Network-wide mesoscopic traffic state estimation based on a variational formulation of the LWR model and using both Lagrangian and Eulerian observations

• Yufei Yuan

JDelft

- Aurélien Duret
- Hans van Lint

Date: 28-10-2015 Location: Den Haag - Nootdorp

1

Contents presentation

- Introduction
- Formulation
- Methodology
- Follow-up...

- Introduction & background for traffic management
- L-S LWR formulation
- Data assimilation methodology
- On-going research experiments, expected results

Introduction, control cycle current

- ▲A29 A15 **====⊙**► [RING] Traffic system **4Ô≪≪≪⊙⇒⇒⇒Ô**► A20 î Actuators Sensors Control Estimation Optimize with respect to goals Prediction IFSTTAR
- Introduction
- Formulation •
- Methodology •
- Follow-up...

ŤUDelft

Introduction, control cycle future

•

•

- Formulation
- Methodology
- Follow-up...

)elft

Estimation of state: combine real-time measurements and simulation model in order to represent current traffic situation.

Also known as data assimilation.

Data assimilation framework, data

- Introduction
- Formulation
- Methodology
- Follow-up...

ŤUDelft

Fixed location (infrastructure) ...

e.g., Loop data have considerable noise and bias

FSTTAR

Along with the traffic (vehicles) ...

e.g., Probe vehicle data provide x, t, v.

Data assimilation framework, model

- Introduction
- Formulation
- Methodology
- Follow-up...

As main traffic flow model type, **traffic flow models at macroscopic or mesoscopic levels** are chosen:

- Describes traffic at a more aggregated level
- Views traffic as a fluid
- Fast computation
- Discretization: divide network into cells

Foreword – traffic flow model

- Introduction
- Formulation
- Methodology
- Follow-up...

Eulerian formulation: distance and time (x, t) - prevailing

Lagrangian-time coordinates: vehicle no - time (n, t)

□ Lagrangian-space coordinates: vehicle no - distance (n, x) - T coord.

9

Mesoscopic: Lagrangian-Space LWR formulation

- Introduction
- Formulation
- Methodology
- Follow-up...

Conservation law (LWR) in Lagrangian-space coordinates

$$\partial_x h - \partial_N (1/V(h)) = 0$$

Variational principle (considering travel time flux)

Daganzo 2005 – Variational theory in Eulerian system Leclercq et al. 2007 – Variational theory in Lagrangian system Laval and Leclercq (2013) – Variational theory in T system

$$\partial_x T = \frac{1}{V(\partial_n T)}$$

Mesoscopic: Lagrangian-Space LWR formulation

- Introduction
- Formulation
- Methodology
- Follow-up...

The passage time *T* of the vehicle *n* at the position *x* follows:

$$T(n,x) = max\left(T(n,x-\Delta x) + \frac{\Delta x}{\nu_m}, T(n-\Delta n,x+\frac{\Delta n}{k_x}) + \frac{\Delta n}{w.k_x}\right)$$

Refer to: Laval and Leclercq (2013)

7

Mesoscopic: L-S LWR numerical solution (graphical)

- Introduction
- Formulation
- Methodology
- Follow-up...

Mesoscopic grid

FSTTAR

Advantages of the L-S LWR formulation

Introduction

ullet

- Formulation
- Methodology
- Follow-up...

- Variational formulation simple to implement, numerical accurate
- Mesoscopic scale individual vehicle tracking with macroscopic behavioural rules
- Easy to address spatial discontinuities (merges, diverges, lane-drops) & computational efficiency (#node, #veh.)
- Convenient for state estimation

How to incorporate Lagrangian data?

• Duret.et.al.(2016)* have proposed a data assimilation framework with loop data (x fixed) *Duret.et.al.(2016). Data assimilation based on a

* Duret.et.al.(2016). Data assimilation based on a mesoscopic-LWR modeling framework and loop detector data : methodology and application on a large-scale network

• How about incorporating Lagrangian type data (n fixed)?

- Introduction
- Formulation
- Methodology
- Follow-up...

Delft

Data assimilation with probe data

- Introduction
- Formulation
- Methodology
- Follow-up...

- *Four steps in each sequence:*
- Estimation of local vehicle indexes of probe data
- Observation transformation (observation state)
- Global analysis & Data assimilation (background state + observation state => analysis state)
- Model update

Step 1: Estimation of local n indexes

- Introduction
- Formulation
- Methodology
- Follow-up...

Step 1: Estimation of local n indexes

- Introduction
- Formulation
- Methodology
- Follow-up...

ŤUDelft

Step 2: Observation transformation (o-state)

- Introduction
- Formulation
- Methodology
- Follow-up...

ŤUDelft

$$\mathcal{P}_w(n_p^a) = \{n_p^a + (x_{p,start}^o - x_{up}) \cdot k_x : n_p^a + (x_{p,end}^o - x_{up}) \cdot k_x\}$$
IFSTTAR

Step 2: Observation transformation (o-state)

- Introduction
- Formulation
- Methodology
- Follow-up...

Step 3: Global analysis (b+o => a state)

- Introduction
- Formulation
- Methodology
- Follow-up...

$$h_{S}^{b} = \frac{\max\left(T(n|n \in S, x_{up})\right) - \min\left(T(n|n \in S, x_{up})\right)}{Card(S)} = \frac{\Delta T_{S}}{Card(S)}$$

$$r_{S}^{b} = \begin{cases} 0, if \ T(n^{*}, x_{up}) - T(n^{*}, x_{up} - \Delta x) = \frac{\Delta x}{v_{m}} \\ 1, otherwise. \end{cases}$$

Determine analysis state (based on o-state and b-state) By data assimilation - e.g., Kalman filter, least square method...

$$h_S^a = h_S^b + W^h \cdot (h_S^o - h_S^b)$$
$$r^a = r^o = 1$$

Step 4: Model update – CFL condition

- Introduction
- Formulation
- Methodology
- Follow-up...

ŤUDelft

21

Step 4: Model update

 $\delta n = \Delta T_S \cdot |\frac{1}{h_S^a} - \frac{1}{h_S^b}|$

- Introduction
- Formulation
- Methodology
- Follow-up...

	$r^{b} = 0$	$r^{b} = 1$
$m^{0} - m^{0} - 1$	$h^a > h^b$ (1)	$h^a > h^b$ (3)
$T^{*} = T^{*} = 1$	$h^a \leq h^b$ (2)	$h^{a} \leq h^{b}$ (4)

(1) Vehicle delaying

(2) Contradiction

(3) Vehicle delaying \rightarrow similar to (1)

(4) Vehicle advancing

Step 4: Model update (1)

 $\delta n = \Delta T_S \cdot |\frac{1}{h_S^a} - \frac{1}{h_S^b}|$

- Introduction
- Formulation
- Methodology
- Follow-up...

Step 4: Model update (2)

 $\delta n = \Delta T_S \cdot |\frac{1}{h_S^a} - \frac{1}{h_S^b}|$

- Introduction
- Formulation
- Methodology
- Follow-up...

	$r^b = 0$	$r^{b} = 1$
$r^{a} - r^{o} - 1$	$h^a > h^b$ (1)	$h^a > h^b$ (3)
1 - 1 - 1	$h^{a} \leq h^{b}$ (2)	$h^{a} \leq h^{b}$ (4)

(2) Contradiction

 $r^a = 1, r^b = 0$ and $h^a \le h^b$

Step 4: Model update (3)

 $\delta n = \Delta T_S \cdot |\frac{1}{h_S^a} - \frac{1}{h_S^b}|$

- Introduction
- Formulation
- Methodology
- Follow-up...

Step 4: Model update (4)

 $\delta n = \Delta T_S \cdot |\frac{1}{h_S^a} - \frac{1}{h_S^b}|$

- Introduction
- Formulation
- Methodology
- Follow-up...

Comparison DA with Loop and FCD

- Introduction
- Formulation
- Methodology
- Follow-up....

Future validation: experimental studies

- Mesoscopic simulation platform: validation done with loop
- Addition with FCD data for validation
- 5 node case in a synthetic network, with both loop and FCD

FSTTAR

- Introduction
- Formulation
- Methodology
- Follow-up...

Delft

More to come....

- Introduction
- Formulation
- Methodology
- Follow-up...

Thank you for listening!

