗ h ;
whi l e abs ( dde l ta / de l t a ) > 0 .01
j = j + 1
i f j > 300
break
end
Fc = 0 .8 ∗ 2/3 ∗ f ck ∗ (h/2 − de l t a /4)
Ft = d ∗ rho ∗ f s y
Fbmax = Fc − Ft ;
Mbmax = (Ft ∗ (2 ∗ d − h) − Fc ∗ (d − 13∗h/16 − 3 ∗ de l t a / 3 2 ) ) ;
eta = Fp / Fbmax
Fb = eta ∗ Fbmax ;
Mb = eta ∗ Mbmax;
X = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb) ;
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
de l t a1 = 1/2∗ t a s i ∗( c−B) ;
dde l ta = de l t a − de l ta1 ;
d e l t a = de l ta1 ;
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
Pu = (p1+p2 ) /2 ;
f unc t i on [ P1 ] = P1 (B, y , d , fcube ,TA)
% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% fcube = compress ive s t r ength o f concrete , measured on standard cubes ,
% given in [N/mm2]
% TA = tan ( alpha )
%
% ca l c u l a t e f t
%
i f B/d < 2
f t = 825 ∗ ( 0 . 35 + 0.3∗ ( fcube /150))∗ (1 − 0 .22 ∗ (B / d ) ) ;
e l s e
f t = 460 ∗ ( 0 . 35 + 0 .3 ∗ ( fcube /150 ) ) ;
end
%
% ca l c u l a t e fa lpha
%
fa lpha = TA ∗ (1 − TA)/(1 + TA ∗ TA) ;
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%
% ca l c u l a t e P1
P1 = pi ∗ (B / d) ∗ ( y / d) ∗ (B + 2 ∗ y ) / (B + y) ∗ f t ∗ f a lpha ∗ d ∗ d /1000 ;
func t i on [ P2 ] = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb)
% c = diameter o f the s lab , g iven in [mm]
% B = diameter o f the load area , g iven in [mm]
% y = depth o f the compress ion zone in KN model , g iven in [mm]
% d = average e f f e c t i v e depth o f the s lab , g iven in [mm]
% f sy = y i e l d s t r e s s o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% Es = modulus o f e l a s t i s i t y o f r e i n f o r c i n g s t e e l , g iven in [N/mm2]
% X = boundary moment and normal f o r c e r a t i o
% rho = re in fo r cement percentage
% Fb = ho r i z on t a l l a t e r a l normal f o r c e , g iven in [kN ]
%
% Calcu la t e kz
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
% Calcu la t e R1 R2overBeta
i f B / d < 2
t a s i = 0.0035 ∗ (1 − 0 .22∗ (B/d ) )∗ ( 1 + B/(2∗y ) ) ;
e l s e
t a s i = 0.0019 ∗ ( 1 + B/(2∗y ) ) ;
end
r s = Es / f s y ∗ t a s i ∗ (d − y ) ;
C0 = B/2 + 1 .8 ∗ d ;
i f r s > C0
R1 = rho ∗ f s y ∗ d ∗ ( ( r s − C0) + r s ∗ l og ( c /(2 ∗ r s ) ) ) / 1 000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ C0/1000 ;
e l s e
R1 = rho ∗ f s y ∗ d ∗ r s ∗ l og ( c /(2∗C0) )/1000 ;
R2overBeta = rho ∗ f s y ∗ d ∗ r s /1000 ;
end
%
% Calcu la t e P2
%
P2 = 2 ∗ pi / kz ∗ (R1 + R2overBeta + Fb ∗ ( c /2/1000) ) ;
f unc t i on [ ta ] = calTA ( c ,B, d , y ,X)
ky = 3∗( c − B)/(2∗ (3∗d − y ) ) ;
kz = ky − 3 ∗ X ∗ c / (4 ∗ (3 ∗ d − y ) ) ;
A = 1/4.7∗(1+y/B)∗ l og ( c /(B+2∗y ) ) ;
ta = ( ( kz + 1)− s q r t ( ( kz + 1)∗ ( kz + 1) − 4 ∗ ( kz + A)∗ (A + 1) ) ) / ( 2∗ ( kz+A) ) ;
f unc t i on [ y ] = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X)
dp = 10 ;
n = 0 ;
y = d ;
whi l e abs (dp)>0.1
n = n+1;
i f n > 300
break
end
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1(B, y , d , fcube ,TA) ;
p2 = P2( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
dp = p1 − p2 ;
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y = y − dp/100 ;
end
func t i on [X] = calX ( c ,B, d , Es , f sy , fcube , rho , Fb ,Mb)
dX = 1 ;
k = 0 ;
X = 0 ;
X1 = 1 ;
whi l e abs (dX) > 0.0000001
k = k + 1 ;
i f k > 500 ;
break
end
y = ca ly ( c ,B, d , Es , f sy , fcube , rho , Fb ,X) ;
TA = calTA ( c ,B, d , y ,X) ;
p1 = P1 (B, y , d , fcube ,TA) ;
p2 = P2 ( c ,B, y , d , Es , f sy ,X, rho , Fb ) ;
X1 = 4∗ pi ∗(Mb/( ( p1+p2 )∗1000/2 ) ) ;
dX = X1 − X;
X = X + dX/20 ;
end
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Appendix E

DAT-file

E.1 2D model

Trans lated from FX+ fo r DIANA neut ra l f i l e ( v e r s i on 1 . 2 . 0 ) .
’DIRECTIONS’

1 1 .00000E+000 0.00000E+000 0.00000E+000
2 0.00000E+000 1.00000E+000 0.00000E+000
3 0.00000E+000 0.00000E+000 1.00000E+000

’COORDINATES’
1 1 .92500E+003 −1.00000E+002 0.00000E+000

. . .
12105 4.32054E+003 −2.99419E+002 0.00000E+000
’MATERI’

1 NAME ”C45/55”
YOUNG 3.60000E+004
POISON 2.00000E−001
THERMX 1.00000E−005
DENSIT 2.40000E−009
TOTCRK ROTATE
TENCRV BRITTL
TENSTR 3.80000E+000
COMCRV CONSTA
COMSTR 5.30000E+001

2 NAME ”C53/65”
YOUNG 3.78460E+004
POISON 2.00000E−001
THERMX 1.00000E−005
DENSIT 2.40000E−009

3 NAME ”Endcrossbeam”
YOUNG 1.82700E+004
POISON 2.00000E−001

’GEOMET’
1 NAME ”Slab ”
2 NAME ”Girder ”
3 NAME ”Endcrossbeam”

’DATA’
1 NAME ”Slab ”

’ELEMENTS’
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CONNECT
1 CQ16E 1 325 2 441 117 442 116 440

. . .
3863 CQ16E 10767 12100 10696 11209 10623 11800 10624 12087
993 CT12E 2971 3279 2794 3061 2795 3485

. . .
3873 CT12E 10906 12105 10767 12090 10768 12096
MATERI
/ 1−795 / 1
/ 796−2094 / 2
/ 2095−3873 / 3
DATA
/ 1−3873 / 1
GEOMET
/ 1−795 / 1
/ 796−2094 / 2
/ 2095−3873 / 3
’LOADS’
CASE 1
ELEMEN
878 EDGE KSI2

FORCE 2.50000E+000
DIRECT 1

. . .
1968 EDGE ETA2

FORCE −2.50000E+000
DIRECT 1

888 EDGE KSI1
FORCE −1.21000E+000
DIRELM NORMAL

. . .
1859 EDGE KSI1

FORCE −1.21000E+000
DIRELM NORMAL

CASE 2
DEFORM
1326 TR 2 −1.00000E+001

. . .
DEFORM
1325 TR 2 −1.00000E+001
’GROUPS’
ELEMEN
399 ”Auto−Mesh( Face )” / 1−795 /
400 ”Auto−Mesh( Face)−1” / 796−2094 /
401 ”Auto−Mesh( Face)−2” / 2095−3873 /
’SUPPOR’
3092 TR 1
/ 3092 3898 5052 6291 1326 1331 1003−1007 1327−1330 1321
998−1002 1322−1325 / TR 2
/ 3092 3898 5052 6291 / TR 3
’UNITS’
FORCE N
LENGTH MM
’END’
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E.2 2D model including interfaces

Trans lated from FX+ fo r DIANA neut ra l f i l e ( v e r s i on 1 . 2 . 0 ) .
’DIRECTIONS’

1 1 .00000E+000 0.00000E+000 0.00000E+000
2 0.00000E+000 1.00000E+000 0.00000E+000
3 0.00000E+000 0.00000E+000 1.00000E+000

’COORDINATES’
1 1 .92500E+003 −1.00000E+002 0.00000E+000

. . .
12171 5.52850E+003 −7.00000E+001 0.00000E+000
’MATERI’

1 NAME ”EN(RC) C45/55”
YOUNG 3.60000E+004
POISON 2.00000E−001
THERMX 1.00000E−005
DENSIT 2.40000E−009
TOTCRK ROTATE
TENCRV BRITTL
TENSTR 3.80000E+000
COMCRV CONSTA
COMSTR 5.30000E+001

2 NAME ”C53/65”
YOUNG 3.78460E+004
POISON 2.00000E−001
THERMX 1.00000E−005
DENSIT 2.40000E−009

3 NAME ”Endcrossbeam”
YOUNG 1.82700E+004
POISON 2.00000E−001

4 NAME ” ctc ”
FRICTI
DSTIF 1.80000E+006 7.50000E+005
FRCVAL 1.33000E+000 6.00861E−001 6.00861E−001
GAP
GAPVAL 2.70000E+000
MODE2 1
MO2VAL 7.50000E+004

’GEOMET’
1 NAME ” ctc ”

CONFIG PSTRAI
ZAXIS 0.00000E+000 0.00000E+000 1.00000E+000

2 NAME ”Slab ”
3 NAME ”Girder ”
4 NAME ”Endcrossbeam”

’DATA’
1 NAME ”Slab ”

’ELEMENTS’
CONNECT
3874 CL12I 6 329 5 12111 12122 12110

. . .
3903 CL12I 1888 2211 1887 12161 12168 12156

1 CQ16E 1 325 2 441 117 442 116 440
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. . .
3863 CQ16E 10767 12100 10696 11209 10623 11800 10624 12087
993 CT12E 2971 3279 2794 3061 2795 3485

. . .
3873 CT12E 10906 12105 10767 12090 10768 12096
MATERI
/ 1−795 / 1
/ 796−2094 / 2
/ 2095−3873 / 3
/ 3874−3903 / 4
DATA
/ 1−3903 / 1
GEOMET
/ 3874−3903 / 1
/ 1−795 / 2
/ 796−2094 / 3
/ 2095−3873 / 4
’LOADS’
CASE 1
ELEMEN
878 EDGE KSI2

FORCE 2.50000E+000
DIRECT 1

. . .
1968 EDGE ETA2

FORCE 2.50000E+000
DIRECT 1

888 EDGE KSI1
FORCE −1.21000E+000
DIRELM NORMAL

. . .
1859 EDGE KSI1

FORCE −1.21000E+000
DIRELM NORMAL

CASE 2
DEFORM
356 TR 2 −1.00000E+001

. . .
DEFORM
360 TR 2 −1.00000E+001
’GROUPS’
ELEMEN
399 ”Auto−Mesh( Face )” / 1−795 /
400 ”Auto−Mesh( Face)−1” / 796−2094 /
401 ”Auto−Mesh( Face)−2” / 2095−3873 /
402 ” I n t e r f a c e Element” / 3874−3903 /
’SUPPOR’
3092 TR 1
/ 3092 3898 5052 6291 356 351 28−32 352−355 361
33−37 357−360 / TR 2
/ 3092 3898 5052 6291 / TR 3
’UNITS’
FORCE N
LENGTH MM
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’END’
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Appendix F

DCF-file

∗FILOS
INITIA

∗NONLIN
EXECUT
BEGIN EXECUT

BEGIN LOAD
LOADNR 2
STEPS EXPLIC SIZES 0 .001(1000)

END LOAD
ITERAT MAXITE 50

END EXECUT
BEGIN OUTPUT

FXPLUS
FILE ”2d11”
DISPLA TOTAL TRANSL GLOBAL
FORCE REACTI TRANSL GLOBAL
FRACTU
STRAIN CRACK GREEN
STRAIN ELASTI GREEN GLOBAL
STRAIN PLASTI GREEN GLOBAL
STRAIN TOTAL GREEN GLOBAL
STRESS TOTAL CAUCHY GLOBAL
STRESS TOTAL TRACTI LOCAL

END OUTPUT
TYPE GEOMET
∗END
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Appendix G

DYWIDAG Prestressing
Steel Threadbar System
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DYWIDAG Prestressing Steel Threadbar System

Technical Data for Prestressing Steel Threadbar

Couplers for Threadbars

DYWIDAG Prestressing Steel  Threadbar  is  a  high  tensile  alloy  steel  bar which  features  a  coarse  right-hand  thread  over  its  full 
length. The system is proven worldwide and offers versatility in a range of applications.

Manufactured  in accordance with  the German Certificate of Approval  (Deutsches  Institut  für Bautechnik),  the system also offers 
general conformance with BS 4486  : High Tensile Steel Bars  for Prestressing of Concrete. During  the steel making process,  the 
threadbars  are  hot  rolled,  quenched  and  tempered,  followed  by  cold  working  and  further  tempering,  to  achieve  the  necessary 
performance.

DYWIDAG  Prestressing  Steel  Threadbars,  15mm  -  75mmØ  are  suitable  for  all  static  loading  applications.  Additionally,  for 
post-tensioning and dynamic applications, DYWIDAG Prestressing Steel Threadbars 26.5mm - 40mmØ, see note ( c ) below, offer a 
fatigue resistance in excess of 2 million load cycles over a tensile range of 630 - 682N/mm2 as specified in the European Technical 
Approval No. ETA - 05/0123 and ETAG 013. Stress relaxation when loaded to 70% fpu is less than 3.5% over a 1000 hour period  
in accordance with BS4486.

Key features of the system are:
     Fully threaded bar – can be cut and coupled at any point.
     Coarse pitch threadform (d/2), right-hand, with two faces ensuring the thread is self cleaning. Ideal for construction site use.
     Low relaxation steel – minimum relaxation during service life.
     Prestressing grade steel – high strength offers weight savings and reduced working diameters.

  Nominal  Steel  Ultimate  0.1% (a)  70% (b)  50%  Cross  Diameter  Thread  Bar
  Diameter  Grade  Strength  Proof  Ultimate  Ultimate  Sectional  Over  Pitch  Weight
      fpu  Strength  Strength  Strength  Area  Threads

  mm  N/mm2  kN  kN  kN  kN  mm2  mm  mm  kg/m

  15  900/1100  195  159  136  98  177  17  10  1.44

  20  900/1100  345  283  241  173  314  23  10  2.56

  26.5  950/1050  579  523  405  290  551  30  13  4.48

  32  950/1050  844  764  591  422  804  36  16  6.53

  36  950/1050  1069  967  748  535  1018  40  18  8.27

  40  950/1050  1320  1194  924  660  1257  45  20  10.21

  47  950/1050  1822  1648  1275  911  1735  52  21  14.10

  57  835/1035  2671  2155  1870  1335  2581  64  21  20.95

  65  835/1035  3447  2771  2413  1724  3318  71  23  27.10

  75  835/1035  4572  3645  3200  2286  4418  82  24  35.90

(a) 0.1% Proof Stress also referred to, in general terms, as Yield Strength - Ty.             (b) For geotechnical applications 75% fpu may be used for proof testing.
(c) Approval Standards: Ø 26.5 - 47mm (grade 950/1050N/mm²) ETA 05/0123 and ETAG 013. Øs 15 & 20mm (grade 900/1100N/mm²) formtie approvals. Øs 57 - 75mm
     (grade 855/1035 N/mm²) system approval. 

Modulus of Elasticity: E = 205,000 N/mm2 +/- 5%.
Stock Lengths: 15mm - 20mmØ bars, 6.0m; 26.5mm - 75mmØ bars, 12.0m.   Tolerances +/- 50mm.
All bar diameters can be cut to length to suit customer requirements.

Couplers  enable  prestressing  steel  threadbars  to  be  coupled  or  extended,  reliably  and  efficiently. Coupler strength (for bar 
Øs 26.5 - 47mm) = 1.27 x Yield Strength, which equates to 1.15 x Ultimate Strength, in accordance with German Approval 
Certificates.  Coupler strengths for other prestressing steel bar grades (bar Øs 15 & 20mm, and 57 - 75mm) exceed the published 
Ultimate Bar Strengths and are covered by separate approvals (see note C, Technical Data). 

Precautions should be  taken  to ensure  that  the coupler  remains centrally  located. This can be achieved  through the use of grub 
screws and/or a centre pin. Marking the two bars with paint or similar at half a coupler length prior to engagement provides visual 
confirmation of centralisation and is recommended as good working practice.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                                                                                                                          Prestressing Steel Threadbar



DYWIDAG Prestressing Steel Threadbar Accessories

Precautions with Prestressing Steel Threadbars

Corrosion Protection

For  applications  involving  service  life  in  excess  of  2  years,  or  shorter  lifespans  in  aggressive  environments,  sufficient  corrosion 
protection measures are essential. Factory pregrouted encapsulation featuring a bar grouted within a plastic sheath, in accordance 
with BS 8081, offers a practical and durable solution for permanent geotechnical and structural applications.

Prestressing Steel Threadbar

  Do  Do Not
  Handle with care during loading and installation.  Neglect or throw the bars around.

  Cut using a high speed abrasive wheel.  Use oxy-acetylene to cut to length.

  Keep dry and free from corrosion.  Allow contact with corrosive soils or atmospheres.

  Check safe working loads.  Subject to impact or shear loading.

  Support bars during handling to prevent undue bending.  Weld or allow welding sparks in contact.

  Use only Ordinary Portland Cement for grouting.  Store near to high induction sources.

  Take corrosion protection measures where service life   Use special cements for grouting as corrosive agents
  is greater than 2 years.  may be present in the mix.

Detailed recommendations available on request.    

Domed Nut

Recessed Plate

Flat Washer

Nuts and Couplers

Anchor Plates

Accessories

Lock Nut Hexagonal Nut

Flat Plate

Tapered Washer
up to 15°

Coupler

Gusseted Plate
up to 45°

Hemisphere
up to 30°

Articulating Plate
up to 30°

Lifting Shackle

   Nominal  Steel  Recessed Plate   Domed Nut  Flat Plate   Lock Nut   Hexagonal Nut   Coupler

   Diameter  Grade  Stock Size*  AF    Length  Stock Size*    AF  Length  AF   Length  Dia.   Length

    mm  N/mm2  mm  mm   mm  mm    mm  mm  mm    mm  mm   mm

    15  900/1100  n/a  n/a    n/a  120 x 120 x 12    30  30  30    50  30    105

    20  900/1100  n/a  n/a    n/a  120 x 120 x 20    36  30  36    70  40    130

   26.5  950/1050  130 x 130 x 35  46    55  130 x 130 x 35    46  25  46    80  50    170

    32  950/1050  160 x 160 x 40  55    70  160 x 160 x 40    55  35  55    90  60    200

    36  950/1050  180 x 180 x 45  60    90  180 x 180 x 45    60  35  60    110  68    210

    40  950/1050  220 x 220 x 50  70    115  220 x 220 x 50    50  25  70    120  70    245

    47  950/1050  260 x 260 x 50  80    135  260 x 260 x 50    60  30  80    140  83    270

    57  835/1035  n/a  n/a    n/a  285 x 285 x 65    90  35  90    120  95    240

    65  835/1035  n/a  n/a    n/a  325 x 325 x 70    90  40  100    130  105   260

    75  835/1035  n/a  n/a    n/a  370 x 370 x 80    105  50  105    145  114   290

*Anchor plates can be supplied in any size to suit customer requirements. 



Applications

Stressing Equipment

Stressing Dimensions

   Jack Selection Chart         Bar Diameter mm

  Capacity  Stroke   Weight  15  20  26.5  32  36  40  47  57  65  75

  300kN   50mm  21kg

  600kN   50mm  36kg

  600kN   100mm  44kg

  1100kN  50mm  46kg

  1100kN  150mm  54kg

  1500kN  100mm  140kg

  3000kN  250mm  400kg

  4000KN  250mm  650kg

Rock Bolts

Lifting Bolts

Pile Testing Tie Bars

Form Ties Pulling and Jacking

Ground Anchors

Post Tensioning

  Nominal  Steel  Dimension  Dimension
  Diameter  Grade  A  B

  mm  N/mm2  mm  mm

  15  900/1100  50  50

  20  900/1100  70  55

  26.5  950/1050  40  60

  32  950/1050  50  70

  36  950/1050  70  85

  40  950/1050  90  125

  47  950/1050  105  135

  57  835/1035  120  140

  65  835/1035  130  150

  75  835/1035  145  170

A B

DYWIDAG-SYSTEMS INTERNATIONAL LTD.

Northfield Road  Telephone  01926 813980

Southam  Facsimile  01926 813817

Warwickshire  E-mail  sales@dywidag.co.uk

CV47 0FG  Web Site  www.dywidag-systems.com/uk
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Quality Assurance

DYWIDAG-Systems International
Certificate Number

FM 25723 

Dimension B is the minimum threadbar projection required for stressing.
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