UNIVERSITY OF TWENTE.

Green-wave analysis in a tandem of traffic-light intersections

A. Oblakova, A. Al Hanbali, R.J. Boucherie, J.C.W. van Ommeren, W.H.M. Zj.jm

Overv"ew

- Network of intersections
- Stochastic model
- Numerical results

Overv:ew

- Network of intersections
- Stochastic model
- Numerical results

Network of "ntersect:ons

Network of "ntersect:ons: phases

- Fixed length of each phase.

Network of "ntersect:ons: fixed control

- Each lane has fixed green and red times.
no real-time data
- Fixed common cycle length, c, in the network. coordination between intersections
- Control parameters: green times and offsets.
offset is time between coordinated phases of two intersections

Overv:ew

- Network of intersections
- Stochastic model
- Numerical results

Stochast:c model: problems

- Service process is time-dependent. discrete-time model

Stochast:"c model: problems

- Service process is time-dependent. discrete-time model
- High dimension of the system. network decomposition into separate lanes

Stochast:c model: problems

- Service process is time-dependent. discrete-time model
- High dimension of the system. network decomposition into separate lanes
- Dependency between lanes.
arrival process

Stochast:c model: network

Stochast"c model: external lane

Stochast"c model: external lane

- Bernoulli arrivals: i.i.d. Y.

Stochast"c model: external lane

- Bernoulli arrivals: i.i.d. Y.
- Delayed departure at second $s+P+d_{k}$, where s - beginning of the green time, P - distraction variable, d_{k} - deterministic second of the $k^{\text {th }}$ delayed vehicle.

Stochast"c model: external lane

- Bernoulli arrivals: i.i.d. Y.
- Delayed departure at second $s+P+d_{k}$, where s - beginning of the green time, P - distraction variable, d_{k} - deterministic second of the $k^{\text {th }}$ delayed vehicle.
- If the queue becomes empty, all the arrivals proceed without stopping.

Stochast"c model: internal lane

- Correlated arrivals.
- Acceleration of the delayed departures.

Markovian arrival process

- Underlying Markov chain $L_{i}, i=0, \ldots, c-1$.
- States represent information that determines arrivals, e.g., the number of delayed departures at the upstream lane.
- $\mathbb{P}\left(Y_{i}=1 \mid L_{i}=I, Y_{0}, \ldots, Y_{i-1}\right)=\lambda_{i}^{\prime}$.

Markovian arrival process

UNIVERSITY OF TWENTE.

Independence assumpt"on

- The arrivals during different cycles are independent.

Independence assumpt"on

- The arrivals during different cycles are independent.

Under this assumption, we prove that the pgf of the queue length at a lane at the beginning of the cycle has form:

$$
X(z)=\frac{\sum_{j=0}^{n-1} x_{j} f_{j}(z)}{z^{n}-A(z) C(z)}
$$

where n is the maximum capacity, $x_{j}=\mathbb{P}\left(X_{0}=j\right), A(z)$ - the pgf of arrivals, $C(z)$ - the pgf of the lost capacity due to randomness of $P, f_{j}(z)$ - polynomials.

Overv:ew

- Network of intersections
- Stochastic model
- Numerical results

Green-wave efficiency

What is a good green wave?

Green-wave efficiency

What is a good green wave?

Definition The green-wave efficiency is the expected number of intersections passed without stopping for an arbitrary vehicle.

Green-wave efficiency

What is a good green wave?

Definition The green-wave efficiency is the expected number of intersections passed without stopping for an arbitrary vehicle.

- In an ideal green wave, the green-wave efficiency is equal to the expected number of intersections for a vehicle.

Green-wave efficiency

What is a good green wave?

Definition The green-wave efficiency is the expected number of intersections passed without stopping for an arbitrary vehicle.

- In an ideal green wave, the green-wave efficiency is equal to the expected number of intersections for a vehicle.
- In the worst case scenario, all of the vehicles need to stop, and our measure is equal to 0 .

Opt:misation: network of intersections

Opt:"misation: parameters

We consider a tandem of 3 intersections (100 meters apart):

- the arrival rate from west is λ,
- the arrival rate from east is 0.5λ,
- the arrival rate from north and south is 0.2λ,
- 16% of the major traffic turns south or north,
- $40 \%(20 \%)$ of the minor traffic turns east (west).

Opt"misation: objectives and constraints

Optimisation with multiple objectives:

- maximising the green-wave efficiency,
- minimising the average delay

Opt"misation: objectives and constraints

Optimisation with multiple objectives:

- maximising the green-wave efficiency,
- minimising the average delay
for
- fixed cycle length of 60 seconds,
- given phase schedule.

Opt"misation: approaches

- Genetic algorithm coupled with our model, multiple objectives
- SUMO cycle program generator (SCPG), Webster (proportional) green time allocation
- MAXBAND.
bandwidth maximisation

Opt"misation results: Pareto optimality

UNIVERSITY OF TWENTE.

Opt:misation: phases

Phase 1

Phase 2

Phase 3

Phase 4

Opt"misation results: Pareto optimality load 0.7

Green times:

- $[7,7,20,2],[7,7,20,2],[7,7,20,2]$
- [7, 7, 19, 3], [7, 7, 20, 2], [7, 7, 20, 2]
- $[8,7,18,3],[7,7,20,2],[7,7,20,2]$
- $[7,7,20,2],[7,6,21,2],[7,7,20,2]$ or - $[7,7,20,2],[7,7,20,2],[7,6,21,2]$
- $[7,7,19,3],[7,6,21,2],[7,7,20,2]$ or
- $[7,7,19,3],[7,7,20,2],[7,6,21,2]$
- $[8,7,18,3],[7,6,21,2],[7,7,20,2]$ or
- $[8,7,18,3],[7,7,20,2],[7,6,21,2]$
$\times \quad$ Other

Conclus:ons

- It is important to take the real behaviour of traffic into account.
- Optimisation for the best green wave may be disadvantageous for the average delay.
- The average delay per vehicle is very sensitive to the changes in the green times.

