Influence of Route Choice Behavior on Vulnerability to Cascading Failure in Transportation Networks

OKashin Sugishita, Yasuo Asakura

Ph.D Candidate

Department of Civil and Environmental Engineering

Tokyo Institute of Technology

Transport Vulnerability

- Transportation network: one of critical infrastructures supporting the movement of people and goods
- Catastrophic events sometimes occur in transport networks
- Transport network vulnerability has been studied intensively in recent years

Cascading Failure in Complex Networks

- Network vulnerability has also been studied in complex networks
- One topic is cascading failure mainly discussing following phenomena (Barabasi, 2016)

Vulnerability Studies in the Two Fields

- A large number of studies on network vulnerability have been published in the two fields
- How have these two fields evolved over time?
- How have these two fields influenced each other?

Citation Network Analysis

Community Structure in Citation Network⁶

• Community structure of citation network has been identified

Sugishita K. and Asakura Y., Citation Network Analysis of Vulnerability Studies in the Fields of Transportation and Complex Networks.

Citation Pattern Analysis

Gridlock as Cascading Failure

Similar phenomenon occurs in Transportation Networks... Gridlock

- Gridlock: Traffic completely standstills with zero/minimal flow (Mahmassani et al., 2013)
- Gridlock seldom occurs, but it brings about catastrophic damage

Gridlock

Research Objectives

- This study aims
 - 1. To analyze gridlock in transportation networks from the perspective of cascading failure in complex networks
 - To investigate influences of route choice behavior on vulnerability to cascading failure

Differences in Models

- Assumptions in many studies about cascading failure in complex networks
 - Flow is simply assigned on the shortest paths
 - Flow is extremely fast (like electrical flow)
 - Failures sweep over instantaneously and system suddenly collapses

♦ Assumptions in this study about gridlock in transportation networks

- Flow is based on the travelers' route choice behavior (distinctive property in transportation networks)
- Flow is relatively slow (propagation of shockwaves)

Cell Transmission Model (CTM)

- In order to consider properties of traffic flow, Cell Transmission Model (Daganzo, 1994; 1995) is utilized
- CTM captures dynamic traffic phenomena such as queue formation, shockwave propagation
- Time is discretized
- A network is represented as cells

Route Choice Behavior

- Following rules are satisfied for travelers' route choice behavior
 - **\Box** a traveler who departs at time *t* can obtain information about travel time of all routes calculated by the network state at t 1
 - □ a traveler never change the route after departure
- Travelers choose their routes based on logit model

$$p_k^{rs}(t) = \exp(-\theta T_k^{rs}(t-1)) \left/ \sum_{i \in P_{rs}(t)} \exp(-\theta T_i^{rs}(t-1)) \right.$$

 $p_k^{rs}(t)$: the choice probability of the *k*th route in the set of routes from *r* to *s* θ : the scale parameter

- $T_k^{rs}(t)$: the travel time of the kth route from r to s at time t
- $P_{rs}(t)$: the set of all routes from r to s at time t

Performance Index

• We assess network throughput as the performance index

$$F(t) = \sum_{i \in C_{sink}} y_i(t)$$

- F(t): the network throughput representing the amount of flow completing travel and exiting from the network in the time interval between t and t + 1
- $y_i(t)$: the inflow to cell *i* in the time interval between *t* and t + 1
- C_{sink} : the set of all sink cells

Networks and Directed Cycles

• Investigate influences of route choice behavior in two networks

-m

Gridlock as Cascading Failure

• Gridlock can be captured as cascading failure

Influence of Route Choice Behavior

 Results indicate that route choice behavior with high sensitivity may help to avoid gridlock naturally

Influence of Route Choice Behavior

• However, gridlock state can be reached much faster due to sensitive route choice behavior

Conclusions

- Citation network analysis on vulnerability studies
 - Citation network consists of vulnerability studies in the fields of transportation and complex networks
 - Community structure is identified
 - Citation pattern analysis revealed that little knowledge flow
 between transport vulnerability and cascading failure

Gridlock from perspective of cascading failure

- Gridlock can be captured as cascading failure: 1) normal state,
 2) small failure, 3) propagation of failures, and 4) ultimate state
- Route choice behavior sometimes helps to avoid gridlock naturally, but at other times it worsens the situation toward gridlock much faster
- In transportation networks, critical points can be identified as directed cycles with overloaded demand

References

- 1. Barabási, A. L. (2016). Network science. Cambridge university press.
- 2. Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4), 269-287.
- 3. Daganzo, C. F. (1995). The cell transmission model, part II: network traffic. Transportation Research Part B: Methodological, 29(2), 79-93.
- 4. Daganzo, C. F., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological, 41(1), 49-62.
- 5. Geroliminis, N., Daganzo, C. F., 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 42(9), 759-770.
- 6. Hara, Y., Kuwahara, M., 2015. Traffic Monitoring immediately after a major natural disaster as revealed by probe data–A case in Ishinomaki after the Great East Japan Earthquake. Transportation research part A: policy and practice, 75, 1-15.
- 7. Mahmassani, H. S., Saberi, M., Zockaie, A., 2013. Urban network gridlock: Theory, characteristics, and dynamics. Transportation Research Part C: Emerging Technologies, 36, 480-497.
- 8. Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems–a discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34.
- 9. Oyama, Y., Hato, E., 2017. A discounted recursive logit model for dynamic gridlock network analysis. Transportation Research Part C: Emerging Technologies, 85, 509-527.

Thank you very much!