

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Granularity of pre-movement time distribution in crowd evacuation simulations

Jakub Porzycki, Jarosław Wąs, Robert Lubaś

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Applied Computer Science

Traffic and Granullar Flow 2015 conference, 28 - 30 October 2015, Delft, Netherlands

Agenda

- What are the current requirements for models ?
- What we obsevre ?
- Does it affect evacuation/egress process ?
- Under what conditions it is imporatant?
- Conclusions and future work

Pre-movement time - requirements

MSC.1/Circ.1238 - Guidelines for evacuation analysis for new and existing passenger ships

 Ten persons in a room of size 8 m by 5 m with a 1 m exit located centrally on the 5 m wall. Impose response times as follows uniformly distributed in the range between 10 s and 100 s. Verify that each occupant starts moving at the appropriate time.

NIST Technical Note 1822 The Process of Verification and Validation of Building Fire Evacuation Models

- Ten persons are randomly located in the room. (...). Impose a pre-defined distribution (e.g. uniform, normal, log-normal, etc.) of pre-evacuation times in accordance with the input distributions provided within the evacuation model. (...)
- Verify that each occupant starts moving at the appropriate time and that the responses of the population fall within the specified range.

Normal conditions egrees of Wisla Kraków stadium – stage 1

Normal conditions egrees of Wisla Kraków stadium – stage 2

Normal conditions egrees of Wisla Kraków stadium – stage 3

www.agh.edu.pl

Differences in spatial distribution of pre-movement times between models and real cases

The model

Short pre-movement time

The reality

Long pre-movement time

Differences in spatial distribution of pre-movement times between models and real cases

- The same distribution.
- Diffeent spatial relations between pedestrians with similar premovement time.

Influence of spatial pre-movement distribution on evacuation results

Does it matter ?

Under what conditions the spatial distributions of pre-movemnt time affect the evacuation process?

Trial evacuation – flow on staircase

flow is calculated as the number of evacuated pedestrians in consecutive 5 sec. time windows

Influence of spatial pre-movement distribution on evacuation process

Significant influence

- Long avarage pre-movement time.
- Groups of occupants located in different rooms. (can not see each other).
- Existence of natural leaders.
- Occupants are unprepared for evacuation.

Unannounced evacuation of multifloor buildings, offices, schools, academic buildings, (large open areas?).

Complex simulation scenarios.

No significant influence

- Short avarage pre-movement time.
- Occupants are in the same room (can see each other) or in a lot of small rooms.
- Lack of natural leaders.
- Occupants are well prepared for evacuation.

Announced test evacuations, most of crowd dynamics experiments, (hotels evacuation ?), (stadiums?), small and medium open areas.

Simple simulation scenarios

www.agh.edu.pl

Conclusions

- Currently, the only requirements to crowd dynamics models is that pre-movement time should fall in given distribution.
- Pedestrians pre-movement time is influenced by the existence of groups.
- In some kinds of situations this influence is higher than in others, and can significatnly change the pedestrians flow.
- There is a certain set of circumstances that increase the influence.
- In complex scenario it is hard to define the real distribution of premovement time.

Future work

- Run simulations for different scenario to measure quantitative influence of pre-movement time granularity.
- Determine the extended set of scenario where the influence is strong.
- Try to propose new requirements for models in terms of spatial distribution of pre-movement time.

"SIS - Student Invigilation System" – invitation to cooperation ?

- Two cameras.
- Approximately 6 months of students groups entering and leaving the lecture hall.
- Automatic recording during lecture hours.

