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Route Guidance Signal Control

Main literature review

• Vuren and vliet, 1992: Investigating different traffic signal control policies with traffic routing
interaction.

• Smith and Mounce, 2011: A splitting rate combined model using P0 policy.

• Ioslovich et al., 2011: Optimal traffic control synthesis for an isolated intersection.

• Taale et al., 2015: Back-pressure control for the combined problem.

Optimal Integrated Routing and Signal Control in Simple Traffic Networks 2 / 22



Problem definition A continuous-time model PMP Conditions of optimality Optimal solutions Solution verification Summary

Research problem

A B CSignalRouting

Route 1

Route 2

DestinationOrigin

Research goals

• Developing a continuous-time traffic model for the combined problem of routing and signal control.

• Formulating the optimal control problem and solving analytically
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Research problem

A B CSignalRouting

Route 1

Route 2

DestinationOrigin

Research Problem

• Integrating routing and traffic signal control, while considering idealized splitting rate model.

• Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium
queues, by manipulating traffic routing- and signal-control inputs.

Unlike previous works,

(i) the developed model considers dynamic transient periods

(ii) the model is solved analytically for system optimum via optimal control.
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Model

A B CSignal

a(t) · v1(t)

a(t) · v2(t)

d1 · u1(t)

d2 · u2(t)

Routing

q1(t)

q2(t)

a(t)

Traffic terminology:

• total inflow: a(t) [veh/s]

• queue lengths: q1(t), q2(t) [veh]

• output saturation flows: d1, d2 [veh/s]

• signal-control inputs: u1(t), u2(t) [−]

• routing-control inputs: v1(t), v2(t) [−]

• slack variables: w1(t), w2(t) [−]

Dynamic equations

dq1(t)

dt
= a(t) · v1(t)− d1 · (u1(t)− w1(t))

dq2(t)

dt
= a(t) · v2(t)− d2 · (u2(t)− w2(t))
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Model

Dynamic equations

dq1(t)

dt
= a(t) · v1(t)− d1 · (u1(t)− w1(t))

dq2(t)

dt
= a(t) · v2(t)− d2 · (u2(t)− w2(t))

State constraints

0 ≤ q1(t), 0 ≤ q2(t)

q1(tf) = 0 , q2(tf) = 0

Control input constraints

u ≤ u1(t) ≤ u , u ≤ u2(t) ≤ u , u1(t) + u2(t) = 1 , u = 1− u

v ≤ v1(t) ≤ v , v ≤ v2(t) ≤ v , v1(t) + v2(t) = 1 , v = 1− v

0 ≤ w1(t) ≤ w1(t), 0 ≤ w2(t) ≤ w2(t)

w1(t) = max
{
0, u1(t)− a(t) · v1(t))/d1

}
, w2(t) = max

{
0, u2(t)− (a(t) · v2(t))/d2

}
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Optimal control problem definition

Given:

• dynamic equations

• initial queue lengths: q1(0), q2(0)

• constant total inflow: a

• output saturation flows: d1, d2

• control and state constraints

manipulate u1(t) (or u2(t)) and v1(t) (or v2(t)) to minimize the total delay

J =

∫ tf

0

[
q1(t) + q2(t)

]
dt

the final time tf [s] is free (not fixed), when both queues are dissolved.
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Pontryagins maximum principle

optimal control problem (OCP)

∫ T

0

f0(x, u)dt→ min (1)

dx(t)

dt
= f(x, u) (2)

x(0) = x0, x(T ) = xT (3)

umin ≤ u(t) ≤ umax (4)

where the control variables u(t) ∈ Rm ,
the state variables x(t) ∈ Rn,
f(x, u) ∈ Rn , with m ≤ n.

According to PMP:

H = pT · f(x, u)− f0(x, u) . (5)

dp

dt
= −∂H

∂x

T

= −∂f

∂x

T

· p+ ∂f0
∂x

T

. (6)

The column vector p(t) ∈ Rn is the vector of costate variables.
If exists an optimal solution (x∗, u∗), then, there exists p∗ such
that the following conditions are satisfied:

(a) H(x∗, u∗, p∗) ≥ H(x∗, u, p∗), i.e. H attains maximum over
the control u,

(b) the variables x∗, p∗ satisfy (2) and (6),

(c) the variable u∗ satisfy (4),

(d) the end conditions in (3) must be hold.
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Conditions of optimality

According to the Pontryagin maximum principle (PMP), the Hamiltonian function, H(t), is formed as:

H(t) = p1(t) ·
[
a · v1(t)− d1 · (u1(t)− w1(t))

]
+ p2(t) ·

[
a · v2(t)− d2 · (u2(t)− w2(t))

]
− q1(t)− q2(t)

The differential costate equation:

dp1(t)

dt
= −∂H

∂q1
= 1 ,

dp2(t)

dt
= −∂H

∂q2
= 1

Switching functions:

Su(t) = −d1 · p1(t) + d2 · p2(t) , Sv(t) = p1(t)− p2(t)

From H(u1, u2, v1, v2, w1, w2)→ max follows

∀Su(t) > 0 : u1(t) = u , u2(t) = u ; ∀Su(t) < 0 : u1(t) = u , u2(t) = u ;

∀Sv(t) > 0 : v1(t) = v , v2(t) = v ; ∀Sv(t) < 0 : v1(t) = v , v2(t) = v .
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Note that:

∀p1(t) < 0 : w1(t) = 0 ; ∀p1(t) > 0 : w1(t) = w1(t) ;

∀p2(t) < 0 : w2(t) = 0 ; ∀p2(t) > 0 : w2(t) = w2(t) .

We shall look for the solutions that have the following properties:

p1(t) = 0 only if q1(t) = 0 , p2(t) = 0 only if q2(t) = 0

We also assume that the initial costate variables are negative:

p1(0) < 0 , p2(0) < 0

• We shall find such solutions that satisfy these assumptions.

• It may be shown that these solutions are optimal with sufficiency (Krotov 1973, Ioslovich and Gutman
2016).
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Optimal solutions

Without loss of generality, it is also assumed that:

d1 > d2

Recall: Su(t) = −d1 · p1(t) + d2 · p2(t) , Sv(t) = p1(t)− p2(t) , the derivatives of the switching functions:

dSu

dt
= −d1 + d2 < 0 ⇒ Su(t) decreasing

dSv

dt
= 0 ⇒ Sv(t) constant

Su(t)

tt0

ts tf
t0 tf

t0 tf

dSu
dt < 0

Sv(t)

tt0 tf

dSv
dt = 0
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Optimal solutions

• Following the transversality condition for free final time tf , and since the system does not depend on t,
then H(t) = 0 , ∀t ∈ [0, tf ].

In the following, three different feasible cases of the optimal solutions depending on the initial values of
non-positive costates p1(0), p2(0) are considered:

Case 1
p1(0) = p2(0)

Case 2
p1(0) > p2(0)

Case 3
p1(0) < p2(0)
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Case 2: p1(0) > p2(0)

Recall: dp1(t)
dt

= dp2(t)
dt

and d1 > d2.
Sv(t) = p1(t)− p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t)

if p1(0) > p2(0) then Sv(t) > 0 , ∀t ∈ [0, tf)

Hence, the optimal routing control inputs are:

v1(t) = v v2(t) = v , ∀t ∈ [0, tf ]

In case 2, Su(0) can be negative or positive:

Case 2a: Su(0) > 0 and a switching point occurs.

Case 2b: Su(0) < 0 and a switching point does not occur.

Case 2c: Su(0) > 0 and a switching point does not occur.
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Case 2a: p1(0) > p2(0) and a switching point occurs

Recall: ts - switching time, tf - final time. and the instant time tq1 when q1(t) = 0.
The optimal signal control inputs by time are:

Su(t) > 0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [0, ts]

Su(t) < 0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [ts, tq1 ]

Su(t) < 0 : u1(t) = u , u2(t) = u , w1(t) = u− (a · v/d1) , w2(t) = 0 ∀t ∈ [tq1 , tf ]

Queue feedback control policy

Ri =
dq1
dq2

=
a · v1(t)− d1 · u1(t)

a · v2(t)− d2 · u2(t)
R2 =

a · v − d1 · u
a · v − d2 · u

R3 =
a · v − d1 · u
a · v − d2 · u

The feasible state region for (q2, q1)-plane is:

q1(t)

q2(t)
≤ R2
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Case 2a: p1(0) > p2(0) and a switching point occurs

From Su(ts) = 0 ; H(ts) = 0 ; p1(tq1) = 0 one get q1(ts), q2(ts) and the switching line in (q2(t), q1(t)) plane
will be:

SL =
q1(ts)

q2(ts)
=

d2 · [d1 · u− a · v]
d1 · [d2 · u− a · v] ≥ 0

The feasibility conditions for case 2a are:

0 < d1 · u− a · v
0 < d2 · u− a · v
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Optimal control solution - case 2a

q1

q2

R2

SL

R3

Case 2a
x

Synthesis of the optimal control

u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =



u, uv, v

0, 0

 if SL ≤ q1(t)
q2(t)

≤ R2

u, uv, v

0, 0

 if 0 ≤ q1(t)
q2(t)

≤ SL

 u, u

v, v

w1(t), 0

{if 0 ≤ q1(t)
q2(t)

≤ SL ,

when q1(t) = 0
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Queue feedback control policy

q1

q2

R1

R2

SL

Case 3

u1(t) = u, u2(t) = u

v1(t) = v, v2(t) = v

Case 1

u1(t) = u, u2(t) = u

v1(t) → Eq.(31)

v2(t) → Eq.(32)

Case 2a

u1(t) = u, u2(t) = u

v1(t) = v, v2(t) = v

Case 2b

u1(t) = u, u2(t) = u

v1(t) = v, v2(t) = v
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Solution verification

• Verification by a numerical solver: the optimal control software DIDO (Ross 2015).

• Numerical example parameters:

• The arrival and departure rates: a = 0.4 [veh/s] and d1 = 2 [veh/s], d2 = 1.5 [veh/s].

• The control input bounds: u = 0.3, u = 0.7, v = 0.2, v = 0.8 [-].

• Different initial values of the queue lengths for each case.
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Solution verification - case 2a

Case 2a

(q1(0), q2(0)) = (14, 28) [veh]

tf = 34.3 [s]

ts = 8.4 [s]

JAnalytic = 707.1442 [veh · s]
JDIDO = 664.0782 [veh · s]
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Solution verification - case 2a
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Solution verification

- Case 1 Case 2 Case 3
Costate p1(0) = p2(0) p1(0) > p2(0) p1(0) < p2(0)

Routing control inputs (v1, v2) (
d1·u·tf−q1(t0)

a·tf
,
d2·u·tf−q2(t0)

a·tf
) (v, v) (v, v) (v, v)

Signal control inputs (u1, u2) (u, u) (u, u)→ (u, u) (u, u) (u, u)
Switching point (V-yes / X-no) X V X X

(q1(0), q2(0)) (50,10) (14,28) (4,20) (35,3)
tf [s] 41.4 34.3 20.7 26.6
ts [s] - 8.4 - -
J-Analytic [veh·s] 1.3029× 103 707.1442 259.3573 537.5808

J-DIDO [veh·s] 1.2414× 103 664.0782 234.7583 498.6357

Table: Analytical and numerical results for the different cases.
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Summary

• A continuous-time model is developed to integrate both traffic routing and signal control.

• Optimal control analytical solutions, based on PMP, were found under the objective function of
minimizing total delay.

• The derived optimal analytical solutions were verified via numerical solutions.

• A feedback routing and signal control policy based on link queue lengths is presented.

Future work

• Extending the model to handle upper bound constraints on queue lengths.

• Testing the problem with different objective functions.

• Studying the problem with more complex structure of network or model.
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The most important question is the one nobody ever asked

Thank you!

Yazan Safadi
Safadiyazan@gmail.com


	Problem definition
	Problem definition
	Problem definition

	A continuous-time model

