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Motivation

Stop and go waves are prominent in
1. car traffic on highways
2. queueing of pedestrians
3. crowded pathways: Hajj 2006 (Helbing et al. (2007))
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Stop and Go waves

We want to understand why stop and go waves occur.
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Stop and Go waves

Figure: Three snapshots of positions in a crowded pathway.
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Stop and Go waves
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Figure: Three snapshots of speeds in a crowded pathway.
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Ring setting
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Ring setting

Figure: Positions of 20 pedestrians in the ring setting over time.
Stop-and-go waves are clearly visible.
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Gradient Navigation Model

Published by Dietrich and Köster (2014).
~Nµ is the navigation vector. Interaction with other pedestrians is
parametrized with repulsion parameter µ.

w ~Nµ

~x

Figure: Notation and setup. ~x ∈ R2, w ∈ R.

Motion model for one pedestrian
{

~̇x = w ~Nµ

ẇ = ‖~Nµ‖ − w
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Stop and Go waves

We want to understand why stop and go waves occur
in the given ring setting and in the given model.

Stop and go waves are periodic orbits of dynamical systems.
A Hopf bifurcation analysis can reveal if those orbits exist.
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Hopf bifurcation

Consider a dynamical system with parameter µ ∈ R and dynamic f :

ẋ = fµ(x), x ∈ Rn,

where (x0, µ0) is a steady state so that fµ0(x0) = 0. We follow
(Guckenheimer and Holmes, 1986, p.150ff) to define a Hopf
bifurcation.
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Hopf bifurcation

A Hopf bifurcation exists if the following conditions hold:
1. Non-hyperbolicity: Dx fµ0(x0) has exactly two distinct,

conjugate, complex eigenvalues with zero real part.
2. Transversality: R(λ(µ))

dµ (µ0) 6= 0, the eigenvalues cross the
imaginary axis with non-zero speed.

3. Genericity: the first Lyapunov coefficient must not be zero.

R

I
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Hopf bifurcation

Claim
The pedestrian model has a Hopf bifurcation in the ring setting.
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Hopf bifurcation

Claim
The pedestrian model has a Hopf bifurcation in the ring setting.

Idea of the proof (Disselnkötter (2013)):
1. restrict to 1D ring setting
2. fix one pedestrian and consider system of distances
3. linearize the system at the steady state (equal spacing)
4. compute eigenvalues λ(µ) of the linear system
5. show Hopf conditions

5.1 Non-hyperbolicity condition
5.2 Transversality condition
5.3 Genericity condition
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Results with few pedestrians

Analytical results
Periodic solutions, and hence stop and go waves, seem to be
generated by intrinsic properties of the model.

Numerical results
What happens if there are only a few pedestrians in the ring?
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Results with few pedestrians

Figure: Positions of 20, 10, and 9 pedestrians over time.
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Results with few pedestrians
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Conclusion and discussion

What have we seen?
A two-dimensional model produces stop and go waves if confined
to a ring setting. With few pedestrians, no stop and go waves
seem to occur.
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Conclusion and discussion

Implications and future work

1. Intrinsic properties of models can generate stop and go waves.
Important:

I Only consider the person in front
I No overlaps
I A minimum number of pedestrians

2. Presented techniques can be used to analyse other models.
3. A 2D setting might need a more complicated analysis.
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Questions?

Image created by Benedikt Zönnchen

VADERE soon to be open source!
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