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Heterogeneous traffic stream with non-lane 
discipline 

• Different operational and 
performance characteristics 

• High degree of variation in 
physical and dynamical 
characteristics of vehicles 

• Motorised two wheelers have high 
degree of manoeuvrability 

• Use same right of way – no lane 
discipline 

• Continuous longitudinal and 
lateral movement of vehicles 
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Background- lane based models 

• PW–type models (Payne 1971, Payne 1979, Kühne & Rödiger 1991, 
Michalopoulos et al. 1993, Berg et al. 2000, Gupta & Katiyar 2006) 
produce some non-physical solutions such as isotropy, wrong way 
travel and fluid like behavior 

• Anisotropic models (Aw & Rascle 2000, Zhang 2002, Jiang et al. 2002, 
Huang et al. 2006, Tang et al. 2007, Gupta and Katiyar, 2007, Tang et 
al. 2009, Chuan et al. 2012, Cheng et al. 2017, Cheng et al. 2017) are 
developed to overcome the deficiencies present in PW-type models 

• The key assumption behind these theories is that the vehicles strictly 
travel at the centre of the lane and they assign leadership fully to the 
front vehicle 

• The models mentioned above are only restricted to lane based traffic 
environment and can not be applied directly to non-lane environment 
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Background- Non-lane based models 

• Nair et al. (2011) porous flow model based on static speed – pore 
size density relationship. Difficult to apply more than two vehicle 
classes 

• Gupta and Dhiman (2014) - one-sided lateral gap continuum 
model. It can only describe the vehicle movement on a single lane 
road. It does not take in to account the interaction between slow 
moving and fast moving vehicle and no viscosity 

• Mohan and Ramadurai (2017) extended Aw-Rascale model using 
area occupancy. Vehicle momentum conserved separately; 
vehicles off-centeredness and the interaction between slow 
moving vehicles and fast moving vehicles are not considered 
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Non-lane based car following model 
Non-lane based FVD car following model  with Two Side Lateral Gaps (Li et al., 
2015) 

Case 1:  

𝐿𝑆𝑛,𝑛+1 ∈ [0,0.5 𝐿𝑆𝑚𝑎𝑥] 

𝑎𝑛 𝑡 =  𝛼 𝑉 1 − 2𝑝𝑛 ∆𝑥𝑛,𝑛+1 𝑡 + 2𝑝𝑛∆𝑥𝑛,𝑛+3 𝑡 − 𝑉𝑛(𝑡) + 𝑘[ 1 − 2𝑝𝑛 ∆𝑉𝑛,𝑛+1 𝑡 + 2𝑝𝑛∆𝑉𝑛,𝑛+3 𝑡  

Case 2:  

𝐿𝑆𝑛,𝑛+1 ∈ [0.5 𝐿𝑆𝑚𝑎𝑥, 𝐿𝑆𝑚𝑎𝑥] 

𝑎𝑛 𝑡 =  𝛼 𝑉 2𝑝𝑛 − 1 ∆𝑥𝑛,𝑛+2 𝑡 + 2(1 − 𝑝𝑛)∆𝑥𝑛,𝑛+3 𝑡 − 𝑉𝑛(𝑡) + 𝑘[ 2𝑝𝑛 − 1 ∆𝑉𝑛,𝑛+2 𝑡 + 2(1 − 𝑝𝑛)∆𝑉𝑛,𝑛+3 𝑡  

Here  𝑝𝑛 =
𝐿𝑆𝑛,𝑛+1
𝐿𝑆𝑚𝑎𝑥

, 𝐿𝑆𝑚𝑎𝑥 Can be chosen as 3.5 m. Consistent with typical road width 

Fig 1: Lane separation Behaviour  

n 

n+2 

n+1 

n+3 

𝐿𝑆𝑛,𝑛+1 

𝐿𝑆𝑚𝑎𝑥 

∆𝑥𝑛,𝑛+2 𝑡 , ∆𝑉𝑛,𝑛+2 𝑡  
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Modified non-lane based heterogeneous car 
following model 
 The acceleration of vehicle class i with respect to any one condition such 
as LSn,n+1∈ [0,0.5 LSmax] is equivalent to: 

a𝑖n t =

𝛼𝑖 V 1 − 2pn ∆x𝑖n,n+1 t + 2pn∆x𝑖n,n+3 t − V𝑖n t + κ𝑖[ 1 − 2pn ∆v𝑖n,n+1 t +

2pn∆v𝑖n,n+3 t ]      here:  ∆xin,n+1 t =   PijN
j=1 (xn+1

j t − xni t ) , ∆vin,n+1 t =   PijN
j=1 (vn+1

j t −
vni t ) are space headway and speed of vehicle class i respectively. N is the number 
of vehicle classes. Pij is the number of times vehicle class i followed vehicle class j. Ti 
and  𝜏𝑖 are the reactive coefficient of vehicle class i.  
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Fig 2: Lane separation Behavior 
In heterogeneous traffic stream  



Micro-Macro connection 

Variable Micro  Macro 

Spatial Headway 
o Density 

∆𝑥 = 𝑥𝑛(𝑡) − 𝑥𝑛+1(𝑡) k 

Optimum velocity 
o Equilibrium 

velocity 

V 1 − 2pn ∆xin,n+1 t
+ 2pn∆xin,n+3 t   

Vie
k(x, t)

1 + 2 ∗ δi
 

 

Individual speeds Vin t  , Vjn+1 t ,  

Vjn+2 t , Vjn+3 t  
Vi x, t , Vj x + ∆x, t , Vj(x +

∆x, t), Vj(x + 2∆x, t) 
 

Reactive 
coefficients 

 𝛼𝑖, 𝑘𝑖, 𝑃𝑖𝑗 1
𝜏𝑖𝑗

, 1
𝑇𝑖

, 𝑃𝑗(x+ ∆𝑗, t) 

Example: FVD o 
SG model 

𝑑v n+1(t)
𝑑𝑡

= 𝑘[v ∆x  

− v n+1(t)] + λ∆v 

𝜕v
𝜕t

+ v
𝜕v
𝜕x

=  
ve − v
τ

− 𝑐0
𝜕v
𝜕x
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Non-lane based heterogeneous continuum model 

𝜕𝑘𝑖
𝜕𝑡

+
𝜕𝑘𝑖𝑣𝑖
𝜕𝑥

= 0                                                            (𝑖𝑎) 

𝜕𝑉𝑖
𝜕𝑡

+ 𝑉𝑖
𝜕𝑉𝑖
𝜕𝑥

=
1
𝑇𝑖

𝑉𝑖𝑒 𝑘
1 + 2𝛿𝑖 − 𝑉𝑖 +

1
𝜏𝑖

1 + 2𝛿𝑖  𝑃𝑗∆𝑥
𝜕𝑉𝑗
𝜕𝑥

𝑁

𝑗=1

+
1
𝜏𝑖

1 + 6𝛿𝑖
2  𝑃𝑗

𝑁

𝑗=1

∆𝑥2
𝜕2𝑉𝑗
𝜕𝑥2

+
1
𝜏𝑖
 𝑃𝑗

𝑁

𝑗=1

Vj x, t − Vi(x, t)                                                (𝑖𝑖𝑎) 
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After applying variable transformation and Taylor series expansion, we 
obtain: 



Figure 3: Relationship between longitudinal 
headway and lateral separation distance of Car 

and MThW (a) Schematic representation  
(b) Regression plot 

(Here x = longitudinal co-ordinate, y=lateral co-
ordinate, ₸= MTW, ₳=MThW, ₵= Car) 

Effect of lateral 
separation distance 
on longitudinal 
headway 

Follower-leader vehicle 
types 

LSD factor for each 
vehicle combinations 

(δij) 

LSD factor for each vehicle 
class (𝛿𝑖) 

Car-Car 0.24 

0.25 Car-MTW 0.22 
Car-MThW 0.33 
Car-HV 0.57 
MTW-Car 0.28 

0.24 MTW-MTW 0.18 
MTW-MThW 0.30 
MTW-HV 0.51 
MThW-Car 0.35 

0.29 MThW-MTW 0.19 
MThW-MThW 0.33 
MThW -HV 0.74 
HV-All 0.26 0.26 

Lateral separation distance values for various vehicle combinations 

                   

(a)       (b) 

₵ 

₳ 

₸ 
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Response 

variable 

Predictor 

variables 
Coefficients t-statistics p-value R2-value 

Car speed 

Intercept 11.81 16.18 0.00 

0.63 frictional 

clearance 
4.40 6.14 0.00 

MTW speed 

Intercept 15.68 12.86 0.00 

0.04 frictional 

clearance 
1.57 1.19 0.24 

MThW 

speed 

Intercept 14.24 8.80 0.00 

0.05 
frictional 

clearance 
1.78 1.31 0.21 

HV speed 

Intercept 13.45 5.60 0.00 

0.04 frictional 

clearance 
1.28 0.74 0.47 

Frictional clearance regression statistics Effect of frictional 
clearance  
between vehicles 

             
(a)       (b) 

Figure 4: Relationship between frictional clearance and passing 
speed  of car and MTW (a) Schematic representation (b) 
Regression plot (Here x=longitudinal co-ordinate, y=lateral co-

ordinate and 𝑎 = 𝑦2 − 𝑦1 − 𝑤1+𝑤2
2

, a = frictional clearance 
between car and MTW, w1 = width of a MTW, w2 = width of a Car, 
b = frictional clearance between car and median) 
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Non-lane based heterogeneous traffic (NLHT) 
continuum model with driver memory and sideways 
friction 

𝜕𝑘𝑖
𝜕𝑡

+
𝜕𝑘𝑖𝑣𝑖
𝜕𝑥

= 0 

𝜕𝑉𝑖
𝜕𝑡 + 𝑉𝑖

𝜕𝑉𝑖
𝜕𝑥 − 1 + 2𝛿𝑖  𝑃𝑗cj(𝑘)

𝜕𝑉𝑗
𝜕𝑥

𝑁

𝑗=1

=
1
𝑇𝑖

𝑉𝑖𝑒 𝑘
1 + 2𝛿𝑖 − 𝑉𝑖 +

1 + 6𝛿𝑖
2  𝑃𝑗

𝑁

𝑗=1

𝑐2𝑗 𝑘 𝜏𝑖
𝜕2𝑉𝑗
𝜕𝑥2

+  𝜇𝑖𝑗

𝑁

𝑗 ≠𝑖

𝑃𝑗
𝜏𝑖

Vj − Vi  

 
• Here: 𝛿𝑖 =  𝑝𝑖𝑗𝛿𝑖𝑗 𝑁

𝑗=1 and 𝛿𝑖𝑗 =
𝐿𝑆𝐷𝑖𝑗
3.5

 is a lateral separation distance parameter, 𝑇𝑖 and 𝜏𝑖  

     are driver reactive coefficients  

• Disturbance propagation speed  

c
j
𝑘 = −𝑘 ∗ 𝑉𝑗𝑒′ 𝑘 , ∆x

τi

2
∗ τi = c2j k ∗ τi =  −k ∗ Vje′ k

2
∗ τi, 𝜏𝑖𝑗 = 𝜏𝑗  

• Further, frictional clearance factor 𝜇𝑖𝑗 = 1 𝑖𝑓 𝑉𝑖𝑓 > 𝑉𝑗𝑓 otherwise zero 
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(𝑖𝑏) 

(𝑖𝑖𝑏) 



Equilibrium function 

• Equilibrium Equation fitted from empirical data: 
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v𝑖𝑒 =  
vif 1 − 𝑘𝑖

kjam

a b

  1 + E 𝑘𝑖
kj𝑎𝑚

θ  (𝑖𝑖𝑖) 

Here, Vif, kjam are traffic stream parameters; a, b, E and θ are shape parameters 



Vector form of the model 
𝑈𝑡 + 𝑓(𝑈)𝑥 = 𝑆(𝑈) 

Where 

𝑈 =

 𝐾1
 𝑉1
 𝐾2
 𝑉2
 .
 .
 𝐾𝑁
 𝑉𝑁

 

f 𝑈 =

 

 𝐾1𝑉1
 𝑉1
2

2
− 1 + 2𝛿1  𝑃𝑗cj 𝑘 𝑉𝑗𝑁

𝑗=1

 𝐾2𝑉2
 𝑉2
2

2
− 1 + 2𝛿2  𝑃𝑗cj 𝑘 𝑉𝑗𝑁

𝑗=1
 .
 .
 .
 𝐾𝑁𝑉𝑁
 𝑉𝑁
2

2
− 1 + 2𝛿𝑁  𝑃𝑗cj 𝑘 𝑉𝑗𝑁

𝑗=1

 

𝑆 𝑈

=

 

 0

 
1
𝑇1

𝑉1𝑒 𝑘
1 + 2𝛿1 − 𝑉1 +

1 + 6𝛿1
2

 𝑃𝑗

𝑁

𝑗=1

𝑐𝑗2 𝑘 𝜏1
𝜕2𝑉𝑗
𝜕𝑥2

+ 𝜇1𝑗

𝑁

𝑗=1

𝑃𝑗
𝜏1

Vj − V1

 0

 
1
𝑇2

𝑉2𝑒 𝑘
1 + 2𝛿2 − 𝑉2 +

1 + 6𝛿2
2

 𝑃𝑗

𝑁

𝑗=1

𝑐𝑗2 𝑘 𝜏2
𝜕2𝑉𝑗
𝜕𝑥2

+ 𝜇2𝑗

𝑁

𝑗=1

𝑃𝑗
𝜏2

Vj − V2
 .
 .
 .
 0

 
1
𝑇𝑁

𝑉𝑛𝑒 𝑘
1 + 2𝛿𝑁 − 𝑉𝑁 +

1 + 6𝛿𝑁
2

 𝑃𝑗

𝑁

𝑗=1

𝑐𝑗2 𝑘 𝜏𝑁
𝜕2𝑉𝑗
𝜕𝑥2

+ 𝜇𝑁𝑗

𝑁

𝑗=1

𝑃𝑗
𝜏𝑁

Vj − VN
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Quasi-linear form of the model to identify the 
Eigen value of the system 

𝑈𝑡 + 𝑨(𝑼)𝑈𝑥 = 𝑆(𝑈)   

𝑨 𝑼

=

𝑉1 𝐾1 0 0 . . . 0 0
0 𝑉1 + 𝑝1(2𝛿1 + 1)KV1(𝐾)′ 0 𝑝2(2𝛿2 + 1)𝐾𝑉2(𝐾)′ . . . 0 𝑝𝑁(2𝛿𝑁 + 1)𝐾𝑉𝑁(𝐾)′
0 0 𝑉2 𝐾2 . . . 0 0
0 𝑝1(2𝛿1 + 1)𝐾𝑉1(𝐾)′ 0 𝑉2 + 𝑝2(2𝛿2 + 1)𝐾𝑉2(𝐾) . . . 0 𝑝𝑁(2𝛿𝑁 + 1)KV𝑁(𝐾)′ .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

. . .
 .
 .
 .

 .
 .
 .

0 0 0 0 . . . 𝑉𝑁 𝐾𝑁
0 𝑝1(2𝛿1 + 1)𝐾𝑉1 𝐾 ′ 0 𝑝2(2𝛿2 + 1)KV2(𝐾) . . . 0 𝑉𝑁 + 𝑝𝑁(2𝛿𝑁 + 1)𝐾𝑉𝑁(𝐾)

 

Quasi-linear form:  

Jacobian matrix form:  
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Jacobian Matrix and Eigen values 

𝜆1 = 𝑈1, 

Eigen values of the system of equation  

𝜆2 = 𝑈2, 

𝜆3 =
1
2

𝑈1 + 𝑈2 + (1 + 2𝛿1)𝐾𝑝1𝑉1 𝐾 ′ + (1 + 2𝛿2)𝐾𝑝2𝑈2[𝐾]′ −
 −𝑈1 − 𝑈2 − (1 + 2𝛿1)𝐾𝑝1𝑈1 𝐾 ′ − 1 + 2𝛿2 𝐾𝑝2𝑈2 𝐾 ′ 2 − 4(𝑈1𝑈2 + (1 +
 2𝛿1)𝐾𝑝1𝑈2𝑈1[𝐾]′ + (1 + 2𝛿2)𝐾𝑝2𝑈1𝑈2[𝐾]′)

 

𝜆4 =
1
2
 𝑈1 + 𝑈2 + 1 + 2𝛿1 𝐾𝑝1𝑉1 𝐾 ′ + 1 + 2𝛿2 𝐾𝑝2𝑈2 𝐾 ′

+  −𝑈1 − 𝑈2 − (1 + 2𝛿1)𝐾𝑝1𝑈1 𝐾 ′ − 1 + 2𝛿2 𝐾𝑝2𝑈2 𝐾 ′ 2 − 4(𝑈1𝑈2 + (1 +
 2𝛿1)𝐾𝑝1𝑈2𝑈1[𝐾]′ + (1 + 2𝛿2)𝐾𝑝2𝑈1𝑈2[𝐾]′)

  

Jacobian Matrix for two vehicles classes 

A(U) = 

𝑈1 𝐾1 0 0
0 𝑈1 + 𝐾𝑝1(2𝛿1 + 1)𝑈1(𝐾)′ 0 𝐾𝑝2(2𝛿2 + 1)𝑈2(𝐾)′
0 0 𝑈2 𝐾2
0 𝐾𝑝1(2𝛿1 + 1)𝑈1(𝐾)′ 0 𝑈2 + 𝐾𝑝2(2𝛿2 + 1)𝑈2(𝐾)′
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Model properties 

Property Proposed Model 
Hyperbolacity √ 
Anisotropy √ 
Over come wrong way 
travel 

√ 

Linear stability √ 
Travelling and shock 
waves 

√ 

Heterogeneity √ 
Non-lane behaviour √ 
Driver memory √ 
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Linear stability analysis 

• Small disturbance in the traffic stream due to change in density or speed will 
be carried by characteristic waves and they moves at a speed of traffic sound 
speed in a moving co-ordinate system i.e. (𝑥 − 𝑉0𝑡, 𝑡).  

The roots of the equation are: 

𝜔1,2 = −
1
2𝑇

  −𝑖 + 𝑖𝑇𝛽𝛾2 + 𝑇𝑐1𝛾 + 𝑇𝑐2)

± 𝑖 − 𝑖𝑇𝛽𝛾2 − 𝑇𝑐1𝛾 − 𝑇𝑐2 2 − 4𝑇 𝑖𝑐𝛾 − 𝑇𝛽𝑐2𝑖𝛾3 + 𝑇𝑐1𝑐2𝛾2   

The neutral stability criteria  Ω = 𝑉𝑒′
𝑘0

1+2𝛿
𝑘0

1+2𝛿
+ 𝑐0 = 0  
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Effect of two-sided lateral gap on stability of traffic 
flow 

Figure 5: In the figure interval (i) and (iii) represents the stable and metastable regions respectively where 
perturbation decays either towards downstream or upstream. Interval (ii) represents the unstable region where 

clusters appear. 
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(i) (iii)  

(ii)  



Calibration and validation of NLHT model- 
Methodology  
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No 

Yes 

 

Discretization of NLHT model 

using first order schemes. 

Initialisation of model 

parameters, generation of 

outputs 

  

Model Inputs: 

Observed flows 

and speeds at 

boundaries  

Model 

converged 

 

Objective function evaluation 

  

Generate new 

parameter set using 

optimization 

algorithm 

Model validation  

Observed flows 

and speeds at 

middle section  

Stop 

Start 



Performance evaluation function 

• Root mean square error (RMSE) value of flows and speeds is used as 

performance evaluation function in estimating parameters 
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𝑃𝐼 =
1
𝑁 𝑦 𝑖 − 𝑦𝑚(𝑖) 2

𝑁

i=1

 (iv) 

� Here, PI=performance index, N=number of values, y (i)= vector represent the 

observed quantities, ym (i)= vector represents the estimated quantities  



Numerical Scheme 
• To explore the full potential of the new model and to avoid the numerical instabilities at 

large gradients, the present study adopted upwind scheme  
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where k𝑖,𝑚
𝑟, 𝑣𝑖,𝑚𝑟  are density and speed of the mth class vehicle at point (xi, tr), 

respectively, k𝑖
𝑟is the total density of vehicles at point (xi, tr) on the road.  



Location and Traffic data 

Location 1 Location 2 Location 3 

            Traffic flow Direction 

Section length=960 m, 
width= 11 m 

Section length = 720 m, 
width=11 m 

GDN Marg 
Panchsheel 

Marg 

Car 
42% 

TW 
44% 

ThW 
12% 

HV 
2% 

Fig 6: Vehicle composition for  

four different vehicle classes 

Panchsheel Marg 

            Traffic flow Direction 

• Data related to flows and speeds are collected for 1 h 30 min using video camera  
• Flows and speeds are extracted and aggregated for every 5 sec interval 
• Density is estimated using fundamental relationship of traffic flow IIT Delhi 22 



Optimization algorithms 

• To solve non-linear, non-differentiable and discontinuous problem, 

derivative free optimization algorithms are used to calibrate the 

model parameters. Specifically, 

1. Evolutionary algorithms such as Genetic Algorithm (GA) and 

Simulated Annealing (SA) 

2. Hybrid search algorithm such as GA + Nelder Mead  

3. Direct search algorithm such as Pattern Search (PS) 
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Development of traffic flow model, optimization algorithm and calibration 
procedure are performed in MATLAB 2015 a. 



Optimization algorithm parameters 
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GA:  
• Population size - 200, fitness scaling – rank, selection rate- stochastic 

uniform  
• Reproduction: elite count- 0.05*population size = 10, cross over fraction-

0.8*190 = 152, remaining 38 are mutating individuals  
• mutation – Gaussian function, cross over – using random binary vector 
 
SA:  
• Annealing function – fast annealing (take random steps with size 

proportional to temperature) 
• Reannealing interval -100, temp. update function – exponential temp 

(temp decreases as 1/log(iteration)) 
• Initial temp =100 , acceptance probability function = SA acceptance 



Optimization algorithm parameters 
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PS: It is a poll and search method. Pattern search polls the mesh points and 
mesh size will decrease or increase after a successful / unsuccessful poll 
• Poll – Generalised pattern search positive basis 2N  
• Search – complete search (all the points must be searched at each 

iteration) 
• Mesh size – minimum 1 and maximum infinity 
• Expansion factor -2 and contraction factor - 0.5 



Calibrated parameters from GA 

26 

Vehicle Type Model Parameters and Cost function value  
  

  
Kjam 

(veh/km) 

  
Vf 
   

(km/h) 

a
               

 
   b 

 
E 

 
   Th 

 
T 

  
t 

  
δ 

RMSE, Iterations, 
Computational 

time 

Car  
 

240 

64.8 4 1 10.3 2.1 9.99 5.98 0.10 13.24% 
 

229 
 

22.58 min 
MTW 

61.2 4 1 11.0 1.5 9.99 5.99 0.11 

MThW 50.4 4 1 11.2 1.5 9.99 5.99 0.12 

HV 50.4 4 1 11.0 1.5 9.99 5.98 0.12 

Fig 7: Calibration run 1 Fig 8:Calibration run 2 
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Calibrated parameters from GA + Nelder-Mead 
(Hybrid) 
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Vehicle Type Model Parameters and Cost function value  
  

  
Kjam 

(veh/km) 

  
Vf 

   (km/h) 

 
    a 

 
b 

 
E 

 
   Th 

 
T 

  
t 

  
δ 

RMSE, 
Iterations, 

Computational 
time 

Car  
240 

63.0 4 1 11.20 1.8 10.2 5.99 0.1 13.20% 
 

291 
 

20.31 min 

MTW 61.0 4 1 10.22 1.5 9.98 5.99 0.1 

MThW 49.2 4 1 10.20 1.5 10.0 5.99 0.1 

HV 49.2 4 1 10.22 1.6 9.99 5.99 0.1 

Fig 9: Calibration run 1 Fig 10: Calibration run 2 
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Calibrated parameters from Pattern search 

Vehicle Type Model Parameters and Cost function value  
  

  
Kjam 

(veh/km) 

  
Vf 
   

(km/h) 

 
    a 

 
b 

 
E 

 
   Th 

 
T 

  
t 

  
Δ 

RMSE, 
Iterations, 

Computation
al time 

Car  
 

240 

63.4 4 1 10.5 1.5 10 6 0.1 13.19% 
 

224 
 

2.55 min 

MTW 60.1 4 1 10.3 1.5 10 6 0.1 

MThW 49.2 4 1 10.4 1.5 10 6 0.1 

HV 49.2 4 1 10.4 1.5 10 6 0.1 

Fig 11: Calibration run 1 Fig 12: Calibration run 2 Fig 13: Calibration run 3 
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Calibrated parameters from simulated annealing 
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Vehicle Type Model Parameters and Cost function value  
  

  
Kjam 

(veh/km) 

  
Vf 
   

(km/h) 

 
    
a 

 
b 

 
E 

 
   Th 

 
T 

  
t 

  
δ 

RMSE, 
Iterations, 

Computational 
time 

Car  
 

360 

76.248 4.2 1 10.2 1.5 8.51 2.40 0.10 
20.701% 

 
15,340 

 
16.24 min 

MTW 
82.08 4.1 1 10.2 1.5 7.23 2.39 0.10 

MThW 53.712 4.0 1 10.2 1.5 7.86 3.00 0.22 
HV 45.40356 4.0 1 10.2 1.5 8.68 2.75 0.24 

IIT Delhi Fig 14: Calibration run 1 Fig 15: Calibration run 2 



Some observations 
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         Calibration 

         Algorithm 

 
Algorithm performance 

  

RMSE Iterations Computational time 
(min)** 

Genetic Algorithm 
 

13.24% 
 
 

 
229 

 
22.58 

Hybrid search 

(GA+ fmincon trust region 

reflective algorithm) 

 
 

13.20% 
 
 

 
 

291 

 
 

20.31 

Simulated Annealing 

(SA) 

 
20.70% 

 
 

 
15340 

 
16.24 

Pattern Search 
 

13.19% 
 
 

 
224 

 
2.55 

**Desktop computer with 3.10 GHZ CPU and 8 GB of RAM 



Validation results- Observed vs. Estimated FD 
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Fig 16: Flow-Density relationship of traffic stream 



(a)          (b) 

Figure 17: Initial perturbation of traffic (a) density and (b) speed 

Local cluster effect 
• The proposed model can describe the instantaneous occurrence of traffic 

jams due to the small disturbances in traffic stream known as local 
cluster effect [Kerner et al. (1995), Hermann and Kerner (1998)] 

• The effect of two-sided lateral gap (δ) on spontaneous occurrences of 
traffic perturbation such as stop-and-go and local clusters due to small 
changes in traffic density are evaluated 
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Traffic conditions and equilibrium equation 
• The numerical simulations will be carried out to localized perturbation 

assumed in an initially homogenous traffic environment 
• The initial distribution of the density, mean speed of the traffic stream are: 

K x, o = K0 + ∆K x , x ∈ [0, L] , V x, o = VKK(K x, o ), x ∈ [0, L]  

Here ∆𝐾 𝑥  is the localized perturbation caused due to the sudden stopping 
of vehicles, unexpected changing of lanes etc. (Figure 4). 

∆K x = ∆K0 cosh−2
160
L x −

5L
16 −

1
4 cosh

−2 40
L x −

11L
32  

Here L is the circumference of the circular road section under consideration. In 
this study, we assume L=30 km as a circumference of a ring road. Periodic 
boundary conditions used for the numerical simulation are: 

q 0, t = q L, t , V 0, t = V L, t ,
𝜕V(0, t)
𝜕x

=
𝜕V(L, t)
𝜕x

 

Equilibrium equation 𝑉𝐾𝐾(𝐾) used for the analysis is: 

𝑉𝐾𝐾(K) = 𝑉𝑓 1 + ex p
𝐾
𝐾𝑗 − 0.25

0.06

−1

− 3.72 ∗ 10−6  IIT Delhi 33 



Figure 18: Local cluster effect for localized perturbation of amplitude Δk0 = 
0.01 veh/m and (a) K0=0.035 veh/m (b) K0=0.05 veh/m  Speed –Gradient 

(SG) Model (Jiang et al.(2002)) 

(a) 

(b) 

Phantom Traffic jams 
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Birds eye view of 230 m circumference circuit (Sugiyama et 
al. (2008) 
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(a)      (b) 

   
   

(c)      (d) 

           

        (e) 

Fig 19: Spatio-temporal evolution of density on a 30 km ring road for 30 min time where a, b, c, d, 
e are outputs from the two-sided lateral gap model with 𝜌 0 = 0.035, 0.05, 0.07, 0.08 and 0.10 and 

amplitude Δ 𝜌 0=0.01 and δ=0.2  

Local cluster phenomenon explained by two sided 
lateral gap model  
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(a) δ = 0.1 

 

(b) δ = 0.15 

  

(c) δ = 0.175 

 

(d) δ = 0.2 

  

Profile of traffic density and speed on a 30 km ring road at t=1800 sec where 
 𝜌 0 = 0.06and amplitude Δ 𝜌 0=0.01  

Local cluster phenomenon explained by two sided 
lateral gap model  

Fig 20: 
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(a)      (b) 

 

(c)      (d) 

Fig 21: Spatio-temporal evolution of traffic density on a 30 km ring road 
for 30 min time with 𝜌 0 = 0.08 and amplitude Δ 𝜌 0=0.01 for: (a) δ=0.1  

(b) δ=0.15 (c) δ=0.175 (d) δ=0.2  

Local cluster phenomenon explained by two  
sided lateral gap model  



Zhang (2002) anisotropic model vs Two sided lateral gap model  
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Figure 22: Spatio-temporal evolution of 
density on a 30 km ring road over 30 min 
time period. 
Where a, c, e, g, i are outputs from the 
Zhang model (where δ=0) and b, d, f, h, j 
are the outputs from two sided lateral 
gap model (where δ=0.1) with  
 k0 = 0.035, 0.042, 0.05, 0.07 and 0.10 
and amplitude Δ k0=0.01          

        

      

    

(a)      (b) 

         

(c)      (d) 

          
(e)      (f) 

        

(g)      (h) 

      

(i)      (j) 



One-sided lateral gap model vs Two-sided lateral gap model 
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(a)      (b) 

 

  

(c)      (d) 

    

(e)      (f) 

    

(g)      (h) 

          

(i)      (j) 

Figure 23: Spatio-temporal evolution of 
density on a 30 km ring road over 30 min 
time period.  
Where a, c, e, g, i are the outputs from 
one sided lateral gap model and b, d, f, h, 
j are the outputs from two-sided lateral 
gap model with k0 = 0.035, 0.05, 0.07, 
0.08 and 0.10 and amplitude Δ k0=0.01 
(where δ=0.2 for both cases) 



Summary of the effect of two sided lateral gaps 
on local clusters 

• The results proved that two sided lateral gap model dissipates the small 

perturbations (local traffic jams) rapidly and it increases the stability 

region of the traffic flow 

•  In addition, two-sided lateral gap in the model avoids the sudden 

deceleration of vehicles and improves the performance of infrastructure 

•  It is because drivers receive information faster when they maintain off-

centeredness with other vehicles and avoids the sudden deceleration.  

• Moreover, proposed model can also explain the spontaneous occurrence 

of traffic jams i.e., called phantom traffic jams.  
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Local Breakdown effect 

• The local breakdown effect is a localized avalanche-like growth in the density and the 
related decrease in the average speed of vehicles which occurs in a deterministic way in a 
slightly non-homogeneous traffic flow [Kerner et al. (1994,1996)]. 
 

• As a result of such a deterministic effect, traffic jams are self formed even if fluctuations in 
traffic flow are negligible. 

 
Here assume traffic perturbation: ∆K x = ∆K0𝑐𝑜𝑠

2πx
L
𝑚  
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Case (2): Non-homogeneous traffic density when 
m = 4, ρ0 = 0.07, amplitude Δρ0 = 0.01 at t = 0 sec 

Case (1) : Non-homogeneous traffic density 
when m=1, ρ0 = 0.05, amplitude Δρ0 = 0.01 

at t = 0 sec 
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Case (1) 

  

Non-homogeneous traffic density when m = 4, 𝜌0 = 0.07, amplitude Δ𝜌0 = 0.01 at t = 0 sec 
 

  
Density and speed profiles on a 30 km ring road at t=720 sec from the two-sided lateral gap 

model with 𝜌0 = 0.05, amplitude Δ𝜌0 = 0.01 and δ=0.15 
 

 

  
Density and speed profiles on a 30 km ring road at t=1400 sec from the two-sided lateral 

gap model with 𝜌0 = 0.05, amplitude Δ𝜌0 = 0.01 and δ=0.15 
 

  
Density and speed profiles on a 30 km ring road at t=1800 sec from the two-sided lateral 

gap model with 𝜌0 = 0.05, amplitude Δ𝜌0 = 0.01 and δ=0.15 
Fig 24: 
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Case (2) 

 
Non-homogeneous traffic density when m = 4, 𝜌0 = 0.07, amplitude Δ𝜌0 = 0.01 at t = 0 sec 

 

 
Density and speed profiles on a 30 km ring road at t=720 sec from the two-sided lateral gap 

model with 𝜌0 = 0.07, amplitude Δ𝜌0 = 0.01 and δ=0.15 

 
Density and speed profiles on a 30 km ring road at t=1400 sec from the two-sided lateral 

gap model with 𝜌0 = 0.07, amplitude Δ𝜌0 = 0.01 and δ=0.15 

 
Density and speed profiles on a 30 km ring road at t=1800 sec from the two-sided lateral 

gap model with 𝜌0 = 0.07, amplitude Δ𝜌0 = 0.01 and δ=0.15 
Fig 25: 



Outcomes 

• At high-density conditions, the number of traffic jams appeared is doubled 

to that of  initial number of perturbations in a slightly non-homogenous 

environment 

• However, slightly less intensity jams also appeared in between these 

jams at downstream and propagate upwards as time progresses 

• At low-density conditions traffic Irrespective of the number of initial 

perturbation, the perturbations dissipate very quickly and no jams 

appeared in slightly non-homogeneous environment 
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Effect of lateral separation distance on Fundamental Diagram 
(FD) 
 

• lateral gap does not affect traffic flow when density is low 

• when vehicular density becomes large, the capacity of the traffic stream increases with 

increasing of two sided lateral gap value 

• as density approached jam density, the effect of a two-sided lateral gap on F.D diminishes 

Figure 26: Flow-Density relation 
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Effect of vehicular heterogeneity on fundamental 
diagram 

Figure 27: Effect of (a) MTW and (b) Heavy vehicle proportion on capacity of 
traffic flow 

(a) (b) 
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Exp 1: Traffic break down in non-lane condition 

• Road is empty at t = 0 and initial time boundary condition at road entrance 
is subjected to trapezoidal peak demand  
 
 
 
 
 
 
 
 

• Proportion of vehicle classes as per observed data in the field  
• Assumption: incident takes place at downstream and last for 3 min (1.125 

h to 1.175 h) 
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Fig 28: Entry flow at upstream section 



Traffic breakdown scenario 

Fig 29: x-t plot showing formation and dissipation of queues due to traffic breakdown 
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Traffic hysteresis, two-regime capacity condition in 
non-lane scenario in non-lane traffic 
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Fig 30: Two-regime capacity condition Fig 31: Hysteresis 



Exp2: Platoon dispersion characteristics 

• Initial density conditions on the road are assumed 
as per figure below 
 
 
 
 
 
 
 
 

• No traffic entered from the upstream and vehicle 
composition according to the field observations 
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Fig 32: Initial density conditions 



Platoon dispersion characteristics of 
heterogeneous traffic 
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 Fig 33: x-t plot showing platoon dispersion of vehicles over 2 km section 



Platoon dispersion characteristics of different 
vehicle classes 
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Summary 
•  Development of NLHT model which 

considers the following 
– Heterogeneous traffic 
– Two side overtaking 

•  Calibration 
– GA 
– SA 
– Hybrid 
– Pattern Search 

•  Sensitivity  

IIT#Delhi#



References 

1. Herrmann, M. and Kerner, B.S., 1998. Local cluster effect in different traffic flow models. Physica A: Statistical Mechanics and its 

Applications, 255(1), pp.163–188. Available at: http://www.sciencedirect.com/science/article/pii/S0378437198001022. 

2. Huang, H., Tang, T. and Gao, Z., 2006. Continuum modeling for two-lane traffic flow. Acta Mechanica Sinica/Lixue Xuebao, 22(2), 

pp.132–137. 

3. Jiang, R., Wu, Q.-S. and Zhu, Z.-J., 2002. A new continuum model for traffic flow and numerical tests. Transportation Research Part 

B: Methodological, 36(5), pp.405–419. Available at: http://www.sciencedirect.com/science/article/pii/S0191261501000108 

[Accessed January 7, 2016]. 

4. Jin, S., Wang, D., Tao, P. and Li, P., 2010. Non-lane-based full velocity difference car following model. Physica A: Statistical 

Mechanics and Its Applications, 389(21), pp.4654-4662.  

5. Kerner, B.S. and Konhäuser, P., 1993. Cluster effect in initially homogeneous traffic flow. Physical Review E, 48(4), pp.R2335–

R2338. Available at: https://link.aps.org/doi/10.1103/PhysRevE.48.R2335. 

6. Kerner, B.S. and Konhäuser, P., 1994. Structure and parameters of clusters in traffic flow. Physical Review E, 50(1), pp.54–83. 

Available at: https://link.aps.org/doi/10.1103/PhysRevE.50.54. 

7. Kerner, B.S., Konhäuser, P. and Schilke, M., 1995. Deterministic spontaneous appearance of traffic jams in slightly inhomogeneous 

traffic flow. Physical Review E, 51(6), pp.6243–6246. 

8. Kerner, B.S. and Rehborn, H., 1996a. Experimental features and characteristics of traffic jams. Physical Review E, 53(2), 

pp.R1297–R1300. Available at: https://link.aps.org/doi/10.1103/PhysRevE.53.R1297. 

9. Kerner, B.S. and Rehborn, H., 1996b. Experimental properties of complexity in traffic flow. Physical Review E, 53(5), pp.R4275–

R4278. Available at: https://link.aps.org/doi/10.1103/PhysRevE.53.R4275. 

 
IIT Delhi 53 



References 

10. Payne, H., 1979. FREFLO: A Macroscopic Simulation Model of Freeway Traffic. Transportation Research Record 722, TRB, pp.68–

75.  

11. Ross, P., 1988. Traffic dynamics. Transportation Research Part B: Methodological, 22(6), pp.421–435.Doi: doi.org/10.1016/0191-

2615(88)90023-9 

12. Kühne, R.D. and Rödiger, M.B., 1991. Macroscopic simulation model for freeway traffic with jams and stop-start waves. In 

Proceedings of the 23rd conference on Winter simulation(WSC ’91). Washington, DC, USA: IEEE Computer Society:, pp. 762–770. 

Available at: http://dl.acm.org/citation.cfm?id=304238.304347. 

13. Zhang, H.M., 1998. A theory of non equilibrium traffic flow. Transportation Research Part B: Methodological, 32(7),pp.485–

498.Doi:doi.org/10.1016/S0191-2615(98)00014-9 

14. Berg, P., Mason, A. and Woods, A., 2000. Continuum approach to car-following models. Physical Review E, 61(2), pp.1056–1066. 

Doi: doi.org/10.1103/PhysRevE.61.1056 

15. Gupta, A.K. and Katiyar, V.K., 2006. A new anisotropic continuum model for traffic flow. Physica A: Statistical Mechanics and its 

Applications, 368(2), pp.551–559. Doi: doi.org/10.1016/j.physa.2005.12.036 

16. Zhang, H.M., 2002. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 

36(3), pp.275–290. Doi: doi.org/10.1016/S0191-2615(00)00050-3 

 

IIT Delhi 54 



References 

17. Tang, C.F., Wu, Q.S., Jiang, R., Wiwatanapataphee, B. and Wu, Y.H., 2007, January. Study of mixed traffic flow in anisotropic 

continuum model. In Transportation Research Board Annual Meeting, 86th, 2007, Washington, DC, USA. 

18. Tang, T.Q., Huang, H.J., Zhao, S.G. and Shang, H.Y., 2009. A new dynamic model for heterogeneous traffic flow. Physics Letters 

A, 373(29), pp.2461-2466. Doi: dx.doi.org/10.1016/j.physleta.2009.05.006. 

19. Nair, R., Mahmassani, H.S. and Miller-Hooks, E., 2011. A porous flow approach to modeling heterogeneous traffic in disordered 

systems. Transportation Research Part B: Methodological, 45(9), pp.1331–1345. Doi: doi.org/10.1016/j.trb.2011.05.009 

20. Gupta, A.K. and Dhiman, I., 2014. Analyses of a continuum traffic flow model for a nonlane-based system. International Journal of 

Modern Physics C, 25(10), p.1450045. Doi: dx.doi.org/10.1142/S0129183114500454. 

21. Mohan, R. and Ramadurai, G., 2017. Heterogeneous traffic flow modelling using second-order macroscopic continuum model. 

Physics Letters A, 381(3), pp.115-123. Doi: doi.org/10.1016/j.physleta.2016.10.042 

22. Li, Y. and Sun, D., 2012. Microscopic car-following model for the traffic flow: the state of the art. Journal of Control Theory and 

Applications, 10(2), pp.133–143. Doi: dx.doi.org/10.1007/s11768-012-9221-z. 

23. Li, Y., Zhang, L., Peeta, S., Pan, H., Zheng, T., Li, Y. and He, X., 2015. Non-lane-discipline-based car-following model considering 

the effects of two-sided lateral gaps. Nonlinear Dynamics, 80(1-2), pp.227-238. Doi: doi.org/10.1007/s11071-014-1863-6 

 

IIT Delhi 55 



IIT#Delhi#

Thank you. 

Questions? 

rrkalaga@civil.iitd.ac.in  


