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SHORT HISTORICAL REVIEW
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First micro to macro approaches (1)

• 1950-60: Herman, Gazis, Montroll, Chandler…
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CHAPITRE 1. HOMOGENIZATION OF MICROSCOPIC TRAFFIC FLOW MODELS

where Q denotes the flow of vehicles. It is the simplest traffic flow model because it assumes
that the flow is always at a steady state of equilibrium. Many other macroscopic models
tried to improve this assumption of equilibrium by taking into account transitional traffic
states.

Microscopic to macroscopic approaches : One of the first micro-macro approach
in traffic models was performed in the 1950’s and early 1960’s by researchers from the
General Motors Corporation, namely Robert Herman, Denos C. Gazis, Elliott W. Montroll
and Robert E. Chandler among others. Indeed, they not only create car-following theory,
they also make a link between such models and traffic flow ones. For instance, in [109],
assuming that the leading vehicle in traffic stream has a constant speed u and integrating
the expression for the acceleration of (n + 1)st vehicle, it gives the expression for the
velocity of that vehicle, which in turn is intended to be the steady-state velocity of the
traffic stream. This velocity solves an appropriate equation mixing the flow and the density.

For example, consider the application of this procedure to the simplest linear car-
following model

ẍn+1(t) = α [ẋn(t− T )− ẋn+1(t− T )]

giving the acceleration of (n + 1)st vehicle with respect to the relative speed modulo a
time delay T > 0. By integration and up to a shift in time, we get the velocity

u := ẋn+1(t) = α[xn(t− T )− xn+1(t− T )
︸ ︷︷ ︸

=:s=
1
ρ

] + C0.

The constant C0 can be computed thanks to the condition for null speed u = 0 obtained
at maximal density ρjam. Then from the definition of flow q = uρ, it proceeds that

q = α

[

1− ρ

ρjam

]

.

The constant α is given for the condition q(ρ = 0) = qm with qm ̸= 0. It is noteworthy to
underline that this choice is not realistic for low densities or equivalently for high spacing,
say that the car-following model is not consistent near to vacuum.

The same (formal) procedure could be used for other type of microscopic models. For
instance, if doing so for the following model

ẍn+1(t + T ) = α0
[ẋn(t)− ẋn+1(t)]
[xn(t)− xn+1(t)]l

[ẋn+1(t + T )]m

first proposed by Gazis, Herman and Rothery [109] and then examined by May and Keller
[189], it follows the steady-state equations given in Table 1.1.

Macro-to-Micro approach is often based on a discretization of macroscopic models
thanks to finite difference numerical schemes. The main one is Godunov scheme [117]
which is equivalent in traffic to the Daganzo’s Cell Transmission model [76,77]. Moreover
Godunov numerical scheme has been translated into traffic through the notions of Supply
and Demand highlighted in [164].

In traffic literature, for micro-to-macro passage, the reader can refer to [10] which shows
that a particular time-discrete microscopic model converges to a second order macroscopic
model, and to [157] where the macroscopic limit of a micro kinetic model is shown to
be equal to the Kruzhkov entropy solution of the LWR model. There is also the recent
paper [62]. The papers [208, 209] and [13] are more precisely dedicated to study stability
properties of microscopic models (and so their macroscopic behavior).
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First micro to macro approaches (2)

CHAPITRE 1. HOMOGENIZATION OF MICROSCOPIC TRAFFIC FLOW MODELS

where Q denotes the flow of vehicles. It is the simplest traffic flow model because it assumes
that the flow is always at a steady state of equilibrium. Many other macroscopic models
tried to improve this assumption of equilibrium by taking into account transitional traffic
states.

Microscopic to macroscopic approaches : One of the first micro-macro approach
in traffic models was performed in the 1950’s and early 1960’s by researchers from the
General Motors Corporation, namely Robert Herman, Denos C. Gazis, Elliott W. Montroll
and Robert E. Chandler among others. Indeed, they not only create car-following theory,
they also make a link between such models and traffic flow ones. For instance, in [109],
assuming that the leading vehicle in traffic stream has a constant speed u and integrating
the expression for the acceleration of (n + 1)st vehicle, it gives the expression for the
velocity of that vehicle, which in turn is intended to be the steady-state velocity of the
traffic stream. This velocity solves an appropriate equation mixing the flow and the density.

For example, consider the application of this procedure to the simplest linear car-
following model

ẍn+1(t) = α [ẋn(t− T )− ẋn+1(t− T )]

giving the acceleration of (n + 1)st vehicle with respect to the relative speed modulo a
time delay T > 0. By integration and up to a shift in time, we get the velocity

u := ẋn+1(t) = α[xn(t− T )− xn+1(t− T )
︸ ︷︷ ︸

=:s=
1
ρ

] + C0.

The constant C0 can be computed thanks to the condition for null speed u = 0 obtained
at maximal density ρjam. Then from the definition of flow q = uρ, it proceeds that

q = α

[

1− ρ

ρjam

]

.

The constant α is given for the condition q(ρ = 0) = qm with qm ̸= 0. It is noteworthy to
underline that this choice is not realistic for low densities or equivalently for high spacing,
say that the car-following model is not consistent near to vacuum.

The same (formal) procedure could be used for other type of microscopic models. For
instance, if doing so for the following model

ẍn+1(t + T ) = α0
[ẋn(t)− ẋn+1(t)]
[xn(t)− xn+1(t)]l

[ẋn+1(t + T )]m

first proposed by Gazis, Herman and Rothery [109] and then examined by May and Keller
[189], it follows the steady-state equations given in Table 1.1.

Macro-to-Micro approach is often based on a discretization of macroscopic models
thanks to finite difference numerical schemes. The main one is Godunov scheme [117]
which is equivalent in traffic to the Daganzo’s Cell Transmission model [76,77]. Moreover
Godunov numerical scheme has been translated into traffic through the notions of Supply
and Demand highlighted in [164].

In traffic literature, for micro-to-macro passage, the reader can refer to [10] which shows
that a particular time-discrete microscopic model converges to a second order macroscopic
model, and to [157] where the macroscopic limit of a micro kinetic model is shown to
be equal to the Kruzhkov entropy solution of the LWR model. There is also the recent
paper [62]. The papers [208, 209] and [13] are more precisely dedicated to study stability
properties of microscopic models (and so their macroscopic behavior).
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Homogeneisation technics

A. Belkhabbaz et al. / Procedia Engineering 10 (2011) 1883–1888

A. Belkhabbaz et al. / Procedia Engineering 10 (2011) 1883–1888 1885

(a) 3D microstructure of
304L stainless steel obtained
from DCT

(b) Inverse pole figure of the sample regarding to some macroscopic directions r

Figure 1: Experimental characterization of the material

anisotropy is mainly connected to the local anisotropy caracterized by Zener’s parameter and to
the texture of the material at least in the elastic domain. Nevertheless, the details of the me-
chanical fields can be affected by others microstructural features. To determine the orientation
distribution function (ODF) from EBSD measurements, the harmonic method, which consists in
a serie expansion of the ODF on a basis of spherical harmonic functions, has been used. The
figure 1(b) shows the inverse pole figure of the austenite. It can be seen that the material exhibit
a strong fiber texture in the < 111 > direction and a slightly less pronounced fiber in the < 001 >.
The overall behaviour is thus expected to present a symmetry close to transverse isotropy.

3. Numerical homogeneization using FFT

The DCT data can be used as microstructural inputs for a micromechanical modelling scheme.
As noted previously, the widely used FE technique implies a complex task of meshing for a care-
ful description of grain boundaries and, on the opposite, the use of a simple cartesian mesh is
known to have a poor numerical efficiency regarding to dedicated algorithms on this topology.
Consequently, we have chosen an alternative approach to treat this problem at reduced computa-
tional cost (problems with several millions of degrees of freedom can be solved in a few minutes
with this technique [13]). Also, an attractive feature is that the image of the microstructure can
be used directly as an input without using dedicated meshing algorithm. The principle is based
on the fact that the local mechanical response of a periodic heterogeneous medium, discretized
on a Nx × Ny × Nz unit cell, can be computed as a integral equation. This operation convolves
the Green’s function of a linear reference homogeneous medium with the actual heterogeneity
field, called polarization field τττ(xxx). This description of the problem is similar to numerous treat-
ments encountered in homogenization theory [14, 15] where the initial heterogeneous problem
is replaced by an equivalent homogeneous problem with polarization :

σσσ(xxx) = CCC(xxx) : εεε(xxx) becomes σσσ(xxx) = CCC0 : εεε(xxx) + τττ(xxx) with τττ(xxx) =
(
CCC(xxx) −CCC0

)
: εεε (1)

If the convolution problem is difficult to solve in the real space its counterpart in the Fourier
space is only a simple tensorial product. This observation has motivated the use of an algorithm

A classical method in other engineering field, e.g. materials

15

Determining the mean response of an heterogeneous media using multiscale grids



Application to traffic flow
(Monneau & Costesque, 2014)

• Using homogeneisation technics and HJ theory 
(Monneau & Costeseque, 2014) proves that:
– The Optimal velocity model (with no delay) is 

equivalent to the LWR model

– This results can be generalized to:
• The OVM with (small) delay
• Multi-anticipative models
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4 First order model with no delay

We are interested here in the first order microscopic model depicted in (1.1.1) :

ẋi(s) = F (xi+1(s)− xi(s)) , for i ∈ Z

For sake of simplicity (and without any loss of generality), we assume that the function
F satisfies

sup
z∈R

F (z) = 1 and sup
z∈R

F ′(z) = 1

4.1 Settings for the ODE

Theorem 4.1 ((R. Monneau) Uniqueness of the ODE solution). We consider the equation
defined by (1.1.4) completed by the initial data

(

x0
i

)

i∈Z
such as (A3) is respected i.e. the

space gradient is bounded and thus, the time gradient
(

x0
i

)

t too.
If F satisfies (A1), then there exists an unique solution x0

i (t) of (1.1.1) and

|xi(t)− x0
i | ≤ Ct

Proof Step 1 : Reformulation of the problem in a Banach space
We have

ẋi = F (xi+1 − xi)

where F is a Lipschitz function

∃L > 0 : ∀(a, b) ∈ R
2, |F (a)− F (b)| ≤ L|a− b|

Let U =
(

(xi)i∈Z

)

∈ RZ and we assume that we can find a function F such U̇ = F(U).
Consider B ⊂ RZ given by

B = {U ∈ R
Z, (ui − x0

i ) ≤ r}

where
(

x0
i

)

i is the initial data and r > 0 is the ball radius.
Notice that U : [0, T ]→ B where B is a Banach space equipped with its norm defined

as
∥U∥ = sup

i∈Z

|xi|

Step 2 : F is Lipschitz
We obtain

∥F(U) −F(V )∥ = sup
i

|Fi(U)− Fi(V )|

= sup
i

|Fi(ui+1 − ui)− Fi(vi+1 − vi)|

≤ L sup
i

|(Ui+1 − Vi+1)− (Ui − Vi)|

≤ 2L sup
i

|Ui − Vi| = 2L∥U − V ∥

Step 3 : Contraction

We consider :

U(t) = U(0) +
∫ t

0
F(U(s))ds =

(

A
(

U(t)
)
)

4. FIRST ORDER MODEL WITH NO DELAY 39
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and
ūε(x, t) = uε(x, t)− ϕ(P0)

≤ p(x− x0) + σ(t− t0) + o (|x− x0| + |t− t0|)

Up to replace P̄0 by P0, we can get that ū0 and ūε are locally comparable :

ū0(x, t) ≥ p(x− x0) + σ(t− t0) + o(|x− x0| + |t− t0|)
≥ ūε(x, t) + o(|x− x0| + |t− t0|).

!

5.4 Extensions : speed-dependent and multi-anticipative models

Proposition 5.8 ((R. Monneau) Formal extensions of homogenization results). All the
previous results could be easily extended to other classes of models say :

• The models taking into account (with a delay time) the speed of two consecutive
vehicles which would be expressed under the following form

ẋi(t + τ) = F (xi+1(t)− xi(t), ẋi(t), ẋi+1(t)) , for all i ∈ Z, t > 0 (1.5.34)

• The models taking in account many leader vehicles (and even encompassing the pre-
vious case of a speed-dependence law)

ẋi(t+τ) = F ((xi+j(t)− xi(t))j=1,...,n, ẋi(t), (ẋi+j(t))j=1,...,n) , for all i ∈ Z, t > 0
(1.5.35)

Proof (R. Monneau) How to modify the propositions and adapt the corres-
ponding proofs.
Case 1 : speed-dependent models (1.5.34)

• Comparison principle : if we have the following conditions
⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 ≥ F ′
a ≥ ρ(τ)F ′

b ≥ 0

di(t− τ) ≤ ρ(τ)di(t)

then we get
ḋi(t) = F (di+1(t), ẋi+1(t))− F (di(t), ẋi(t))

= F ′
a(di+1 − di) + F ′

b(di+1)

≥ (F ′
a − ρ(τ)F ′

b)di+1 − F ′
adi

≥ −di(t− τ)

≥ −ρ(τ)di(t)

• Convergence : we set v̄ = F̄ (d̄) = F (d̄, v̄) which could be solved be finding a fixed
point as v̄ = v(d̄) = F̄ (d̄) in the case of F invertible (possible if 0 < F ′

b < 1).

Case 2 : multi-anticipative models (1.5.35)

58 5. DELAYED FIRST ORDER MODEL



Application to traffic flow (2)
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• Homogeneisation ó steady / stationnary states

• Strongly based on a fixe vehicle order (no overtaking)

The slowest vehicle becomes predominant

Hardly applicable for transitional phases or unregular patterns



THE VARIATIONAL THEORY
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The Moskowitz (Newell)’s function

q = ∂t N

k = −∂xN

Space (X) Time (T)

Ve
h

nu
m

be
r (

N
)



The LWR model as an HJ equation
flow

density

q=Q(k) ∂N
dt

=Q − ∂N
∂x

⎛
⎝⎜

⎞
⎠⎟ó

Hamilton-Jacobi equation



General considerations on the variations of N

y’(t)

tA tB

Γ
A

B
x

 

ΔNAB = dtN
tA

tB

∫ = ∂t N + y '(t)∂n N
tA

tB

∫

ΔNAB = Q k(t)( )− y '(t)k(t)
r (y '(t ),k )

  
tA

tB

∫

t

k

q

k0

q0 y’(t)

r(y’(t),k0) -w
u

Same costs

Legendre’s transformation:

r(y '(t),k) ≤ R(y '(t)) = sup
k

r(y '(t),k)( )

y’(t)
R(y’(t))

This makes costs independent from traffic 
states but no longer from the paths

Equality is observed on the optimal wave paths

t

x



APPLICATIONS TO SCALING-UP 
PROBLEMS (1)
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Mean traffic behavior on urban corridors



Traffic dynamics at an isolated signal (1)
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Full description of traffic dynamics



Traffic dynamics at an isolated signal (2)k
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Estimating mean traffic states on corridor

• Definitions
– corridor: series of m successive links ended by traffic 

signals
– Homogeneous traffic conditions, i.e. no or well-

balanced turning flow
– FD parameters: free-flow u, wave speed w, jam 

density κ

hyperlinklink i

Gi
Ci
δi

MFD ?



Traffic dynamics for an urban corridor

Intersections becomes correlatedA new phenomenon can be  
observed : spillbacks



Analytical Method (1) – Cuts for a corridor

t

x

hy
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rli
nk

Flow

Density or accumulation

(Daganzo and Geroliminis, 2008)

Copy

Copy

Moving observer (mean speed V)
V

Minimum overtaking flow R(V)
R(V)

Cut: Q=minV(KV+R(V))

V

R(V)

MFD



Calculating R(V) with VT

t

x

Time window Tj(Vk)

B

A

Vku

To minimize costs, the observer has to maximize the time spent on red 
phases – Shortcuts theory (Daganzo and Menendez, 2005)
Internal subpaths with v<u may be replaced at same costs.

A graph can simply be constructed to explore all the possible paths



Analytical Method (2) - The sufficient graph

The cost R(V) for different V can be calculated using a sufficient graph defined 
by three kinds of edges:

• edge (a): red phase (cost 0)
• edge (b): green phase (cost Qmax)
• edge (c): path with speed u or -w that starts at the end of red phases (cost 0 or 
wκ)

A

Vj>0

B

(c)

t

x

edge (a) edge (b) edge (c)

Vj

Cut

NFD

Rj

(a)

K (or N)

Q
Moving observer path

Vj>0

Vj<0

ur
ba

n 
co

rri
do

r

green phase red phase

(b)

t

x

link i

(Leclercq and Geroliminis, 2013)

The estimation is tight only if 
the network is homegenously 

loaded



Influence of the time lag between signals
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APPLICATIONS TO SCALING-UP 
PROBLEMS (2)

22

Capacity drop at freeway merges



Hypothesis

• Network:
– The main road has only one lane
– The inserting flow is equal to q0
– LWR model and triangular fundamental diagram

(free-flow speed u wave speed w and jam density κ)
• Insertions:

– Time between two insertions: H(h0=1/q0, sH)
– Inserting positions are uniformly distributed between 0 and L
– Vehicles insert at speed v0 with an acceleration a and a jam 

density κ
– Inserting vehicles behave as moving bottlenecks on target lane
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Case 1: L=0 and sH>0

24

t

x

t

x

tt

x

ti ti+1

hi

tt

x

ti ti+1

τ(hi)

hi

A B
C

w

t

C N N h ni i
i

n

i
i

n

! �" # � $�$
! !
� �1

1 1

/   with  

The effective capacity C is given by :



Simplest homogeneous case
(L=0, sH>0)

• Effective capacity

• Law of large numbers

• Second order Taylor approximation
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Case 2: L>0 and sH>0 – no interactions
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Resulting analytical curves
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Sensitivity analysis

50 100 150 200 250 300

0.2

0.3

0.4

0.5
(a)

L [m]
C 

[v
eh

/s
]

50 100 150 200 250 300

0.2

0.3

0.4

0.5
(b)

LDLC [m]

C 
[v

eh
/s

]

0.5 1 1.5

0.2

0.3

0.4

0.5
(c)

αl

C 
[v

eh
/s

]

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5
(d)

ac [m/s2]

C 
[v

eh
/s

]

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5
(e)

at [m/s2]

C 
[v

eh
/s

]
1 2 3 4 5

0.2

0.3

0.4

0.5
(f)

τ [s]

C 
[v

eh
/s

]

0 0.5 1

0.2

0.3

0.4

0.5
(g)

p [%]

C 
[v

eh
/s

]

Inserting length L

50 100 150 200 250 300

0.2

0.3

0.4

0.5
(a)

L [m]

C 
[v

eh
/s

]

50 100 150 200 250 300

0.2

0.3

0.4

0.5
(b)

LDLC [m]

C 
[v

eh
/s

]

0.5 1 1.5

0.2

0.3

0.4

0.5
(c)

αl

C 
[v

eh
/s

]

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5
(d)

ac [m/s2]

C 
[v

eh
/s

]

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5
(e)

at [m/s2]

C 
[v

eh
/s

]

1 2 3 4 5

0.2

0.3

0.4

0.5
(f)

τ [s]

C 
[v

eh
/s

]

0 0.5 1

0.2

0.3

0.4

0.5
(g)

p [%]

C 
[v

eh
/s

]

Acceleration a



Extended framework

• Refined description of traffic dynamics (interactions 
between waves and voids)
(Leclercq, Knoop et al, part C, in press)

• Heterogeneous vehicle characteristics
(Leclercq et al, part C, in press)

• Multilane on freeways
(Leclercq et al, TRB2016)
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Experimental site (M6 – England)
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Extended sketch of the model
studied area
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Experimental results
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Conclusion

• Variational theory is a powerful to determine mean traffic 
states from a microscopic description of the physical 
mechanisms

• Variational theory is by nature an integrating operator

• A real challenge is to operate micro to macro transformations 
for transitional phases

• Consistent integration is very important for hierarchical 
modeling and to adress large scale problems
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Are you interested in collaborating on an 
very exiting project ?......
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Variational theory (VT) in Eulerian –
General basis

q =Q(k)  ⇔   ∂t k =Q −∂x k( )HJ Equation:

t

y’(t)

tO(Γ) tP

Γ
O(Γ)

Px Ψ

NP = minΓ∈DP

NO Γ( ) + Δ Γ( )( )
Δ Γ( ) = r(y '(t),k)dt

tO Γ( )

tP∫
General expression for the solutions:

NP = minΓ∈DP

NO Γ( ) + Δ ' Γ( )( )
Δ ' Γ( ) = R(y '(t))dt

tO Γ( )

tP∫

Key VT result using
the Legendre’s transformation

VT is really useful with PWL FD
(and especially triangular one)



VT in Eulerian – The Highway Problem
Li

nk
x

t

N(x,t)

u

-w

N(xu,t-(x-xu)/u)

+	0

N(xd,t-(xd-x)/w)

+	κ(xd-x)

   

N (x,t) = min N xu ,t −
(x − xu )

u
⎛
⎝⎜

⎞
⎠⎟

free− flow
  

, N xd ,t −
(xd − x)

w
⎛
⎝⎜

⎞
⎠⎟
+κ (xd − x)

congestion
  
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⎢
⎢
⎢
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⎥
⎥
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Newell’s model (1993) !!!

Triangular FD


