Calibrating the Local and Platoon Dynamics of Car-following Models on the Reconstructed NGSIM Data

Valentina Kurtc, Martin Treiber

Department of Applied Mathematics, St. Petersburg Politechnic University, St. Petersburg, Russia Institute for Transport and Economics, Technical University Dresden, Dresden, Germany

Outline

- The reconstructed NGSIM trajectory data ("I80-1")
- Car-following models under investigation
- Calibration methodology
- Results
- Intra- and inter-driver variations
- Future work

- eliminate the first and last 5 s of each trajectory
- Filter out all active and passive lane changes and 5 s before and after such changes
- filterrout all trajectories on the first and last lanes
- distinguish the trajectories by lane and vehicle type
 Documents and Settings

Car-following models under investigation

Intelligent driver model	Velocity difference model
$\dot{v}_{IDM}(v,\Delta v,s) = a \left[1 - \left(\frac{v}{V_0}\right)^4 - \left(\frac{s^*(v,\Delta v)}{s}\right)^2 \right]$ $s^*(v,\Delta v) = s_0 + max \left(0, Tv + \frac{v\Delta v}{2\sqrt{ab}}\right)$	$\dot{v}_{VDIFF}(v,\Delta v,s) = \frac{v_{opt}(s) - v}{\tau} - \lambda \Delta v$ $v_{opt}(s) = \frac{V_0}{2} \left[tanh\left(\frac{s}{l_{int}} - \beta\right) - tanh(-\beta) \right]$
Model paramet	ters to calibrate
a	β
V ₀	V ₀
s ₀	l _{int}
T	τ
b	λ

5 parameters to calibrate

Calibration methodology

CF model calibration problem = a nonlinear optimization problem with constraints (numerically)

Initial condition for the simulated speed:Initial condition for the simulated gap:

$$v^{sim}(t=0) = v^{data}(0)$$
$$s^{sim}(t=0) = s^{data}(0)$$

II. Calibration	methods:
-----------------	----------

Method	Details	Simulations
Local calibration	Model's acceleration function is fitted directly to the observed accelerations	No
Global calibration	The simulated trajectory of the follower with prescribed leader is compared to the data	Yes
Platoon calibration	A platoon of several vehicles following a data-driven leader is simulated and compared to the observed dynamics	Yes

III. Dynamic variables:

- acceleration (local calibration)
- velocity and gap (global and platoon calibration)

Calibration methodology (2)

IV. Objective functions = the deviation between the measured and simulated dynamic variables

$$S_{s}^{abs} = \frac{\sum_{i=1}^{n} (s_{i}^{sim} - s_{i}^{data})^{2}}{\sum_{i=1}^{n} (s_{i}^{data})^{2}}$$

$$S_{s}^{rel} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{s_{i}^{sim} - s_{i}^{data}}{s_{i}^{data}} \right)^{2}$$

$$S_{s}^{mix} = \frac{\sum_{i=1}^{n} (s_{i}^{sim} - s_{i}^{data})^{2} / |s_{i}^{data}|}{\sum_{i=1}^{n} |s_{i}^{data}|}$$

$$S_{v}^{abs} = \frac{\sum_{i=1}^{n} (v_{i}^{sim} - v_{i}^{data})^{2}}{\sum_{i=1}^{n} (v_{i}^{data})^{2}}$$

V. Numerical algorithm – the interior-point algorithm (MATLAB optimization toolbox)

VI. Parameter constraints = box constraints

IDM	$V_0 \in [5,40] \ m/s$	$s_0 \in [0, 10] m$	$T \in [-5,5] s$	$a \in [0.01, 10] \ m/s^2$	$b \in [0.01, 10] \ m/s^2$
VDIFF	$V_0 \in [0,70] m/s$	$l_{int} \in [0.1, 100] m$	$\tau \in [0.05, 20] s$	$\beta \in [0.1,10]$	$\lambda \in [0,3]$ 1/s

Results. Global calibration. The IDM

		Kolmogorov-Smirnov statistic					
		$abs_s - rel_s$	$abs_s - mix_s$	$rel_s - mix_s$	$abs_s - abs_v$	$rel_s - abs_v$	$mix_s - abs_v$
	$a[m/s^2]$	0.06	0.04	0.05	0.16	0.12	0.16
IDM	$V_0[m/s]$	0.09	0.06	0.06	0.17	0.09	0.13
	$s_0[m]$	0.05	0.05	0.02	0.08	0.10	0.09
	T[s]	0.10	0.07	0.07	0.05	0.11	0.07
	$b[m/s^2]$	0.04	0.03	0.04	0.27	0.26	0.26
	mean	0.07	0.05	0.05	0.15	0.14	0.14

Calibration errors

	IDM				
	global	super-global			
abs_s	0.098	0.256			
<i>rel</i> _s	0.125	0.324			
mix_s	0.111	0.296			
abs_v	0.086	0.131			

Global calibration. The IDM. Negative reaction times

Speed increasing and gap decreasing simultaneously

T = -2.34s

Results. Global calibration. The VDIFF

Data filtering procedure - 876 trajectories to calibrate

			Ко	Colmogorov-Smirnov statistic			
		$abs_s - rel_s$	$abs_s - mix_s$	$rel_s - mix_s$	$abs_s - abs_v$	$rel_s - abs_v$	$mix_s - abs_v$
	$V_0[m/s]$	0.08	0.07	0.04	0.08	0.14	0.13
	$\tau[s]$	0.08	0.04	0.06	0.13	0.11	0.12
VDIEE	$l_{int}[m]$	0.09	0.06	0.03	0.09	0.15	0.13
V DIFF	$\beta[m]$	0.07	0.06	0.04	0.11	0.15	0.14
	$\lambda[1]$	0.07	0.02	0.05	0.18	0.21	0.19
	mean	0.08	0.05	0.04	0.12	0.15	0.14

Calibration errors

	VDIFF					
	global super-global					
abs _s	0.097	0.239				
rels	0.112	0.303				
mix _s	0.105	0.279				
abs_v	0.083	0.128				

Results. Platoon calibration. The IDM

At least 5 vehicles following each other – 251 data sets to calibrate

 $s_0[m]$

T[s]

 $b[m/s^2]$

mean

IDM

0.10

0.16

0.09

0.11

0.29

0.20

0.08

0.17

0.31

0.16

0.05

0.14

0.19

0.19

0.38

0.21

0.19

0.25

0.32

0.21

0.36

0.36

0.31

0.26

10

Results. Platoon calibration. The IDM

0342

Leader + 6 followers

Objective function – absolute error measure (gap)

Intra- and inter-driver variations

Variations in driving behavior

- Inter-driver differences between the driving styles of different drivers
- Intra-driver a single individual can change their behavior over time

Global calibration: $\varepsilon^{global} = \varepsilon_{intra}$

Platoon calibration: $\varepsilon^{platoon} = \varepsilon_{intra} + \varepsilon_{inter}$

 $\varepsilon_i = s_i^{sim} - s_i^{data}$ - absolute gap error for specific trajectory at time t_i

 $Var(\varepsilon) = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_i N$ - the number of the trajectory data points

 $Var(\varepsilon_{inter}) = Var(\varepsilon^{platoon}) - Var(\varepsilon^{global})$

	ID	Μ	VDIFF		
	abs _s	abs_v	abs _s	abs_v	
$Var(\varepsilon^{global}), [m^2]$	1.74	0.35	1.83	0.32	
$Var(\varepsilon^{superglobal}), [m^2]$	12.01	0.57	10.42	0.54	
$Var(\varepsilon_{inter}), [m^2]$	10.27	0.22	8.59	0.22	
$Var(\varepsilon_{inter})/Var(\varepsilon_{intra}), [1]$	5.9	0.6	4.7	0.7	

Benchmarking of car-following models

Calibration errors:

	ID	M	VDIFF		
	global super-global		global	super-global	
abs _s	0.098	0.256	0.097	0.239	
<i>rels</i>	0.125	0.324	0.112	0.303	
mix _s	0.111	0.296	0.105	0.279	
abs_v	0.086	0.131	0.083	0.128	

Calibration with four objective functions demonstrates the same stability properties of two models considered

		Kolmogorov-Smirnov statistic						
		$abs_s - rel_s$	$abs_s - mix_s$	$rel_s - mix_s$	$abs_s - abs_v$	$rel_s - abs_v$	$mix_s - abs_v$	
	$a[m/s^2]$	0.10	0.08	0.08	0.09	0.07	0.09	
	$V_0[m/s]$	0.10	0.18	0.12	0.18	0.20	0.21	
IDM	$s_0[m]$	0.10	0.29	0.31	0.19	0.19	0.36	
	T[s]	0.16	0.20	0.16	0.19	0.25	0.36	
	$b[m/s^2]$	0.09	0.08	0.05	0.38	0.32	0.31	
	mean	0.11	0.17	0.14	0.21	0.21	0.26	
	$V_0[m/s]$	0.10	0.09	0.12	0.21	0.26	0.22	
	$\tau[s]$	0.18	0.10	0.13	0.33	0.16	0.26	
VDIFF	$l_{int}[m]$	0.14	0.05	0.14	0.29	0.35	0.29	
	$\beta[m]$	0.13	0.09	0.15	0.32	0.35	0.28	
	λ[1]	0.07	0.06	0.10	0.30	0.26	0.33	
	mean	0.13	0.08	0.13	0.29	0.27	0.27	

Future work

- consider data containing longer trajectories to increase the occuracy of results obtained during the calibrating procedure
- consider data containing trajectories with stops due to traffic lights to study stop-and-go waves occurring in traffic flow
- develop more elaborate deviation measure to take into account aspects of driving style with higher precision
- choose the most suitable optimization algorithm