## **Predicting highly-resolved traffic noise** (using data available as a by-product of Urban Traffic Management and Control systems)

Dr Shadman Marouf, Professor Margaret C. Bell, CBE Future Mobility Group, Newcastle University

### Presented by Dr Paul Goodman,

Environmental Engineering Group, Newcastle University

Presented at MATTS 2018, TU Delft, 18th October 2018



## Background

- Modelling noise has been a topic since the 1960s.
- Since the END 2002, there has been the need for noise maps every 5 years in 'agglomerations' – last 2017
- Recognition that we can calculate noise very well for freely-flowing traffic conditions, but less well for interrupted flows
- Can we use the wealth of UTMC information to assist in calculation and mapping?
- Can we control for noise? (and would we want to?)



## **A Spatio-Temporal Model**

### Spatially:

- We have a network made of 'nodes and links'
- We have a fleet of multiple vehicle types (car, MGV, HGV/Bus)
- Our vehicles have four operational modes
  - Cruising, Accelerating, Decelerating, Idling



Temporally, we have two operational modes:

- Uninterrupted operation under a green signal
- Interrupted operation by a red signal



## **Calculating Sound**

- Use CNOSSOS-EU based procedure
  - Calculate Sound Power Level (SPwL)
  - 2x sources on an individual vehicle (Rolling & Power)
  - 8x octave bands for broadband total
- Calculate look-up table of Sound Exposure Level values (SELs) for individual vehicle modes
- Scale by vehicle flow in mode
- Propagate and convert contributions from all sources to get  $\mathsf{L}_{\mathsf{Aeq}}$  levels



## **Calculating Sound (Simplified...)**

Basic CNOSSOS-EU Sound Power (speed and vehicle type dependent):  $L_{Veh} = f(L_{power} + L_{rolling}), L_{rolling} = a + b \log_{10}[\frac{V}{V_{ref}}], L_{power} = c + d [\frac{V - V_{ref}}{V_{ref}}]$ Correction of Sound Power to SELs (speed and geometry dependent):

 $\succ SEL_{Veh} = L_{Veh} - 10log_{10}v + 10log_{10}d + 10log_{10}a - 10log_{10}[4\pi d'^2] - \Delta Lg$ 

Sound 'Energy' contribution from a vehicle class in a period:  $\geq E_{Veh} = 10 log_{10} [(10^{0.1E_{Veh,idl}}, Q_{Veh}) + (10^{0.1E_{Veh,cru}}, Q_{Veh}) + (10^{0.1E_{Veh,acc}}, Q_{Veh}) + (10^{0.1$ 

Correction to  $L_{Aeq,T}$ :  $> L_{Aeq}(T) = 10 \log_{10}[\frac{1}{T}(E_{car} + E_{MGV} + E_{HGV} + (T - Q_{car} - Q_{LGV} - Q_{HGV}). 10^{0.1L_{back}}]$ 

We're glossing over loads of assumptions regarding CNOSSOS parameters (e.g. road surface) here! – see also Paoprayoon *et al.,* 2005 and Watts et al., 2004

Newcastle University UK | Malaysia | Singapore

## Where to get Traffic Data?

- Use Newcastle City Council's SCOOT (Split, Cycle, Offset, Optimisation) system (TRL UK, Hunt *et al.*, 1981)
- Data either measured or generated from SCOOT used in this research include:
  - Flow: an estimate of stop-line arrival flow in veh/h or veh/5min;
  - Delay: an estimate of the total delay experienced by all vehicles arriving at the stop-line, in units of 1/10th vehicle hours/hour;
  - Occupancy: the number of quarter-second intervals a traffic loop detector embedded in the road pavement is occupied by vehicles during the overall time period (in this study 5 min)
- Collected via NUIDAP (Newcastle University Integrated Data Access Platform)



## How to Calibrate/Validate?

### • Use data collected from inexpensive eMote sensors





• See for yourself at: www.urbanobservatory.co.uk



## Study Area – eMotes 1707, 1703





## Sample SCOOT data (Flow, Occupancy, Speed)



- Link 10141Z is straight-ahead flow, 10141P is a right-turn pocket
- Mote 1707 is near the stop-line whilst 1703 is mid-link.







## NUIDAP and Flow States (Hodges et al., 2009)



States provided for each 5 minutes namely Quiet (1) Smooth Flow (2) Start-Stop (3) and Congestion (4) for each five minutes used in CNOSSUS

School of

Engineering



## **Models Tested**

- Three Scenarios (Weekdays 07:00 19:00):
  - 'Free-Flow' assumed average flows and speed
  - 'Free-Flow' and speed with CNOSSUS junction corrections assuming constant periods of SCOOT state. Each state has defined proportions of traffic mode
    - N10141Z (straight-ahead) quiet and smooth states 40% and 60% respectively
    - N10141P (right-turn movement only) quiet (67%), smooth (24%) and busy (9%).
  - Using SCOOT derived flow and speed with known flow regime for each five minute period and corrected for the spatial changes upstream and downstream of the link.



## **Results: Site 1707 - Stopline**

#### 1. 'Free Flow'



#### 2. +CNOSSOS Junction Correction



# 3. Spatio-Temporal using SCOOT data



Absolute error: 3.7dBA RMSE: 4.1dBA

Absolute error: 2.0dBA RMSE: 2.0dBA Absolute error: 0.5dBA RMSE: 1.9dBA



## **Results: Site 1703 – Mid-Link**

#### 1. 'Free Flow'



#### 2. +CNOSSOS Junction Correction



# 3. Spatio-Temporal using SCOOT data



Absolute error: 4.3dBA RMSE: 4.7dBA

Absolute error: 3.9dBA RMSE: 4.3dBA Absolute error: 1.4dBA RMSE: 1.9dBA



# **Difference (predicted-measured) in L<sub>Aeq,5-min</sub>**





## **Conclusions and Limitations**

- Three variants of a noise prediction model developed each using UTMC (SCOOT) data in a different way
- Most effective model used breakdown of links into four sections and included flow regimes. Using free-flow, average speed underestimated noise
- Also can obtain distributions of noise, rather than just single values
- Limited by simple calculations of speed from SCOOT occupancy and delay – e.g. masking can occur using inductive loops
- No way (yet) of getting different attributes for different vehicle classes from SCOOT, or in assumptions
- Other effects? Road surface? Site characterstics? Non-traffic noise?
- Nearside links only considered



## Thank you for listening Any questions? Contacts:

#### **Professor Margaret C. Bell, CBE**

Science City Professor of Transport and Environment Future Mobility Research Group School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU <u>Margaret.bell@ncl.ac.uk</u>

#### **Dr. Paul Goodman**

Researcher in Transport and Environment Environmental Engineering Research Group School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU Paul.goodman@ncl.ac.uk







