Modelling Backward Traveling Holes in Mixed Traffic Conditions using an Agent Based Simulation

Amit Agarwal¹ Gregor Lämmel² Kai Nagel¹

¹Transport Systems Planning and Transport Telematics Technische Universität Berlin ²Institute for Advanced Simulation Forschungszentrum Jülich

Traffic and Granular Flow 2015, Nootdorp October 29, 2015

Agenda

Queue models

- Why queue models?
- Point queue model
- Spatial queue model
- Backward traveling holes
 - How does it work?
 - Queue model with holes
 - Fundamental diagrams
- Sensitivity
 - Flow density contours
 - Average bike passing rate contours
- Conclusion and outlook

Agenda

- Queue models
 - Why queue models?
 - Point queue model
 - Spatial queue model
 - Backward traveling holes
 - How does it work?
 - Queue model with holes
 - Fundamental diagrams
- 3 Sensitivity
 - Flow density contours
 - Average bike passing rate contours
- 4 Conclusion and outlook

Why queue models?

Queue models are -

- Simple, fast, easy to implement
- Suitable for large scale scenario

Point queue

(Hurdle and Son, 2001)

Point queue

(Hurdle and Son, 2001)

Unlimited storage capacity ⇒ length of queue = 0
No spill-back ⇒ no inter-link interaction
FIFO
Space available on upstream *immediately* ⇒ no intra-link dynamics

Agarwal, Lämmel, Nagel

Technische Universität

Spatial queue

- Imited storage capacity \Rightarrow length of queue $\neq 0$
- **I** M spill-back $\Rightarrow \mathfrak{M}$ inter-link interaction
- FIFO / passing / seepage
- Space available on upstream *immediately* \Rightarrow no intra-link dynamics

Spatial queue

- Imited storage capacity \Rightarrow length of queue $\neq 0$
- $\blacksquare \mathfrak{M} \mathfrak{A} \text{ spill-back} \Rightarrow \mathfrak{M} \mathfrak{A} \text{ inter-link interaction}$
- FIFO / passing / seepage
- Space available on upstream *immediately* \Rightarrow no intra-link dynamics

MATSim

- In the present study, a multi-agent transport simulation framework (MATSim) is used.
- Only spatial queue is used in MATSim

Why MATSim?

- agent-based simulation framework
- suitable for large scale scenario [10 min to simulate 24 h of about 7 million persons of Switzerland (Balmer et al., 2009)]
- possible to simulate scenario with smaller sample size

MATSim queue models -

	Link dynamics		
Queue model	FIFO	Passing	Seepage
without holes	Original	Agarwal et al. (2015)	
with holes	in the present study		Agarwal and Lämmel (2015a,b)

Race track

$\mathsf{FIFO} \Rightarrow \mathsf{Passing}$ (Agarwal et al., 2015)

$\mathsf{FIFO} \Rightarrow \mathsf{Passing}$ (Agarwal et al., 2015)

$FIFO \Rightarrow Passing$ (Agarwal et al., 2015)

10 / 23

Agenda

- Queue models
 - Why queue models?
 - Point queue model
 - Spatial queue model
 - Backward traveling holes
 - How does it work?
 - Queue model with holes
 - Fundamental diagrams
 - Sensitivity
 - Flow density contours
 - Average bike passing rate contours
- 4 Conclusion and outlook

time step = 1

Agarwal, Lämmel, Nagel

TGF 2015 12 / 23

time step = 4

Agarwal, Lämmel, Nagel

- A vehicle leaves \Rightarrow a hole is created
- The PCU of the hole is same as the leaving vehicle.

- $\blacksquare A \text{ vehicle leaves} \Rightarrow a \text{ hole is created}$
- The PCU of the hole is same as the leaving vehicle.
- The hole is equipped with upstream arrival time as follow –

$$t_{hole} = \frac{\ell_{I}}{v_{hole}}$$

i.e. space on upstream end will be available after t_{hole} .

- A vehicle leaves \Rightarrow a hole is created
- The PCU of the hole is same as the leaving vehicle.
- The hole is equipped with upstream arrival time as follow –

$$t_{hole} = \frac{\ell_{I}}{v_{hole}}$$

i.e. space on upstream end will be available after t_{hole} .

- A constant speed of hole (v_{hole}) is assumed i.e. (15 $km/h \simeq 2$ sec reaction time).
- A vehicle can enter the link if hole is available ⇒ inflow capacity

- A vehicle leaves \Rightarrow a hole is created
- The PCU of the hole is same as the leaving vehicle.
- The hole is equipped with upstream arrival time as follow –

$$t_{hole} = rac{\ell_l}{v_{hole}}$$

i.e. space on upstream end will be available after t_{hole} .

- A constant speed of hole (v_{hole}) is assumed i.e. (15 $km/h \simeq 2$ sec reaction time).
- A vehicle can enter the link if hole is available \Rightarrow inflow capacity

show movie

Queue model with holes

- $\blacksquare \mathfrak{Vslimited storage capacity} \Rightarrow \text{length of queue} \neq 0$
- **I** M spill-back $\Rightarrow \infty$ inter-link interaction
- FIFO / passing / seepage
- Space available on upstream $\overline{immediately} \Rightarrow \infty$ intra-link dynamics

with hole vs without hole - only car simulation

with hole vs without hole - only car simulation

with hole vs without hole - only car simulation

Car bike simulation

Car bike simulation

Agarwal, Lämmel, Nagel

Backward traveling holes

Sensitivity

Agenda

- Queue models
 - Why queue models?
 - Point queue model
 - Spatial queue model
 - Backward traveling holes
 - How does it work?
 - Queue model with holes
 - Fundamental diagrams

Sensitivity

- Flow density contours
- Average bike passing rate contours

Conclusion and outlook

Flow density contours

without holes

Flow density contours

Flow density contours

without holes

with holes

Average bike passing rate contours

without holes

Average bike passing rate contours

without holes

with holes

Agenda

- Queue models
 - Why queue models?
 - Point queue model
 - Spatial queue model
 - Backward traveling holes
 - How does it work?
 - Queue model with holes
 - Fundamental diagrams
- 3 Sensitivity
 - Flow density contours
 - Average bike passing rate contours

Conclusion and outlook

Conclusion

- Backward traveling holes in spatial queue models
- Suitable for mixed traffic and large scale scenarios
- Implicit inflow link capacity

Conclusion

- Backward traveling holes in spatial queue models
- Suitable for mixed traffic and large scale scenarios
- Implicit inflow link capacity

Outlook

- Compare the computational efficiencies
- Apply it to a large scale real-word scenario

References I

- A. Agarwal and G. Lämmel. Seepage of smaller vehicles under heterogeneous traffic conditions. Procedia Computer Science, 52(C):890–895, 2015a. doi: 10.1016/j.procs.2015.05.147.
- A. Agarwal and G. Lämmel. Modeling seepage behavior of smaller vehicles in mixed traffic conditions using an agent based simulation. VSP Working Paper 15-09, 2015b. See http://www.vsp.tu-berlin.de/publications.
- A. Agarwal, M. Zilske, K.R. Rao, and K. Nagel. An elegant and computationally efficient approach for heterogeneous traffic modelling using agent based simulation. *Procedia Computer Science*, 52(C):962–967, 2015. doi: 10.1016/j.procs.2015.05.173.
- M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel, and K.W. Axhausen. MATSim-T: Architecture and simulation times. In A.L.C. Bazzan and F. Klügl, editors, *Multi-Agent Systems for Traffic and Transportation*, pages 57–78. IGI Global, 2009.
- V. F. Hurdle and B. Son. Shock wave and cumulative arrival and departure models: Partners without conflict. Annual Meeting Preprint 01-2189, Transportation Research Board, Washington D.C., 2001.

Thank you for your attention.

Questions / Comments / Suggestions ?

amit.agarwal@campus.tu-berlin.de

Back up

Agarwal, Lämmel, Nagel

MATSim

Stead state in race track experiment

Speed variation in queue model without holes

Single modes

Agarwal, Lämmel, Nagel

Backward traveling holes

Multiple modes

Multiple modes

Agarwal, Lämmel, Nagel

Backward traveling holes