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We let L denote a lattice of N cells. 

and consider  the microscopic spin-like variable             on L

We denote by s(x) the spin at location x,

While we denote by the complete configuration of the 

lattice at time t. 

Configuration      is an element of the configuration space                    

and we write   
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Main Statistical Mechanics Concepts

Describing the interacting particle system
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1. Katsoulakis, Majda and Vlachos, Comput. Phys. 186(1), 2003.
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Consider moving away from lattices



Set-theoretic partition. Idealization in 1D

Schematic of disjoint sets comprising L for 1-D example. 

Wi's denote unoccupied space and vary in size. 

Bi's denote occupied space by a single particle and their size is equal to particle size.

Wk+1 Wk+2 Wk+1 Wk+n-1 Wk+n



Spin – flip rate for particles adsorbing/desorbing from/to the problem 

domain. 

The rates c are calculated from

where

and |V| = max(Bi) for i in (1,k)
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1. Sopasakis. Lattice-free stochastic dynamics, Comm. in Comput. Phys., 2012
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Building the continuous time, space Markov Chain
Microscopic Arrhenius Spin-Flip Dynamics



Building the continuous time, space Markov Chain

Following ideas in [   ] we introduce a lattice-free Arrhenius spin-exchange 
rate  c(x,y,s),

where parameter denotes the characteristic time of the process and 

U is the interaction potential.
0

Microscopic Arrhenius Spin-Exchange Dynamics

1,2

1. T.M. Liggett, Interacting Particle Systems, Lecture Notes from Trieste, Springer 2002.

2. Katsoulakis, Majda and S., Nonlinearity, 19(5), 2006. 
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We define the interaction potential                   

where 

Here parameter Jo denotes the strength of the interactions,

and parameter L denotes the range of interactions. 

This potential enforces:

• Vehicles do not move backwards

• Local effect of the interactions 
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Incorporating the Physics and Creating the ASEP
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Incorporating multi-lane interactions

Let’s look once again

at the rate functional 

to move forward 

We incorporate lane-changing via an additional anisotropy type potential. 

Thus our total interaction potential now consists of:

where

with
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The Mathematical Model

The mathematical model therefore is

The probability of a vehicle moving from x to y during time [t, t+Dt] 

is
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The process              is a continuous time, continuous space jump 

Markov Chain on              with generator

where         denotes a new lattice configuration and  c(s)  denotes the 

rate of the stochastic process
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P2 P3 P4P1 P5Probabilities

Idealization of 

Monte Carlo

simulation  

Random pick

Monte Carlo moves vehicle 2
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A move from location x to location y during time [t, t+Dt] 

has probability P = 

1. Bortz, Kalos and Lebovitz, A new algorithm for Monte Carlo simulations, J. Comp. Phys., 1975 



The model is characterized by a number of parameters some of the most 

important of which are: 

 𝜏0 - how fast vehicles react to traffic conditions ahead

 - what is the speed limit of the roadway

 - how far ahead can drivers perceive traffic  (L= 20, 30 or 40 meters)

 ...

Free Parameters and Calibration

L
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Testing – Features

Timely breaking/returded acceleration



Flow-Density Diagram Simulated Data

Testing most important requirement

The Fundamental Diagram

Actual Data



PDE model

Using the LLN and Taylor expansions we obtain the following 

macroscopic transport equation:

where the PDE flux is 

with
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1. Sopasakis and Katsoulakis, Transp. Res. B, 2012. 
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PDE model

We obtain the following macroscopic transport equation:

where the PDE flux is 
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Expanding the convolution 

and approximating the exponential 

the traffic model PDE                              becomes…

Sopasakis - Lund University 44



The traffic model PDE,                                where 

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.
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Lighthill-Whitham / 

Burgers flux
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The traffic model PDE,                                where

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.

• Long range (L=N) uniform (J=Jo) interactions:

Non-local flux
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The traffic model PDE,                                where

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.

• Long range (L=N) uniform (J=Jo) interactions:

Non-local flux

• Including terms up to Jo in the convolution,

Non-convex flux
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Non-convex

Sopasakis - Lund University 51



The traffic model PDE,                                where

Note:

• No interactions (J=0): 

Lighhill-Whitham/Burger’s eq.

• Long range (L=N) uniform (J=Jo) interactions:

Non-local flux

• Including terms up to Jo in the convolution,

Non-convex flux

• Terms up to 

Nonlinear diffusive LWR type

• Full model is higher order dispersive (KDV type?) 

with nonlinear coefficients
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Summary of terms ot keep track of: 

Local transition rates and probabilities

The process is defined as a continuous time Markov Chain (CTMC) on the (high 

dimensional) state space 

Mathematically it is defined completely by specifying the local transition rates                   

where            is a vector of the model parameters.

The transition rates determine the updates (jumps) from any current state to a random 

new state    .

Let us also define the total rate 

which is the intensity of the exponential waiting time for a jump from the state 

Finally the transition probabilities are simply given by 
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Examples of local transition rates  

The Arrhenius spin-exchange rate    c(x,y,s),

Microscopic Arrhenius Spin-Exchange Dynamics

1,2

1. T.M. Liggett, Interacting Particle Systems, Lecture Notes from Trieste, Springer 2002.

2. Katsoulakis, Majda and Sopasakis, Nonlinearity, 19(5), 2006. 

Similarly, the Arrhenius spin-flip rate c(x,s) at lattice site x and current state  

configuration s is given by

with adsorption/desoprion constants, da cc ,
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Information theoretic 

parametrization approach

We propose two tools which quantify 

information loss in time series (path-space):

o The pathwise Relative Entropy Rate (RER) 

performs sensitivity analysis by perturbing the parameter space  

(identifies the most important parameters to be adjusted)

o The pathwise Fisher Information Matrix (FIM)  

identifies the unimportant model parameters (performs model reduction)



The Relative Entropy

Definition. The relative entropy (or Kullback-Leiber divergence) between 

two probability measures P and Q is defined via

The Relative Entropy can be thought as a “distance” or more precisely a 

semi-metric between the two measures.

Properties: 

The relative entropy is not necessarily symmetric and may not satisfy the 

triangle inequality

The relative entropy measures loss/change of information.
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dQ

dP
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The Relative Entropy Rate

The Relative Entropy Rate (RER) can be thought as the change of information 

per unit time

The estimator for RER over time T for a given perturbation vector e

where 𝑐 𝜎𝑖; 𝑝 = σ𝑗=1
𝑀 𝑐𝑗 𝜎𝑖; 𝑝 .

 method constitutes an inverse dynamics Monte Carlo approach

and reconstructs the Markov chain by performing sensitivity analysis

 Infers information regarding path distribution: steady states + transient dynamics

 RER is an observable+statistical estimators=> computationally tractable using (fast) 

molecular solvers.
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Relative Entropy Rate versus time

Four trajectories are computed and presented above. 

Each trajectory is created by separately perturbing 

each of the parameters above.

Properties:

• RER works in path-space.

Analyzing perturbations of 

trajectories in order to 

identify sensitive parameters

• Extract statistical properties from 

non-equilibrium dynamics

• Optimization of parameter 

vector      is possible (note that 

RER is quadratic in    ).






The Fisher Information Matrix

Definition. The Fisher Information Matrix,       for a 

given probability density           is defined to be the 

Hessian of the Relative Entropy.

The estimator for FIM is

* Spectral analysis of the FIM reveals the 

least/most sensitive parameters/directions
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The Fisher Information Matrix for 5 parameters
Given synthetic data we computer the FIM for five model parameters in 

order to understand which of those are important. According to the 

current dynamics only c_0 and J_0 are important for this model. We can 

therefore eliminate the parameters c_r, c_l and c_f.



Strategy

• First apply FIM.

this results into a reduced traffic model since we can eliminate the 

unimportant (given the current dynamics) model parameters

• Then apply RER.

We now perturb the remaining (reduced) model parameters in order 

to obtain better values for them which represent the current 

dynamics.

• Optional Step. Optimize.

This step allows us to also, if desired, obtain the best values for those 

model parameters (although that may not be necessary).



The RER for the parameter c_0

The RER is a convex function and therefore its minimum can be 

computed. This computation gives an indication as to how to obtain 

better values for the parameter c_0.



The RER for the parameter c_0

However the actual minimum may be outside the range of physical 

relevance for the traffic model. 
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I am sorry Dave, I am afraid I cannot do that!



Neural Networks

• Branch of AI (machine learning) imitating how the brain synapses process 

information

• Basic components: input layer, hidden layers, output layer each 

comprised of nodes and connected by weights



A typical machine learning task

What is a “2”?



W1 

W2 

W3 

f(x)

1.4

-2.5

-0.06



2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x =  -0.06×2.7 + 2.5×8.6 + 1.4×0.002  = 21.34 



A  dataset

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …



Training data
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1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Initialise with random weights
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1.4 
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1.9        
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1.9        



Training data

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Compare with target output

1.4 

2.7                                                    0.8 

0
1.9                                           error 0.8
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Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Adjust weights based on error

1.4

2.7                                                    0.8 

0      
1.9                                           error 0.8
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1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Present a training pattern

6.4 

2.8                                                    

1.7        



Training data

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Feed it through to get output

6.4 
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1.7        



Training data

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Compare with target output

6.4 

2.8                                                     0.9                                                   

1
1.7                                          error 0.1



Training data

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Adjust weights based on error

6.4 

2.8                                                     0.9                                                   

1
1.7                                          error 0.1



Training data

Fields               class

1.4  2.7   1.9         0

3.8  3.4   3.2         0

6.4  2.8   1.7         1

4.1  0.1   0.2         0

etc …

Keep repeating ….

6.4 

2.8                                                     0.9                                                   

1
1.7                                          error 0.1

Use Backpropagation Algorithm

to make

changes that will reduce the error



Backpropagation

• Goal minimize network error:

Each partial derivative of grad E is made up of derivatives of succesive

activation functions and weights

IDEA: iteratively follow in the direction of the negative gradient (steepest 

descent direction) until we arrive at the stopping criterion:

To achieve this, at each step, we update the weights based on its 

corresponding partial derivative 

Thus the updating rule is... 
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Gauss - Newton

• Thus the updating rule is : 

but it can be computationally slow...

• On the other hand Gauss-Newton is computationally fast but not always 

stable (not always invertible H)

• We adapt it using the Levenberg-Marquardt algorithm
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CNN for Image Classification

Convolutional Layer
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CNN for Image Classification

Convolutional Layer



CNN for Image Classification

Convolutional Layer



CNN for Image Classification

Max Pooling



CNN for Image Classification

Max Pooling



CNN for Image Classification

Max Pooling



CNN for Image Classification

Max Pooling



CNN for Image Classification

http://deeplearning.net/tutorial/lenet.html

Potential around this vehicle

http://deeplearning.net/tutorial/lenet.html
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Test case: a real highway – the NGSIM project

• Highway U.S. 101 near Los Angeles, in California

• 5 lanes with entrances and exits. 

• 15 minutes intervals of very detailed data



A Monte Carlo Multi-Lane, Multi-Class 

Vehicle  simulation…

carSimulator.html

Simulation

Real Data

MultiLaneMultiClassSimulation/carSimulator.html
MultiLaneMultiClassSimulation/carSimulator.html


Test case: Stoc. Sims + RER vs reality

• Highway U.S. 101, Los Angeles, California

• 5 lanes with entrances and exits. 

• 15 minutes intervals of very detailed rush hour data: 8:05am to 8:20am



US 101

Actual data vs stochastic



US 101

Actual data vs stochastic + RER 



US 101

Actual data vs stochastic + RER vs stochastic + AI



US-880



Thank you!
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