ElHzürich

Avoiding walls - what distance do pedestrians keep from walls and obstacles?

Ernst Bosina, Mark Meeder, Beda Büchel, Ulrich Weidmann

Motivation

- Pedestrians walking in corridors maintain a clearance from walls and obstacles.
- These separation distances determine the effective width of corridors utilized by pedestrians. This effective width is used in modeling aggregated pedestrian flows.
- Accurate literature on these distances is scarce.

ㅌHzürich

Pedestrian fundamental diagram

Effective width of corridors

- Some parts have to be subtracted. Lost width because of "boundary effects".

Literature on separation distances

- Values found in literature are often based on estimations and assumptions. Empirical data is lacking.
- For example for concrete walls:

15	Pauls (1987)
25	Weidmann (1993)
$30-45$	Crow (1998)
40	Van Soeren (1996)
45	De Neufville \& Grillot (1982)
50	HBS (2001)

Literature on separation distances

- Habicht and Braaksma (1984) measured the wall clearance distance using overhead video cameras:

TABLE 1.-Effective Width Reduction Due to Walls (Ref. 8)

Type of wall	Level of (1)	Effective width reduction, in inches (centimeters)	Data base number of pedestrians (2)
Concrete	A	$7.91(20.1)$	855
Metal lattice mesh	A	$6.48(16.5)$	855
Metal lattice mesh	B	$5.51(14.0)$	290
Metal lattice mesh	C	$6.02(15: 3)$	228

Habicht and Braaksma (1984)

Many unanswered questions...

- Does the separation distance indeed exist? Can it be measured? Is it constant under equal circumstances?
- Do pedestrians keep a larger distance to walls than to others?
- Does pedestrian behavior around obstacles compare to the behavior near walls?

Ultrasonic sensor measurements

- Measurement of wall clearance distance.
- Ultrasonic distance sensor mounted at 95 cm height
- Perpendicular distance measured as a single scalar value. No geometric information.
- Measurement accuracy: $\pm 1 \mathrm{~cm}$
- Two locations:
- Pedestrians move through a 133 cm wide bottle neck.
- Pedestrians walking along a smooth concrete wall on a ramp.

EHzürich

Bottleneck measurements (133 cm width)

Gllzürich

Wall distance measurements

캐zürich

Ultrasonic sensor data

ㅂHzürich

Results: bottleneck

Institute for Transport Planning and Systems

EHzürich

Results: smooth concrete wall

Results: bottleneck

Laser scanner measurements

- Movement of pedestrians around obstacles.
- 180° FOV Laser scanner mounted in front of obstacles at 95 cm height.

EHzürich

Laser scanner measurements

EHzürich

Results (1)

ㅌHzürich

Results (2)

In conclusion

- Pedestrian wall clearance distance can be reliably measured.
- Data seem to suggest the effective width is dependent on the pedestrian density.
- Ultrasonic transducers present a cheap and quick method to count pedestrians and measure certain aspects of pedestrian flows.

AlHzürich

Thanks for your attention!

日HIzürich

Wall distance: cumulative distribution

EHzürich

Laser scanner measurements

$\square \square \sqrt{\square}$ Institut für Verkehrsplanung und Transportsysteme

Ernst Bosina, Mark Meeder, Beda Büchel, Ulrich Weidmann | 10/29/2015 |

ㅋHzürich

Distance in the 90° and -90° plane

