A nonlinear discrete-velocity relaxation model for traffic flow

Raul Borsche and Axel Klar

Deriving a new model 00000 Coupling conditions at intersections

Content

2 Deriving a new model

Deriving a new model

Coupling conditions at intersections 0000

Kinetic traffic models

Let f = f(x, v, t) denote the distribution of cars at time t and position x with velocity $v \in [0, 1]$.

A general evolution of f is governed by

$$\partial_t f + v \partial_x f = Q(f) \; ,$$

where Q(f) is some (possibly nonlocal) interaction term. A possible simplification is to consider discrete velocities, e.g. $v \in \{v_1, v_2\} \subset [0, 1]$. Thus the distributions f_1 and f_2 satisfy

$$\partial_t f_1 + v_1 \partial_x f_1 = Q_1(f_1, f_2)$$

$$\partial_t f_2 + v_2 \partial_x f_2 = Q_2(f_1, f_2)$$

with corresponding interaction terms Q_1 and Q_2 .

V2

V1

Deriving a new mode 00000 Coupling conditions at intersections

Discrete velocity models

For given equilibrium functions $f_1^e(\rho), f_2^e(\rho)$ with

$$\rho = f_1^e(\rho) + f_2^e(\rho) \quad \text{and} \quad v_1 f_1^e(\rho) + v_2 f_2^e(\rho) = F(\rho)$$

a discrete velocity relaxation model is

$$\partial_t f_1 + v_1 \partial_x f_1 = -\frac{1}{\epsilon} \left(f_1 - f_1^e(\rho) \right)$$

$$\partial_t f_2 + v_2 \partial_x f_2 = -\frac{1}{\epsilon} \left(f_2 - f_2^e(\rho) \right) .$$

Using the macroscopic variables $\rho = f_1 + f_2$ and $q = v_1 f_1 + v_2 f_2$ it reads

$$\partial_t \rho + \partial_x q = 0$$

 $\partial_t q - v_1 v_2 \partial_x \rho + (v_1 + v_2) \partial_x q = -\frac{1}{\epsilon} (q - F(\rho)) \; .$

In the limit $\epsilon
ightarrow 0$ we want to obtain $\partial_t
ho + \partial_x F(
ho) = 0$.

Deriving a new model 00000 Coupling conditions at intersections 0000

Subcharacteristic condition

$$\partial_t f_i + v_i \partial_x f_i = -\frac{1}{\epsilon} \left(f_i - f_i^e(\rho) \right) \quad i = 1, 2$$

It is well known that for convergence to the conservation law $\partial_t \rho + \partial_x F(\rho) = 0$ the so called **subcharacteristic condition** is needed

$$\mathsf{v}_1 \leq \mathsf{F}'(
ho) \leq \mathsf{v}_2$$
 .

S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws ..., 1995 $v_1 \ge 0$ does not allow for situations where $F'(\rho)$ is negative (traffic jams).

Task

Develop a discrete-velocity model for traffic flow with correct invariant region and convergence to the scalar conservation law for all ranges of ρ .

The invariant region is the triangle $0 \le \rho \le 1$ and $0 \le q \le \rho$.

Deriving a new model •0000 Coupling conditions at intersections 0000

Deriving a new model: kinetic modeling

$$\partial_t f + v \partial_x f = J_L(f) + J_{NL}(f)$$
 $v \in [0,1], f = f(x,v,t)$

Local term due to acceleration and braking: Relaxation term J_L given by

$$J_L(f) = -(f - f_0(\rho))$$

with equilibrium function $f_0(\rho)$ with $\int f_0(v)dv = \rho$ and $\int vf_0(v)dv = F(\rho)$. Nonlocal term due to braking interactions: $J_{NL}(f)$ given by

$$J_{NL}(f) = J_{NL}(f, H) = J_B(f, H) - J_B(f, 0)$$
.

 $J_B(f, H)$: braking term, H measure for the look-ahead

$$egin{aligned} J_B(f,H) &= rac{-1}{1-
ho} \int_{\hat{v} < v} (\mathbf{v} - \hat{v}) f(\mathbf{x},v) f(\mathbf{x}+H,\hat{v}) d\hat{v} \ &+ rac{1}{1-
ho} \int_{\hat{v} > v} (\hat{v} - v) f(\mathbf{x},\hat{v}) f(\mathbf{x}+H,v) d\hat{v} \ , \end{aligned}$$

a driver at x with velocity v reacts to a car at x + H with velocity \hat{v} , if $\hat{v} < v$. The new velocity resulting of his braking is the velocity of the leading car.

I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, 1971.

Raul Borsche

Deriving a new model 00000 Coupling conditions at intersections 0000

The kinetic equation is now scaled with $t \to \frac{t}{\epsilon}$ and $x \to \frac{x}{\epsilon}$ (zoom out)

$$\partial_t f + v \partial_x f = \frac{1}{\epsilon} J_L(f) + \frac{1}{\epsilon} J_{NL}(f, \epsilon H) .$$

Computing the Taylor expansion of J_{NL} with respect to ϵ gives to first order

$$\partial_t f + v \partial_x f - J_{NL}^A(f, \partial_x f) = \frac{1}{\epsilon} J_L(f)$$

with the following approximation of J_{NL}

$$J_{NL}^{A}(f,\partial_{x}f,v) = rac{H}{1-
ho}\int_{\hat{v}>v}(\hat{v}-v)f(\hat{v})\partial_{x}f(v)d\hat{v} \ -rac{H}{1-
ho}\int_{\hat{v}$$

For a two velocity model with the velocities $0 \leq v_1 < v_2 \leq 1$ we obtain

$$J_{NL}^{A}(v_{1}) = rac{H}{1-
ho}(v_{2}-v_{1})f_{2}\partial_{x}f_{1}, \quad J_{NL}^{A}(v_{2}) = -rac{H}{1-
ho}(v_{2}-v_{1})f_{2}\partial_{x}f_{1}.$$

Deriving a new model

Coupling conditions at intersections 0000

Consider the choice $v_1 = 0, v_2 = 1$. Then the discrete velocity model is

$$\partial_t f_1 - rac{H}{1-
ho} f_2 \partial_x f_1 = -rac{1}{\epsilon} \left(f_1 -
ho + F(
ho)
ight)$$

 $\partial_t f_2 + \partial_x f_2 + rac{H}{1-
ho} f_2 \partial_x f_1 = -rac{1}{\epsilon} \left(f_2 - F(
ho)
ight) \; .$

With $f_1 = \rho - q$, $f_2 = q$ the associated macroscopic equation is

$$\partial_t \rho + \partial_x q = 0$$

 $\partial_t q + rac{Hq}{1-
ho} \partial_x
ho + (1 - rac{Hq}{1-
ho}) \partial_x q = -rac{1}{\epsilon} (q - F(
ho)) \; .$

The subcharacteristic condition is

$$-rac{{\sf HF}(
ho)}{1-
ho}\leq {\sf F}'(
ho)\leq 1 \ \ {
m for} \ \ 0\leq
ho\leq 1$$

since the eigenvalues of the hyperbolic part are $\lambda_1 = -\frac{Hq}{1-\rho}$, $\lambda_2 = 1$. For the LWR model the subcharacteristic condition is satisfied if $H \ge 1$.

Deriving a new model

Coupling conditions at intersections 0000

The system of conservation laws The system can be reformulated in conservative form using $z = \frac{Hq}{(1-\rho)^H}$

$$\partial_t \rho + \partial_x q = 0$$

 $\partial_t z + \partial_x z = -\frac{1}{\epsilon} \frac{H}{(1-\rho)^H} (q - F(\rho))$.

Hyperbolic classification:

- Shock and integral curves coincide (Temple systems), 2-field is linearly degenerate.
- In the special case *H* = 1 the system is **totally linear degenerate**.
- The value of *z* remains bounded.

The region $0 \le \rho \le 1$, $0 \le q \le \rho$ is an invariant for the system for all H > 0.

Deriving a new model

Coupling conditions at intersections 0000

Numerical results H = 1 $\rho_I = 0.99, \rho_B = 0, q$

Raul Borsche

Discrete-velocity model for traffic flow

Deriving a new model

Coupling conditions at intersections •000

Coupling conditions Boundary values

Advantage: The eigenvalues do not change sign

$$\lambda_1 = -rac{q}{1-
ho} < 0 < \lambda_2 = 1$$
 .

The Riemann Invariants of the system are

Notation: The $\hat{\cdot}$ values are the known states at the node (entering characteristics)

Deriving a new model 00000 Coupling conditions at intersections 0000

Coupling Conditions: Numerical results Merge

Deriving a new model 00000 Coupling conditions at intersections

Coupling Conditions: Numerical results Split: First In First Out

Deriving a new model 00000 Coupling conditions at intersections 0000

Outlook

Features

- Boundary layers can be solved explicitly.
- The model can be extended to describe cluster dynamics.

Upcoming investigations

- Other choices of coupling conditions.
- Coupling conditions for general values of *H*.
- Analysis of coupling conditions in the limit $\epsilon \rightarrow 0$.

Deriving a new model 00000 Coupling conditions at intersections 0000

Outlook

Features

- Boundary layers can be solved explicitly.
- The model can be extended to describe cluster dynamics.

Upcoming investigations

- Other choices of coupling conditions.
- Coupling conditions for general values of *H*.
- Analysis of coupling conditions in the limit $\epsilon \rightarrow 0$.

Thank you for your attention.