Modeling Traffic Accidents Caused by Random Misperception

Marcel Kleiber

Institute of Probability and Statistics & House of Insurance

Leibniz Universität Hannover

MATTS 2018 - Delft

The talk is based on joint work with Volker Berkhahn, Chris Schiermeyer, & Stefan Weber.

---- 2/18

Outline

2 The Traffic Model

3 Case Studies

- 2/18

Outline

- 2 The Traffic Model
- 3 Case Studies

4 Conclusion

Introduction

• Classical Approach in Motor Insurance

• Determine probability of traffic accidents on the basis of empirical data.

Disruption of Mobility

- Automotive industry is undergoing a massive disruption with the appearance of autonomously driving vehicles (cf., e.g., Bertoncello and Wee (2015)).
- Existing studies (e.g., Blanco et al. (2016)) indicate that the number of accidents will significantly be reduced when vehicles are controlled by computers.

Overcome Lack of Data

► Get insight into the occurrence of accidents and their effects on traffic flow by a simulation based approach (cf. Berkhahn et al. (2018)).

Outline

3 Case Studies

4 Conclusion

Idea

- Notation
 - $x^{i}(t)$: Position of the *i*-th vehicle at time *t*, $v^{i}(t)$: Momentary speed
 - $\Delta x^{i}(t)$: Distance to preceding vehicle, $\Delta v^{i}(t)$: Approaching rate
- Classical Car-Following Model in Stylized Form

$$\begin{cases} \frac{dx^{i}(t)}{dt} = v^{i}(t), \\ \frac{dv^{i}(t)}{dt} = f(v^{i}(t), \Delta x^{i}(t), \Delta v^{i}(t), \dots). \end{cases}$$
(1)

- Car-Following Model with Random Misperception
 - Let (ε_t^{i,1}), (ε_t^{i,2}) and (ε_t^{i,3}) be three stochastic processes, fluctuating around 1.

$$\begin{cases} \frac{dx^{i}(t)}{dt} = v^{i}(t), \\ \frac{dv^{i}(t)}{dt} = f(\varepsilon_{t}^{i,1}v^{i}(t), \varepsilon_{t}^{i,2}\Delta x^{i}(t), \varepsilon_{t}^{i,3}\Delta v^{i}(t), \dots). \end{cases}$$
(2)

Mathematical Foundation

Definition (Random Ordinary Differential Equation (RODE))

Let $(\varepsilon_t)_{t\geq 0}$ be a stochastic process on some probability space (Ω, \mathcal{F}, P) with values in \mathbb{R}^m and continuous paths. Suppose that $f : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ is continuous. A random ordinary differential equation in \mathbb{R}^d for some function $y : [0, \infty) \to \mathbb{R}^d$ is given by

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y,\varepsilon_t).$$

 For each scenario ω ∈ Ω, a RODE defines a non-autonomous ordinary differential equation via

$$\frac{\mathrm{d}y}{\mathrm{d}t}=F_{\omega}(t,y):=f(y,\varepsilon_t(\omega)).$$

 Pathwise RODEs are ODEs ⇒ Standard numerical methods for ODEs can be used to solve RODEs.

Movement of Vehicles

Let $\mathcal{M} := \{1, 2, ...\}$ denote the collection of vehicles. Let $(\varepsilon_t^{i,1})_{t \geq 0}, (\varepsilon_t^{i,2})_{t \geq 0}, (\varepsilon_t^{i,3})_{t \geq 0}, i \in \mathcal{M}$, be stochastic processes with continuous paths.

Intelligent Driver Model with Random Misperception (IDMrm):

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}x^{i}(t) = \max\{v^{i}(t), 0\},\\\\ \frac{\mathrm{d}}{\mathrm{d}t}v^{i}(t) = \max\left\{a^{i}_{\max} \cdot \left(1 - \left(\frac{\varepsilon^{i,1}_{t}v^{i}(t)}{v^{i}_{\mathrm{d}}}\right)^{\delta}\right.\\\\ \left. - \left(\frac{s^{*}(\varepsilon^{i,1}_{t}v^{i}(t), \varepsilon^{i,1}_{t}v^{i}(t) - \varepsilon^{i,3}_{t}v^{i-1}(t))}{\varepsilon^{i,2}_{t}\Delta x^{i}(t)}\right)^{2}\right), a^{i}_{\min}\right\},\\\\ x^{i}(t^{i}_{0}) = 0, \ v^{i}(t^{i}_{0}) = v^{i}_{0}, \ t \geq t^{i}_{0}, \ i \in \mathcal{M}\end{cases}$$

Accidents

• The Event of an Accident

- For i ∈ M, let Aⁱ(t) denote the area of the road which is occupied by vehicle i at time t > 0.
- An accident occurs, if

$$\exists \ i,j\in\mathcal{M},\ i
eq j,\ \exists \ t>0\colon A^{i}(t)\cap A^{j}(t)
eq \emptyset.$$

• Effects of an Accident in the Model

At the time of the first collision, a waiting time

$$t_{
m removal} \sim {\sf Exp}(\gamma), \quad \gamma > 0,$$

is triggered. After this time, all collided vehicles (in this accident) are removed from the model.

- 7/18

Outline

4 Conclusion

Measures of Efficiency and Safety

Measure of Efficiency

Traffic flow per time unit, measured at position d:

$$Q = \frac{\mathsf{card}\{j \in \mathcal{M} : \exists t \leq T_{\mathsf{sim}} : x^j(t) = d\}}{T_{\mathsf{sim}}}$$

2 Measure of Safety

Number of accidents per time unit: For $M \subseteq \mathcal{M}$ we define $A^{M}(t) := \bigcup_{i \in M} A^{i}(t)$.

$$\begin{split} f_{\mathsf{acc}} &= \frac{1}{T_{\mathsf{sim}}} \cdot \mathsf{card} \{ \emptyset \neq M \subseteq \mathcal{M} \colon \\ &\exists \ t \leq T_{\mathsf{sim}} \ \forall \ i \in M \colon A^i(t) \cap A^{M \setminus \{i\}}(t) \neq \emptyset \\ & \mathsf{and} \ \forall \ t \leq T_{\mathsf{sim}} \colon A^M(t) \cap A^{M^c}(t) = \emptyset \} \end{split}$$

Errors: Ornstein-Uhlenbeck Process

Let $\beta \in \mathbb{R}$ and $\alpha, \sigma > 0$. A stochastic process $(\varepsilon_t)_{t\geq 0}$ is called an Ornstein-Uhlenbeck process, if $\varepsilon_0 = a \in \mathbb{R}$ and $(\varepsilon_t)_{t\geq 0}$ solves the following stochastic differential equation:

$$d\varepsilon_t = \alpha(\beta - \varepsilon_t)dt + \sigma dW_t,$$

where $(W_t)_{t\geq 0}$ denotes a one-dimensional standard Brownian motion.

Scenario A: One-Lane Road Segment (1/2)

Scenario

Segment of a one-lane road with length $L = 2,000 \,\mathrm{m}$.

2 Vehicle Generation

Vehicles are generated at the origin and removed at the end of the road.

- Vehicles are created deterministically with a constant demand (here, 1,500 veh/h), if there is enough space available - otherwise the generation is delayed.
- The initial velocity of any new vehicle matches the velocity of the preceding vehicle.

Scenario A: One-Lane Road Segment (2/2)

Figure: Averaged flow (solid lines) and number of accidents (dashed lines) for varying T and fixed σ .

Scenario B: Left-Turning on T-Junction (1/5)

We use IDMrm on one-lane road segments as building blocks to explain traffic in more complex scenarios.

Figure: Simplified left-turning scenario on t-junction.

Scenario B: Left-Turning on T-Junction (2/5)

• Vehicle Generation

• Generate vehicles with an exponentially distributed headway.

Movement of Vehicles

- Vehicles accelerate (positively) according IDMrm (in this case study with perfect perception).
- Additional feature on lower lane: Conflict detection and reaction.

Random Misperception

 Random misperception in conflict detection and reaction creates accidents in the context of left-turning maneuvers.

Scenario B: Left-Turning on T-Junction (3/5)

Conflict Detection

- Turning vehicle *i* estimates the distance d^{ij}(t) to the approaching vehicle *j* (based on an extrapolation of trajectories).
- ► The situation is classified as a conflict, if ε_t^{i,4} d^{ij}(t) ≤ d_s for a safety threshold d_s > 0.

2 Conflict Reaction

- ► Compute a_{naive} (using ε^{i,5}_tvⁱ(t)) s.t. vehicle i stops at x_{stop} with a constant (negative) acceleration. This needs a time of t_{naive}.
- Let \hat{t}^j be the time vehicle j needs to reach x_{exit} .
- Set the acceleration

$$m{a}_{ ext{conflict}}^{i,j}(t) = egin{cases} m{a}_{ ext{naive}}^i, & ext{if} \ m{\hat{t}}^j > t_{ ext{naive}}, \ m{a}_{ ext{smooth}}^{i,j}, & ext{if} \ m{\hat{t}}_j \leq t_{ ext{naive}} \end{cases}$$

where $a_{\text{smooth}}^{i,j}$ is determined (using $\varepsilon_t^{i,5}v^i(t)$) s.t. vehicle *i* reaches x_{stop} with constant acceleration when vehicle *j* arrives at x_{exit} .

Case Studies Scenario B: Left-Turning on T-Junction (4/5)

In summary, vehicles move according to

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} x^{i}(t) &= \max\{v^{i}(t), 0\}, \\ \frac{\mathrm{d}}{\mathrm{d}t} v^{i}(t) &= \max\{\min\{a^{i}_{\mathrm{IDMrm}}(t), a^{i,j_{1}}_{\mathrm{conflict}}(t), a^{i,j_{2}}_{\mathrm{conflict}}(t), \dots\}, a^{i}_{\mathrm{min}}\} \end{cases}$$

Scenario B: Left-Turning on T-Junction (5/5)

Figure: Averaged turn flow (lower lane, solid lines) and number of accidents (dashed lines) for varying d_s and fixed σ .

Outline

- 2 The Traffic Model
- 3 Case Studies

Conclusion

Microscopic Model of Traffic Accidents

- We introduced a traffic model that admits accidents.
- Accidents are caused by random misperception.

2 Tradeoff between Risk and Efficiency

The simulation model admits a characterization of the tradeoff between safety and efficiency of traffic systems.

Generation of Data

The causal stochastic model produces simulated data that provide guidance to the design and risk management of future traffic systems.

Thank your for your attention!

Literature

- Berkhahn, V., M. Kleiber, C. Schiermeyer, and S. Weber (2018).
 "Modeling Traffic Accidents Caused by Random Misperception".
 Accepted: The 21st IEEE International Conference on Intelligent Transportation Systems.
- Bertoncello, M. and D. Wee (2015). *Ten ways autonomous driving could redefine the automotive world.*

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world.

 Blanco, M., J. Atwood, S. Russell, T. Trimble, J. McClafferty, and
 M. Perez (2016). Automated vehicle crash rate comparison using naturalistic data. Tech. rep. Virginia Tech Transportation Institute.