Pedestrian Dynamics at Transit Stations: A Hybrid Pedestrian Flow Modeling Approach

Emily Porter & Samer H. Hamdar

The George Washington University Center for Intelligent Systems Research

Traffic and Granular Flow Conference The Netherlands, October 2015

Outline

- 2. Hybrid Modeling Framework
- 1. Motivation
- 2. Objectives

- 1. Social force
- 2. Behavioral heuristics
- 3. Materials science

1. Experimental Data

3. Numerical Analysis

- 2. Simulation Scenarios
- 4. Conclusions:
 - 1. Summary
 - 2. Future

Research

CISR-

Introduction

Modeling Framework

Numerical Results

Ũ		
Ever better.	I DEDICATED TRANSPORTATION I SUPPLY CHAIN SOLUTIONS	See Why

Transportation

Federal officials will assume responsibility for Metro safety

A 🔒 🗣 113

By Lori Aratani and Paul Duggan October 9 🛛 🍞 Follow @lor 😏 Follow @duggar

Metro now is the first U.S. subway system placed under direct federal supervision for safety lapses under a plan announced late Friday by Transportation Secretary Anthony Foxx.

5 Special ed teacher quits: 'I

Introduction

CISR

Modeling Framework

Numerical Results

CISR

Introduction

Modeling Framework

Numerical Results

Numerical Results

Objectives

- Consider an integrated modeling approach that captures pedestrian walking behavior in congested and uncongested conditions in transit stations
- Combine concepts from previously existing pedestrian behavior models
- Simulate scenarios that can be compared to real world data
- Explore model results for a transit station application

Materials Science: multi-body potential molecular interactions

(Karamouzas, Skinner and Guy; 2014)

Modeling Framework

Social Force Model: attractive and repulsive force structure

(Helbing, Buzna, Johansson and Werner, 2005)

GW

Behavioral Heuristics: Incorporating cognitive and physiological pedestrians characteristics

(Moussaïd, Helbing and Theraulaz; 2011)

Introduction

Modeling Framework

Numerical Results

Social Force Model

Acceleration

 $\overline{F_{\alpha}^{0}}(\overrightarrow{v_{\alpha}}, v_{\alpha}^{0}\overrightarrow{e_{\alpha}}) = \frac{1}{\tau_{\alpha}} \left(v_{\alpha}^{0}\overrightarrow{e_{\alpha}} - \overrightarrow{v_{\alpha}} \right)$

 $\overrightarrow{v_{\alpha}}(t) \equiv actual \ velocity \ of \ pedestrian \ \alpha$

 $\overrightarrow{e_{\alpha}}(t) \equiv desired \ direction \ of \ pedestrian \ \alpha$

 $\overrightarrow{v_{\alpha}^{0}}(t) = v_{\alpha}^{0} \overrightarrow{e_{\alpha}} \equiv desired \ velocity \ of \ pedestrian \ \alpha$

 $au_{lpha} \equiv relaxation \ time \ of \ pedestrian \ lpha$

Pedestrian Repulsion

 $\overrightarrow{f_{\alpha\beta}}(\overrightarrow{r_{\alpha\beta}}) = -\nabla_{\overrightarrow{r_{\alpha\beta}}}V_{\alpha\beta}[b(\overrightarrow{r_{\alpha\beta}})]$

 $\begin{array}{l} \overline{f_{\alpha\beta}} \equiv repulsive \ effect \ felt \ by \ pedestrain \ \alpha \ due \ to \ pedestrian \ \beta \\ \hline r_{\alpha\beta} \equiv distance \ between \ pedestrians \ \alpha \ and \ \beta \\ V_{\alpha\beta} [b(\overline{r_{\alpha\beta}})] \equiv replusive \ potential \ (monotonic \ decreasing \ function \ of \ b) \end{array}$

Obstacle Repulsion

 $\overrightarrow{f_{\alpha B}}(\overrightarrow{r_{\alpha B}}) = -\nabla_{\overrightarrow{r_{\alpha B}}}U_{\alpha B}(\|\overrightarrow{r_{\alpha B}}\|)$

 $\overrightarrow{f_{\alpha B}} \equiv repulsive \ effect \ felt \ by \ pedestrain \ \alpha \ due \ to \ obstacle \ B$ $\overrightarrow{r_{\alpha B}} \equiv distance \ between \ pedestrian \ \alpha \ and \ obstacle \ B$ $U_{\alpha B}(\|\overrightarrow{r_{\alpha B}}\|) \equiv replusive \ potential \ (monotonic \ decreasing \ potential)$

Obstacle Repulsive Potential

 $U_{\alpha B}(\|\overline{r_{\alpha B}}\|) = U_{\alpha B}^{0} e^{-\|\overline{r}_{\alpha B}\|}_{R}$

 $U^0_{\alpha B} \equiv constant \ parameter$ $R \equiv constant \ parameter$

Pedestrian Repulsive Potential

$$V_{\alpha\beta}(b) = V_{\alpha}^0 e^{-b/\sigma}$$

$$b = 0.5 * \sqrt{\left(\left\|\overline{r_{\alpha\beta}}\right\| + \left\|\overline{r_{\alpha\beta}} - v_{\beta}\Delta t\overline{e_{\beta}}\right\|\right)^{2} - \left(v_{\beta}\Delta t\right)^{2}}$$

- $V^0_{\alpha\beta} \equiv constant \, parameter$
- $\sigma \equiv constant \, parameter$
- $v_{\beta} \equiv velocity \ of \ pedestrian \ \beta$
- $\overrightarrow{e_{\beta}} \equiv direction \ of \ motion \ of \ pedestrian \ \beta$
- $\Delta t \equiv time \ change \ used \ to \ determine \ step \ width \ of \ pedestrian \ \beta$

Modeling Framework

Behavioral Heuristics

Walking Direction

Field of View

$$\overrightarrow{e_{\alpha}}(t) = d_{max}^2 + r(e)^2 - 2d_{max}r(e)\cos(e_0 - e)$$

 $\overrightarrow{e_{\alpha}}(t) \equiv desired direction of pedestrian \alpha$

 $d_{max} \equiv sight \ distance \ of \ pedestrian \ \alpha$

 $r(e) \equiv distance \ to \ first \ collision$

 $e_0 \equiv direction \, of \, destination$

 $e \equiv$ direction within field of view considered by pedestrian

Introduction

Modeling Framework

Materials Science

Molecular interactions can be modeled by taking into account directly neighboring molecules.

Requires "social force" calculations between multiple bodies within the corresponding field of view.

Total Force Felt by Pedestrain α = $\sum_{i=1}^{3} \overline{F_{\alpha}^{0}}(\overline{v_{\alpha}}, v_{\alpha}^{0}\overline{e_{\alpha}}) + \overline{f_{\alpha\beta_{i}}}(\overline{r_{\alpha\beta_{i}}}) + \overline{f_{\alpha B_{i}}}(\overline{r_{\alpha B_{i}}})$

Introduction

Modeling Framework

Numerical Results

Numerical Analysis

Experimental Results (Courtesy, TU Delft)

- One directional flow
- Two directional flow
- Crossing
- Wide Bottleneck
- Narrow bottleneck

Simulation

- Alternative Crossing Scenario
- Transit Application

Experimental Results: 1-D Flow (A vs. B)

Modeling Framework

Experimental Results: 2-D Flow (C vs. D)

Modeling Framework

Experimental Results: Crossing (E vs. F)

Modeling Framework

Experimental Results: Wide and Narrow Bottlenecks

Introduction

Modeling Framework

Numerical Results

Experimental Results: Wide Bottleneck

Introduction

Modeling Framework

Numerical Results

Experimental Results: Narrow Bottleneck

<figure>

Introduction

Modeling Framework

Numerical Results

Transit Application Transit Layout

Introduction

Modeling Framework

Numerical Results

Transit Trajectories & Space Usage

Introduction

Modeling Framework

Numerical Results

- Feasible modeling approach: flexible and computationally efficient
- Basic validity analysis (i.e. macro analysis)
- Realistic trajectory patterns
- Next steps:
 - Flow-density analysis → traffic flow theory based study
 - Additional trajectory data specific to transit related pedestrian dynamics
 - Microscopic calibration capturing heterogeneity
 - Real-time application: predictive tool

<u>Acknowledgements</u>

TUDelft

Computational Materials Science Group

Mr. Boxiao Cao

<u>Contact</u>

Samer H. Hamdar, Ph.D. The George Washington University, Assistant Professor Center for Intelligent Systems Research, Director

> 800 22nd Street, NW Science and Engineering Hall, Room 3810 Washington, D.C. 20052 U.S.A

> > Phone: +1-202-994-6652 Fax: +1-202-994-0127 Email: <u>hamdar@gwu.edu</u> Website: <u>www.cisr.gwu.edu</u>

SISR

