Optimal Integrated Routing and Signal Control in Simple Traffic Networks

Yazan Safadi and Jack Haddad

MATTS 2018 Mathematics Applied in Transport and Traffic Systems Delft, The Netherlands

October 17, 2018

A continuous-time model

PMP Co

Conditions of optimality

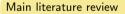
Optimal solutions

Signal Control

Solution verification

Summary

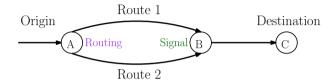
Route Guidance



- Vuren and vliet, 1992: Investigating different traffic signal control policies with traffic routing interaction.
- Smith and Mounce, 2011: A splitting rate combined model using P₀ policy.
- loslovich et al., 2011: Optimal traffic control synthesis for an isolated intersection.
- Taale et al., 2015: Back-pressure control for the combined problem.

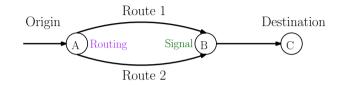
Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
• •	000			000000	000	

Research problem



Research goals

- Developing a continuous-time traffic model for the combined problem of routing and signal control.
- Formulating the optimal control problem and solving analytically



Research Problem

- Integrating routing and traffic signal control, while considering idealized splitting rate model.
- Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium queues, by manipulating traffic routing- and signal-control inputs.

Unlike previous works,

- (i) the developed model considers dynamic transient periods
- (ii) the model is solved analytically for system optimum via optimal control.

A continuous-time model

Conditions of optimality

Optimal solutions

Solution verification

Summary

1 Problem definition

2 A continuous-time model

3 PMP

- **4** Conditions of optimality
- **5** Optimal solutions
- **6** Solution verification

Problem definition	A continuous-time model •00	PMP	Conditions of optimality	Optimal solutions 0000000	Solution verification	Summar
Model						



Traffic terminology:

- total inflow: a(t) [veh/s]
- queue lengths: $q_1(t)$, $q_2(t)$ [veh]
- output saturation flows: d_1 , d_2 [veh/s]
- signal-control inputs: $u_1(t)$, $u_2(t)$ [-]
- routing-control inputs: $v_1(t)$, $v_2(t)$ [-]
- slack variables: $w_1(t)$, $w_2(t)$ [-]

SMART

Dynamic equations

$$\frac{\mathrm{d}q_1(t)}{\mathrm{d}t} = a(t) \cdot v_1(t) - d_1 \cdot (u_1(t) - w_1(t))$$
$$\frac{\mathrm{d}q_2(t)}{\mathrm{d}t} = a(t) \cdot v_2(t) - d_2 \cdot (u_2(t) - w_2(t))$$

Problem definition	A continuous-time model ○●○	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
Model						

Dynamic equations

$$\frac{\mathrm{d}q_1(t)}{\mathrm{d}t} = a(t) \cdot v_1(t) - d_1 \cdot (u_1(t) - w_1(t))$$
$$\frac{\mathrm{d}q_2(t)}{\mathrm{d}t} = a(t) \cdot v_2(t) - d_2 \cdot (u_2(t) - w_2(t))$$

State constraints

$$0 \le q_1(t), \ \ 0 \le q_2(t)$$

 $q_1(t_{\mathrm{f}}) = 0, \ q_2(t_{\mathrm{f}}) = 0$

Control input constraints

$$\begin{split} \underline{u} &\leq u_1(t) \leq \overline{u} \,, \quad \underline{u} \leq u_2(t) \leq \overline{u} \,, \quad u_1(t) + u_2(t) = 1 \,, \quad \underline{u} = 1 - \overline{u} \\ \underline{v} &\leq v_1(t) \leq \overline{v} \,, \quad \underline{v} \leq v_2(t) \leq \overline{v} \,, \quad v_1(t) + v_2(t) = 1 \,, \quad \underline{v} = 1 - \overline{v} \\ 0 &\leq w_1(t) \leq \overline{w}_1(t) \,, \quad 0 \leq w_2(t) \leq \overline{w}_2(t) \\ \overline{w}_1(t) &= \max \left\{ 0, u_1(t) - a(t) \cdot v_1(t)) / d_1 \right\} \,, \quad \overline{w}_2(t) = \max \left\{ 0, u_2(t) - (a(t) \cdot v_2(t)) / d_2 \right\} \end{split}$$

A continuous-time model $\circ \circ \bullet$

Conditions of optimality

Optimal solutions

Solution verification

Summary

Optimal control problem definition

Given:

- dynamic equations
- initial queue lengths: $q_1(0)$, $q_2(0)$
- constant total inflow: a
- output saturation flows: d_1 , d_2
- control and state constraints

manipulate $u_1(t)$ (or $u_2(t)$) and $v_1(t)$ (or $v_2(t)$) to minimize the total delay

$$J = \int_0^{t_{\mathrm{f}}} \left[q_1(t) + q_2(t) \right] \mathrm{d}t$$

the final time $t_{\rm f}~[{\rm s}]$ is free (not fixed), when both queues are dissolved.

PMP

Optimal solutions

Solution verification

Summary

1 Problem definition

A continuous-time model

3 PMP

- **4** Conditions of optimality
- **5** Optimal solutions
- **6** Solution verification

A continuous-time model 000

PMP Condit

Conditions of optimality

Optimal solutions

Solution verification

Summary

Pontryagins maximum principle

According to PMP:

optimal control problem (OCP)

$$\int_{0}^{T} f_{0}(x, u) dt \rightarrow \min$$

$$\frac{dx(t)}{dt} = f(x, u)$$

$$x(0) = x_{0}, x(T) = x_{T}$$

$$u_{\min} \leq u(t) \leq u_{\max}$$
(1)
(2)
(2)
(3)
(4)

where the control variables $u(t) \in \mathbf{R}^m$, the state variables $x(t) \in \mathbf{R}^n$, $f(x, u) \in \mathbf{R}^n$, with $m \leq n$.

 $H = p^{T} \cdot f(x, u) - f_{0}(x, u) .$ (5)

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial x}^{T} = -\frac{\partial f}{\partial x}^{T} \cdot p + \frac{\partial f_{0}}{\partial x}^{T}.$$
(6)

The column vector $p(t)\in \mathbf{R}^n$ is the vector of costate variables. If exists an optimal solution (x^*,u^*) , then, there exists p^* such that the following conditions are satisfied:

(a) $H(x^*,u^*,p^*) \geq H(x^*,u,p^*),$ i.e. H attains maximum over the control u,

- (b) the variables x^* , p^* satisfy (2) and (6),
- (c) the variable u^* satisfy (4),
- (d) the end conditions in (3) must be hold.

Optimal solutions

Solution verification

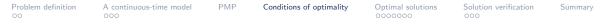
Summary

1 Problem definition

2 A continuous-time model

3 PMP

- **4** Conditions of optimality
- **5** Optimal solutions
- **6** Solution verification



Conditions of optimality

According to the Pontryagin maximum principle (PMP), the Hamiltonian function, H(t), is formed as:

$$H(t) = p_1(t) \cdot \left[a \cdot v_1(t) - d_1 \cdot (u_1(t) - w_1(t))\right] + p_2(t) \cdot \left[a \cdot v_2(t) - d_2 \cdot (u_2(t) - w_2(t))\right] - q_1(t) - q_2(t)$$

The differential costate equation:

$$\frac{\mathrm{d}p_1(t)}{\mathrm{d}t} = -\frac{\partial H}{\partial q_1} = 1, \quad \frac{\mathrm{d}p_2(t)}{\mathrm{d}t} = -\frac{\partial H}{\partial q_2} = 1$$

Switching functions:

$$S_u(t) = -d_1 \cdot p_1(t) + d_2 \cdot p_2(t), \quad S_v(t) = p_1(t) - p_2(t)$$

From $H(u_1, u_2, v_1, v_2, w_1, w_2) \rightarrow \max$ follows

$$\forall S_u(t) > 0: \ u_1(t) = \overline{u}, \ u_2(t) = \underline{u}; \qquad \forall S_u(t) < 0: \ u_1(t) = \underline{u}, \ u_2(t) = \overline{u}; \\ \forall S_v(t) > 0: \ v_1(t) = \overline{v}, \ v_2(t) = \underline{v}; \qquad \forall S_v(t) < 0: \ v_1(t) = \underline{v}, \ v_2(t) = \overline{v}.$$

roblem definition	A continuous-time model 000	РМР	Conditions of optimality	Optimal solutions	Solution verification	Summary
Note that:						
	$\forall p_1(t) < 0$	$: w_1(t) =$		$w_1(t) = \overline{w}_1(t) ;$		
	$\forall p_2(t) < 0$: $w_2(t) =$	$= 0; \qquad \forall p_2(t) > 0:$	$w_2(t) = \overline{w}_2(t) .$		

We shall look for the solutions that have the following properties:

 $p_1(t) = 0$ only if $q_1(t) = 0$, $p_2(t) = 0$ only if $q_2(t) = 0$

We also assume that the initial costate variables are negative:

 $p_1(0) < 0, \qquad p_2(0) < 0$

- We shall find such solutions that satisfy these assumptions.
- It may be shown that these solutions are optimal with sufficiency (Krotov 1973, loslovich and Gutman 2016).

A continuous-time model

PMP C

Conditions of optimality

Optimal solutions

Solution verification

Summary

1 Problem definition

2 A continuous-time model

3 PMP

- **4** Conditions of optimality
- **6** Optimal solutions
- **6** Solution verification

A continuous-time model

MP Condit

Conditions of optimality

Optimal solutions

Solution verification

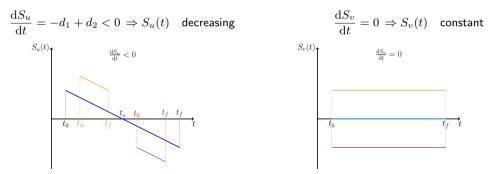
Summary

Optimal solutions

Without loss of generality, it is also assumed that:

 $d_1 > d_2$

Recall: $S_u(t) = -d_1 \cdot p_1(t) + d_2 \cdot p_2(t)$, $S_v(t) = p_1(t) - p_2(t)$, the derivatives of the switching functions:



Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
Optimal s	olutions					

Following the transversality condition for free final time t_f, and since the system does not depend on t, then H(t) = 0, ∀t ∈ [0, t_f].

In the following, three different feasible cases of the optimal solutions depending on the initial values of non-positive costates $p_1(0)$, $p_2(0)$ are considered:

Case 1	Case 2	Case 3
$p_1(0) = p_2(0)$	$p_1(0) > p_2(0)$	$p_1(0) < p_2(0)$

Conditions of optimality

Optimal solutions

Solution verification

Summary

Case 2: $p_1(0) > p_2(0)$

Recall: $\frac{dp_1(t)}{dt} = \frac{dp_2(t)}{dt}$ and $d_1 > d_2$. $S_v(t) = p_1(t) - p_2(t)$, $S_u(t) = -d_1 \cdot p_1(t) + d_2 \cdot p_2(t)$

if $p_1(0) > p_2(0)$ then $S_v(t) > 0, \, \forall t \in [0, t_{\rm f})$

Hence, the optimal routing control inputs are:

$$v_1(t) = \overline{v} \quad v_2(t) = \underline{v}, \quad \forall t \in [0, t_{\rm f}]$$

In case 2, $S_u(0)$ can be negative or positive:

Case 2a: $S_u(0) > 0$ and a switching point occurs. **Case 2b:** $S_u(0) < 0$ and a switching point does not occur. **Case 2c:** $S_u(0) > 0$ and a switching point does not occur.

Case 2a: $p_1(0) > p_2(0)$ and a switching point occurs

Recall: t_s - switching time, t_f - final time. and the instant time t_{q_1} when $q_1(t) = 0$. The optimal signal control inputs by time are:

$$\begin{split} S_u(t) > 0 : & u_1(t) = \overline{u} \,, \, u_2(t) = \underline{u} \,, \, w_1(t) = 0 \,, \, w_2(t) = 0 \quad \forall t \in [0, t_{\rm s}] \\ S_u(t) < 0 : & u_1(t) = \underline{u} \,, \, u_2(t) = \overline{u} \,, \, w_1(t) = 0 \,, \, w_2(t) = 0 \quad \forall t \in [t_{\rm s}, t_{q_1}] \\ S_u(t) < 0 : & u_1(t) = \underline{u} \,, \, u_2(t) = \overline{u} \,, \, w_1(t) = \underline{u} - (a \cdot \overline{v}/d_1) \,, \, w_2(t) = 0 \quad \forall t \in [t_{q_1}, t_{\rm f}] \end{split}$$

Queue feedback control policy

$$R_i = \frac{\mathrm{d}q_1}{\mathrm{d}q_2} = \frac{a \cdot v_1(t) - d_1 \cdot u_1(t)}{a \cdot v_2(t) - d_2 \cdot u_2(t)} \qquad \qquad R_2 = \frac{a \cdot \overline{v} - d_1 \cdot \overline{u}}{a \cdot \underline{v} - d_2 \cdot \underline{u}} \qquad \qquad R_3 = \frac{a \cdot \overline{v} - d_1 \cdot \underline{u}}{a \cdot \underline{v} - d_2 \cdot \overline{u}}$$

The feasible state region for (q_2, q_1) -plane is:

$$\frac{q_1(t)}{q_2(t)} \le R_2$$

Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
00	000			0000000	000	

Case 2a: $p_1(0) > p_2(0)$ and a switching point occurs

From $S_u(t_s) = 0$; $H(t_s) = 0$; $p_1(t_{q_1}) = 0$ one get $q_1(t_s), q_2(t_s)$ and the switching line in $(q_2(t), q_1(t))$ plane will be:

$$SL = \frac{q_1(t_s)}{q_2(t_s)} = \frac{d_2 \cdot [d_1 \cdot \underline{u} - a \cdot \overline{v}]}{d_1 \cdot [d_2 \cdot \overline{u} - a \cdot \underline{v}]} \ge 0$$

The feasibility conditions for case 2a are:

 $0 < d_1 \cdot \underline{u} - a \cdot \overline{v}$ $0 < d_2 \cdot \overline{u} - a \cdot v$

A continuous-time model

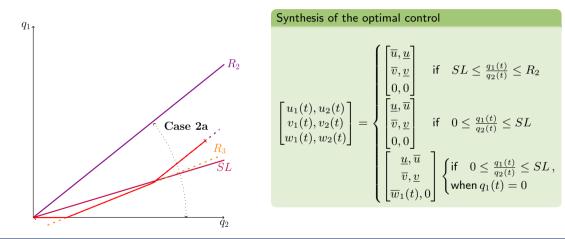
Conditions of optimality

Optimal solutions

Solution verification

Summary

Optimal control solution - case 2a



A continuous-time model

Conditions of optimality

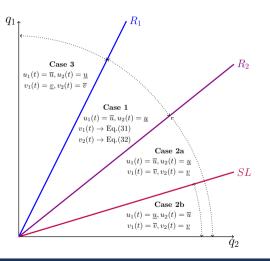
PMP

Optimal solutions

Solution verification

Summary

Queue feedback control policy



A continuous-time model

MP Conditions of optimality

ality Optimal solutions

Summary

1 Problem definition

2 A continuous-time model

3 PMP

- **4** Conditions of optimality
- **5** Optimal solutions
- **6** Solution verification

Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
00	000			000000	000	

Solution verification

- Verification by a numerical solver: the optimal control software DIDO (Ross 2015).
- Numerical example parameters:
 - The arrival and departure rates: a = 0.4 [veh/s] and $d_1 = 2$ [veh/s], $d_2 = 1.5$ [veh/s].
 - The control input bounds: $\underline{u} = 0.3$, $\overline{u} = 0.7$, $\underline{v} = 0.2$, $\overline{v} = 0.8$ [-].
 - Different initial values of the queue lengths for each case.

A continuous-time model

Conditions of optimality

Optimal solutions

Solution verification

Summary

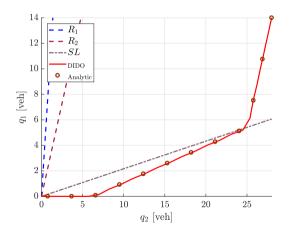
Solution verification - case 2a

Case 2a

 $\begin{array}{ll} (q_1(0),q_2(0)) = (14,28) & \mbox{[veh]} \\ t_f = 34.3 & \mbox{[s]} \\ t_s = 8.4 & \mbox{[s]} \\ J_{\rm Analytic} = 707.1442 & \mbox{[veh \cdot s]} \\ J_{\rm DIDO} = 664.0782 & \mbox{[veh \cdot s]} \end{array}$

DIDO

Analytic



0

A continuous-time model

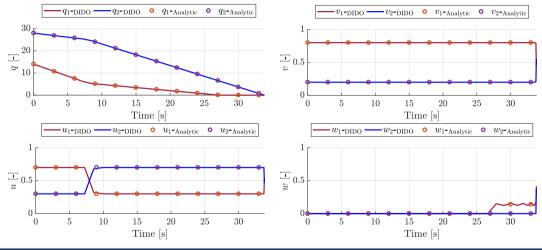
Conditions of optimality

Optimal solutions

Solution verification

Summary

Solution verification - case 2a



TECHNION Israel Institute of Technology Optimal

Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary
00	000			0000000	00●	

Solution verification

-	Case 1	Case 2		Case 3
Costate	$p_1(0) = p_2(0)$	$p_1(0) > 1$	$p_2(0)$	$p_1(0) < p_2(0)$
Routing control inputs (v_1, v_2)	$(rac{d_1\cdot\overline{u}\cdot t_{\mathrm{f}}-q_1(t_0)}{a\cdot t_{\mathrm{f}}},rac{d_2\cdot\overline{u}\cdot t_{\mathrm{f}}-q_2(t_0)}{a\cdot t_{\mathrm{f}}})$	$(\overline{v}, \underline{v})$ $(\overline{v}, \underline{v})$		$(\underline{v},\overline{v})$
Signal control inputs (u_1, u_2)	$(\overline{u},\underline{u})$	$(\overline{u},\underline{u}) \to (\underline{u},\overline{u})$ $(\underline{u},\overline{u})$		$(\overline{u}, \underline{u})$
Switching point (V-yes / X-no)	Х	V	X	Х
$(q_1(0), q_2(0))$	(50,10)	(14,28)	(4,20)	(35,3)
$t_{ m f}$ [s]	41.4	34.3	20.7	26.6
$t_{ m s}$ [s]	-	8.4	-	-
J-Analytic [veh⋅s]	$1.3029 imes10^3$	707.1442	259.3573	537.5808
J-DIDO [veh⋅s]	$1.2414 imes10^3$	664.0782	234.7583	498.6357

Table: Analytical and numerical results for the different cases.

A continuous-time model

P Conditions of optimality

Optimal solutions

Solution verification

Summary

1 Problem definition

A continuous-time model

3 PMP

- **4** Conditions of optimality
- **5** Optimal solutions
- **6** Solution verification

Problem definition	A continuous-time model	PMP	Conditions of optimality	Optimal solutions	Solution verification	Summary

Summary

- A continuous-time model is developed to integrate both traffic routing and signal control.
- Optimal control analytical solutions, based on PMP, were found under the objective function of minimizing total delay.
- The derived optimal analytical solutions were verified via numerical solutions.
- A feedback routing and signal control policy based on link queue lengths is presented.

Future work

- Extending the model to handle upper bound constraints on queue lengths.
- Testing the problem with different objective functions.
- Studying the problem with more complex structure of network or model.

The most important question is the one nobody ever asked

Thank you!

Yazan Safadi Safadiyazan@gmail.com

