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Kinetic traffic models

Let f = f(x, v, t) denote the distribution of cars at time t and position x
with velocity v € [0, 1].
A general evolution of f is governed by

Ocf + vOLf = Q(f) ,
where Q(f) is some (possibly nonlocal) interaction term. v

A possible simplification is to consider discrete velocities, e.g.
v € {v1,v} C[0,1]. Thus the distributions f; and f, satisfy

Ot + 10 = Qu(fi, f2) fy
Oifr + voOifo = Qu(f1, f2) | |
with corresponding interaction terms Q; and Q5.
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Discrete velocity models

For given equilibrium functions £(p), f5(p) with

p="1(p)+1(p) and vt (p) +vafy(p) = F(p)
a discrete velocity relaxation model is

1
Otf + 10k = —g (fl - fle(p))

1

O + voOx b *E(fQ* fze(P)) .

Using the macroscopic variables p = f; + f, and g = v1fi + v fy it reads
Oep+0xq =0

1
0rq — vivaOyxp + (V1 + V2)8xq = - (Cl - F(P)) .

€
In the limit e — 0 we want to obtain d;p + 9xF(p) =0 .
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Subcharacteristic condition
1
Oef; + videf = —= (f = £2(p)) i =1,2
€

It is well known that for convergence to the conservation law
Otp + 0xF(p) = 0 the so called subcharacteristic condition is needed

< F(p)<v.

S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws ..., 1995
v1 > 0 does not allow for situations where F'(p) is negative (traffic jams).
Task

Develop a discrete-velocity model for traffic flow with correct invariant region
and convergence to the scalar conservation law for all ranges of p.

q

The invariant region is the triangle
0<p<land0<qg<p.
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Deriving a new model: kinetic modeling

Orf + vOxf = Ji(F) + Ini(F) v e|[0,1], f="f(x,v,t)
Local term due to acceleration and braking: Relaxation term J; given by

Ju(f) = = (f = fo(p))

with equilibrium function fy(p) with [ fo(v)dv = p and [ vf(v)dv = F(p).
Nonlocal term due to braking interactions: Jy.(f) given by

Ine(F) = Ine(F, H) = Jg(f, H) — Jg(£,0) .
Js(f, H): braking term, H measure for the look-ahead

-1

Jg(f,H) = —— (v — D) f(x,v)f(x+ H,0)dV
w o
1
+17 (0= v)F(x, V)f(x + H,v)dV ,
— P Jo>v
a driver at x with velocity v reacts to a car at x + H with velocity ¥, if ¥ < v.
The new velocity resulting of his braking is the velocity of the leading car.

I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, 1971.
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The kinetic equation is now scaled with t — £ and x — % (zoom out)

Ouf + VO F = T I(F) + Iu(F,eH)
Computing the Taylor expansion of Jy; with respect to € gives to first order
Oef + vOxf — Iy (F, Oxf) = %JL(f)
with the following approximation of Jy;

H
S (F 0k f, v) = —— (0 — v)F(0)0xF(v)dV
1- P Jo>v
,L (v —0)f(v)0if(0)dV
1- P Jo<v * .
For a two velocity model with the velocities 0 < v; < v, < 1 we obtain

JICL(VI) =

H
p(m —w)hokfi . Jy(ve) = — (va — vi) RO h .

1-— 1—p
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Consider the choice vi = 0, v, = 1. Then the discrete velocity model is

H 1
Ochy = 1 _pf23Xf1 = (h—p+ F(p))
H 1
Ocfy + Okt + ipfzaxﬂ = (h—F(p)) .

With i = p — g, f, = q the associated macroscopic equation is

Oip+0xq =0

H H 1

g+ —Oep+ (1 — —)0q = —~ (q— F(p)) .
—p 1—p €

1

The subcharacteristic condition is

_HF(p)

17§F/(p)§1 for 0<p<1
-p

since the eigenvalues of the hyperbolic part are A\; = flfi—qp , A =1.
For the LWR model the subcharacteristic condition is satisfied if H > 1.
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The system of conservation laws The system can be

reformulated in conservative form using z = (152)”

8tp+5‘xq =0
1 H

1
Otz + 0xz = 6W(q—F(p)) .

Hyperbolic classification:

m Shock and integral curves coincide (Temple
systems), 2-field is linearly degenerate.

m In the special case H = 1 the system is totally
linear degenerate.

m The value of z remains bounded.

The region 0 < p <1, 0< g < pis an invariant for
the system for all H > 0.
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Numerical results
H=1 pL=0.99, pr=0,g=0, pL =03, prg =0.99, g=0.
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Coupling conditions

Boundary values
Advantage: The eigenvalues do not change sign

Alz—li<o<A2=1.

The Riemann Invariants of the system are

_9
(1-p)

Z =

Notation: The ~ values are the known states at the node
(entering characteristics)
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Coupling Conditions:

Merge

Stopped cars w = p — g
Free space 1 — w

Free space of 3 split in
half

1 N
1—W1:§(1—W3)
1 N
17W2:§(17W3)
93 =q1 + q2
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Numerical results

Initial Conditions p; = 0.3, po = 0.5, p; = 0.2,
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Coupling Conditions: Numerical results
Split: First In First Out
1 T T T T T T
3 0.8 1
—1) 06| 4
—WR—c=1—e=01—c=001 = 0
2 - il ]
02 — 4
08| ] =
Distribution parameter ol
(%) and a3z = (1 — 042) s
04}
~ ~ 02t 1
. . qmax qmax |
g1 = min (qf’ax’ 277 a3 N
(%) a3 J
g2 = Q2q1 1
q3 = 341 "0 02 04 06 08 1
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Outlook

Features
m Boundary layers can be solved explicitly.

m The model can be extended to describe cluster dynamics.

Upcoming investigations
m Other choices of coupling conditions.
m Coupling conditions for general values of H.

m Analysis of coupling conditions in the limit € — 0.
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Outlook

Features
m Boundary layers can be solved explicitly.

m The model can be extended to describe cluster dynamics.
Upcoming investigations
m Other choices of coupling conditions.

m Coupling conditions for general values of H.

m Analysis of coupling conditions in the limit € — 0.

Thank you for your attention.
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