Traffic and Granular Flow'15

From microscopic to macroscopic traffic patterns: different applications of the variational theory

Ludovic Leclercq

Université de Lyon, IFSTTAR / ENTPE, COSYS, LICIT

Outline

- Short historical review
 - Micro to Macro for car-following models
 - Recent results based on homogenisation technics
- The variational theory
- Applications to scaling-up problems
 - Mean traffic states on urban corridors
 - Capacity drops at merges
- Conclusion

SHORT HISTORICAL REVIEW

First micro to macro approaches (1)

• 1950-60: Herman, Gazis, Montroll, Chandler...

First micro to macro approaches (2)

Gazis, Herman and Rothery's model:

$$\ddot{x}_{n+1}(t+T) = \alpha_0 \frac{\left[\dot{x}_n(t) - \dot{x}_{n+1}(t)\right]}{\left[x_n(t) - x_{n+1}(t)\right]^l} \left[\dot{x}_{n+1}(t+T)\right]^m$$

1	Equation of State	Reference
	<i>m</i> =0	
0	$q = \alpha [1 - k/k_1]$ $\alpha = q_m = 1/\text{reaction time}$	Chandler et al. ^e Pipes ⁴
1	$q = \alpha k \ell_n [k_1/k]$ $\alpha =$ velocity at optimum flow (u_m)	Greenberg ¹⁷ Gazis et al. ¹³
3/2	$q = \alpha k [1 - (k/k_i)^{1/2}]$ $\alpha =$ velocity at free flow (u_t)	Drew ¹⁹
2	$q = \alpha k [1 - k/k_1]$ $\alpha = u_1$	Greenshields 20
	m=1	
2	$q = \alpha k e^{(k/k_0)}$ $\alpha = u_t; k_0 = \text{density at optimum flow}$	Edie ²¹
3	$q = \alpha k e - \frac{1}{2} (k/k_0)^2$	Drake et al.22
		···· · · · · · · · · · · · · · · · · ·
" Based on May	and Keller. ¹⁸ 1967	

Figure 6.5 Matrix of speed-density relationships for various *m*, *i* combinations of the general car-following equation.¹⁹ (Dashed lines enclose limiting values of *i* and *m* used in Table 6.5.)

@Gerlough and Huber, Traffic Flow Theory: a monograph, 1975

Homogeneisation technics

A classical method in other engineering field, e.g. materials

(a) 3D microstructure of 304L stainless steel obtained from DCT

(b) Inverse pole figure of the sample regarding to some macroscopic directions r

A. Belkhabbaz et al. / Procedia Engineering 10 (2011) 1883-1888

Determining the mean response of an heterogeneous media using multiscale grids

Application to traffic flow (Monneau & Costesque, 2014)

- Using homogeneisation technics and HJ theory (Monneau & Costeseque, 2014) proves that:
 - The Optimal velocity model (with no delay) is equivalent to the LWR model

 $\dot{x}_i(s) = F\left(x_{i+1}(s) - x_i(s)\right), \quad \text{for} \quad i \in \mathbb{Z}$

- This results can be generalized to:
 - The OVM with (small) delay
 - Multi-anticipative models

 $\dot{x}_{i}(t+\tau) = F\left((x_{i+j}(t) - x_{i}(t))_{j=1,\dots,n}, \dot{x}_{i}(t), (\dot{x}_{i+j}(t))_{j=1,\dots,n}\right), \quad for \ all \quad i \in \mathbb{Z},$

Application to traffic flow (2)

- Strongly based on a fixe vehicle order (no overtaking)

The slowest vehicle becomes predominant

Hardly applicable for transitional phases or unregular patterns

THE VARIATIONAL THEORY

The Moskowitz (Newell)'s function

The LWR model as an HJ equation

flow

Hamilton-Jacobi equation

General considerations on the variations of N

states but no longer from the paths

Equality is observed on the optimal wave paths

APPLICATIONS TO SCALING-UP PROBLEMS (1)

Mean traffic behavior on urban corridors

Traffic dynamics at an isolated signal (1)

k

ĸ

(ล2)

Full description of traffic dynamics

Traffic dynamics at an isolated signal (2)

Estimating mean traffic states on corridor

- Definitions
 - corridor: series of *m* successive links ended by traffic signals
 - Homogeneous traffic conditions, i.e. no or wellbalanced turning flow

Traffic dynamics for an urban corridor

Analytical Method (1) – Cuts for a corridor

 $L Cut: Q = \min_{V}(KV + R(V))$

(Daganzo and Geroliminis, 2008)

Calculating R(V) with VT

To minimize costs, the observer has to maximize the time spent on red phases – Shortcuts theory (Daganzo and Menendez, 2005) Internal subpaths with v < u may be replaced at same costs.

A graph can simply be constructed to explore all the possible paths

Analytical Method (2) - The sufficient graph

The cost R(V) for different V can be calculated using a sufficient graph defined by three kinds of edges:

- edge (a): red phase (cost 0)
- edge (b): green phase (cost Q_{max})
- edge (c): path with speed u or -w that starts at the end of red phases (cost 0 or $w\kappa$)

Influence of the time lag between signals

δ=0 s		
<i>δ</i> =10 s		
<i>δ</i> =20 s		
<i>δ</i> =30 s		
<i>δ</i> =40 s		
<i>δ</i> =50 s		
δ=60 s		
δ=70 s		

APPLICATIONS TO SCALING-UP PROBLEMS (2)

Capacity drop at freeway merges

Hypothesis

• Network:

- The main road has only one lane
- The inserting flow is equal to q_0
- LWR model and triangular fundamental diagram (free-flow speed u wave speed w and jam density κ)

• Insertions:

- Time between two insertions: $H(h_0=1/q_0, s_H)$
- Inserting positions are uniformly distributed between $0 \ {\rm and} \ L$
- Vehicles insert at speed v_0 with an acceleration a and a jam density κ
- Inserting vehicles behave as moving bottlenecks on target lane

Case 1: L=0 and $s_H>0$

The effective capacity C is given by :

$$C = \sum_{i=1}^{n} \left(N_{i+1} - N_i \right) / \sum_{i=1}^{n} h_i \text{ with } n \to +\infty$$

Simplest homogeneous case $(L=0, s_H>0)$

Effective capacity

$$C = \sum_{i=1}^{n} w \kappa \left(\tau \left(h_i \right) - h_i \right) / \sum_{i=1}^{n} h_i$$

$$C = w \kappa \left(1 - \sum_{i=1}^{n} \tau (h_i) / \sum_{i=1}^{n} h_i \right)$$

$$\tau (h_i) = -\frac{w + v_0}{a} + \frac{1}{a} \sqrt{(w + v_0)^2 + 2awh_i}$$

Law of large numbers

$$(1/n)\sum_{i=1}^{n}h_i \rightarrow E(h_i) \text{ and } (1/n)\sum_{i=1}^{n}\tau(h_i) \rightarrow E(\tau(h_i))$$

Second order Taylor approximation

$$E(\tau(h_i)) \simeq \tau(E(h_i)) + \frac{1}{2}s^2 \frac{\partial^2 \tau}{\partial h_i^2}(E(h_i)) = \tau(h_0) - \frac{as^2 w^2}{2((w+v_0)^2 + 2awh_0)^{3/2}}$$

(Leclercq et al, part B, 2011) $_{25}$

Case 2: L>0 and $s_H>0$ – no interactions

Same problem as case 1 by switching inserting times and $t'_{()}$ at x=0 !

Resulting analytical curves

Sensitivity analysis

Extended framework

 Refined description of traffic dynamics (interactions between waves and voids) (Leclercq, Knoop et al, part C, in press)

- Heterogeneous vehicle characteristics (Leclercq et al, part C, in press)
- Multilane on freeways (Leclercq et al, TRB2016)

Experimental site (M6 – England)

Extended sketch of the model

Rough calibration:

 $L^2_{\text{DLC}} = L^1_{\text{DLC}}$

-FD (per lane): *u*=115 km/h, *w*=20 km/h, *κ*=145 veh/km -*a*=1.8 m/s²; τ₁=τ₂=3 s; -*L*=160 m ; *L*²_{DLC}=*L*¹_{DLC}=100 m

 $\tau_1 = \tau_2$

Experimental results

CONCLUSION

Conclusion

- Variational theory is a powerful to determine mean traffic states from a microscopic description of the physical mechanisms
- Variational theory is by nature an integrating operator
- A real challenge is to operate micro to macro transformations for transitional phases
- Consistent integration is very important for hierarchical modeling and to adress large scale problems

Thank you for your attention

Are you interested in collaborating on an very exiting project ?.....

MAGnUM: A Multiscale and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility

European Research Council Established by the European Commission

Variational theory (VT) in Eulerian – General basis

VT is really useful with PWL FD (and especially triangular one)

VT in Eulerian – The Highway Problem

