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Context
Stop-and-go wave and jam avoidance models

Stop-and-go waves in road traffic flow

Observed in real flows

and laboratory conditions

Self-organized phenomena explained by the
reaction time of the drivers

Delayed or relaxed car-following models

Source 5

→ Development of jam avoidance models to suppress stop-and-go phenomena

5Y Sugiyama et al. New J Phys 10:033001 (2008)
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Summary

We investigate the stability of homogeneous solutions for linear jam avoidance
car-following models based on optimal velocity (OV) function

→ Simulation results of a jam

→ Calculus of Lyapunov exponents

Among extended OV models, we observe that autonomous ones (one neighbour in
interaction) including speed difference term behave as collective approaches with
large number of predecessors taken into account

→ Connection between the vehicles (to implement collective models) may not be
necessary to suppress efficiently jamming formation
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Notations

Space
xn xn+1 xn+2

∆xn = xn+1 − xn

n n + 1 n + 2

Notations xn is the position and ∆xn is the spacing of the vehicle n
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Jam avoidance models

Car-following models having stable homogeneous solutions6

ẍn(t) = F
(
∆xn(t), ẋn(t),∆ẋn(t)

)
(2nd order model)

Models necessarily based on distance spacings ∆xn = xn+1 − xn

Speed difference terms ∆ẋn = ẋn+1 − ẋn used to improve the stability

Examples : Optimal velocity model (OVM); Full velocity difference model

(FVDM); Intelligent driver model (IDM). . .

6∆xn(t) = d and ẋn(t) = v for all n and t with F (d, v, 0) = 0
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Stability analysis

Stable : Convergence to homogeneous solution for any initial configuration7

(i.e. no stop-and-go)

Locally stable (LS) : Stability of a vehicle following a leader with constant speed

LS with no oscillation (LSNO) : Non oscillating convergence (over-damped)

Globally stable (GS) : Stability of a line of vehicles (infinite or periodic)

Jam avoidance model : LSNO and GS8

→ Collision-free convergence to homogeneous solutions for any initial condition

7Linearly stable: Convergence for initial conditions close to homogeneous ones (according to 2nd derivative)
Here we manipulate linear models and : Linearly table⇔ Stable

8Remark : Oppositely, a realistic (i.e. collision-free) jam model should be LSNO and non-GS, with long
wavelength (see M Treiber and A Kesting Traffic flow dynamics Chap 15 Springer 2013)
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Optimal velocity model (OVM)

Relaxed road traffic flow model based on the spacing9

ẍn(t) = 1
T

(
V (∆xn(t))− ẋn(t)

)
(1)

with OV function V (·) and relaxation time T > 0

Homogeneous solution linearly LSNO and GS if T < 1/(4V ′)

→ Jam avoidance model for small relaxation times

9M Bando et al. Phys Rev E 51(2):1035 (1995)
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Full velocity difference model (FVDM)

Introduction of the speed difference term10

ẍn(t) = 1
T1

(
V (∆xn(t))− ẋn(t)

)
+ 1

T2
∆ẋn(t) (2)

with speed difference ∆ẋn(t) = ẋn+1(t)− ẋn(t) and relaxation times T1,T2 > 0

Linear LSNO and GS if (resp.)11 V ′ < 1
4T1

(
1 + T1

T2

)2
and V ′ < 1

2T1
+ 1

T2

→ Stabilization with speed difference (i.e. as T2 → 0)

10R Jiang et al. Phys Rev E 64:017101 (2001), see also W. Helly in ISTTT pp. 207 Elsevier (1959)
11These conditions are T < 1/V ′ if T1 = T2 = T
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ẍn(t) = 1
T1

(
V (∆xn(t))− ẋn(t)
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Jam avoidance models

Autonomous models solely based on speed and spacing (OVM) and possibly
predecessor speed (FVDM)

Collective models depending on spacings and speed of several vehicles
in the neighbourhood (connected vehicles)

n n+1 n+2
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Collective jam avoidance models

Interaction with K ≥ 1 vehicles in front (with ∆xn,k = xn+k − xn) :

ẍn(t) =
∑K

k=1 F̃k

(
∆xn,k (t), ẋn(t),∆ẋn,k (t)

)
(3)

Multi-anticipative model12 (MAM) based on spacing distance

F̃k = αk
1
T

(
V
(

∆xn,k
k

)
− ẋn

)
(4)

Velocity difference multi-anticipative model (VDMAM) including speed
difference

F̃k = αk

[
1
T1

(
V
(

∆xn,k
k

)
− ẋn

)
+ 1

T2
∆ẋn,k

]
(5)

12H Lenz et al. Eur Phys J B 7:331 (1999)
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Setting of interaction coefficients αk

Constraint :
∑

k αk = 1

→ OVM (and FVDM) for K = 1

→ Weighted mean of acceleration rates with K predecessors

→ Maximization13 of the stability for uniform interaction:

αk = 1/K (6)

13H Lenz et al. Eur Phys J B 7:331 (1999), see also K Hasebe et al. Phys Rev E 68:026102 (2003); M Chraibi
et al. in Proc ATT (2014)
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Linear jam avoidance models – Summary

Name Acronym Type Parameter

Optimal velocity OVM Autonomous V ′, T

Full velocity difference FVDM Autonomous V ′, T1, T2

Multi-anticipative MAM Collective V ′, T , K

Velocity difference multi-anticipative VDMAM Collective V ′, T1, T2, K

FVDM ⇔ OVM and VDMAM ⇔ MAM if T2→∞
MAM ⇔ OVM and VDMAM ⇔ FVDM if K = 1
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Overview

Part 1. Linear jam avoidance models

Part 2. Simulation results

Part 3. Lyapunov exponents

Part 4. Conclusion
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Simulation settings

Simulation of N = 20 vehicles from jam initial condition on 405m line with periodic
boundaries

Simulation with explicit Euler scheme with time step 0.001 s

Parameter settings (fix) : V ′ = 1 s−1 ; T = T1 = 0.25 s

(tested) : T2 = 2, 0.5, 0.1 s ; K = 2, 4, 10 veh

Speed of convergence of the system to the uniform solution quantifies by spacing
standard deviation (Lyapunov function)

σ∆x =
√

1
N

∑N
n=1 (∆xn −∆x̄n)2 with ∆x̄n = 1

N

∑N
n=1 ∆xn (7)
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Trajectories
OVM and FVDM
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Spacing standard deviation
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Trajectories
OVM and MAM
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Trajectories
FVDM and VDMAM (T2 = 0.1)
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Spacing standard deviation
FVDM and VDMAM (T2 = 0.1)
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Lyapunov exponents

Solution of linear systems are linear combinations (LC) of exponentials

xn(t) = LC
(

exp(λl t), t exp(λl t)
)

(8)

with (λl ) the Lyapunov exponents (in [t−1])

Here λl = 1
2

∑K
k=0 βk ι

k
l ±

1
2

[ (∑K
k=0 βk ι

k
l

)2
− 4

∑K
k=1 αk (1− ιkl )

]1/2

with ιl = exp(2iπl/N), αk = 1
kT1

V ′

K
, β0 = − 1

T1
− 1

T2
and βk = − 1

KT2
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Lyapunov exponents
FDVM : Double mode pattern as T2→ 0
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Lyapunov exponents
MAM : Double mode pattern as K→∞
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Lyapunov exponents
VDMAM : Remains double mode as K→∞
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Conclusion

Lyapunov exponents and simulation of the jam experience shown that

Comparable behaviors of ‘more stable’ multi-anticipative (collective) and full
velocity difference (autonomous) models as (resp.) K→∞ and T2→ 0 (cf.14)

Few improvement of the stability with multi-anticipation if speed difference is
taken into account

→ To be confirmed. . . (impacts of system size, density, initial condition;
interpretation of the Lyapunov exponents)

→ Non-linear models are not considered

14K Hasebe et al. Equivalence response among extended optimal velocity models PRE 69:017103 (2004)

A Tordeux and S Lassarre Jam avoidance with autonomous systems Conclusion Slide 31



M
em

b
er

of
th
e
H
el
m
h
ol
tz
-A

ss
o
ci
at
io
n

Conclusion

Lyapunov exponents and simulation of the jam experience shown that

Comparable behaviors of ‘more stable’ multi-anticipative (collective) and full
velocity difference (autonomous) models as (resp.) K→∞ and T2→ 0 (cf.14)

Few improvement of the stability with multi-anticipation if speed difference is
taken into account

→ To be confirmed. . . (impacts of system size, density, initial condition;
interpretation of the Lyapunov exponents)

→ Non-linear models are not considered

14K Hasebe et al. Equivalence response among extended optimal velocity models PRE 69:017103 (2004)

A Tordeux and S Lassarre Jam avoidance with autonomous systems Conclusion Slide 31



M
em

b
er

of
th
e
H
el
m
h
ol
tz
-A

ss
o
ci
at
io
n

Outlook

Estimation of the speed difference by using spacing time-differences
(delayed feedback model)

ẍn(t) = 1
T1

(
V (∆xn(t))− ẋn(t)

)
+ 1

T2

1
δ

(
∆xn(t)−∆xn(t − δ)

)
(9)

with time interval δ such that 0 < δ ≤ T2

→ Feasible model only based on spacing sequence (vehicles not connected)

→ LSNO and GS expected to be the same as FVDM (at least at the limit δ → 0)
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