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Motivation

Simulation of the movement and the behaviour of pedestrians and
crowds becomes more and more important.

To have predictive power, simulations require
realistic locomotion models.
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Motivation

A reliable pedestrian motion model must be
I calibrated to measured data and
I validated against observations.

Characteristics of pedestrian movement are for example
I flow through bottlenecks,
I fundamental diagrams,
I speed distributions,
I stride length, and
I stepping frequency.
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Motivation

The correlations between stride length, frequency, density, and
speed have been measured in several experiments.

They can only be reproduced by a pedestrian locomotion model
that captures stepping behaviour. One such locomotion model
with stepping behaviour is the Optimal Steps Model (OSM).

Can we reproduce the dependencies as measured in the
experiments?
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Stride length

Observations of free flow walking show that the velocity linearly
corresponds to the stride length (Weidmann, 1992; Seitz and
Köster, 2012; Seitz et al., 2014).

This linear correlation
is also observed in
walking-in-line
experiments
(Seyfried et al., 2005;
Jezbera et al., 2010;
Chattaraj et al., 2009;
Jelić et al., 2012b).
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Stride duration

Measurements of step duration (or stepping frequency)
(Weidmann, 1992; Hoogendoorn and Daamen, 2005; Jelić et al.,
2012b) show two main aspects.
1. Slow walking speeds:

Step duration decreases with increasing speed.
2. Medium/high walking speeds:

Step duration remains constant/decreases slowly.

These observations were made in different situations:
I free walking (Weidmann, 1992)
I bottleneck (Hoogendoorn and Daamen, 2005)
I walking-in-line (Jelić et al., 2012b)
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Optimal Steps Model

Optimal Steps Model

29/10/15 TGF 2015 10/22



General Overview

I The Optimal Steps Model (OSM) is a pedestrian locomotion
model.

I The model is inspired by the stepwise movement of
pedestrians.

I First publication: Seitz and Köster (2012)
I Version used for this study: von Sivers and Köster (2015)
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Stepping forward

I A pedestrian in the OSM has a given free flow velocity vff .
I The maximum stride length lff is calculated by

lff = α + β · vff .
I The minimum stride length of a pedestrian in the OSM is

the residual step length α.
I Every lff

vff seconds, a pedestrian can make a step.
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Navigation

I In the OSM, pedestrians want to avoid other pedestrians
and obstacles and to take the shortest way to the target.

I The superposition of the functions for these behaviours
constitutes the utility function.

I Pedestrians optimise the utility of their next step, that is, they
choose the position on their step disk with the best value.

Figure: Finding the new position.
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Results

Results
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Scenario

We focus on the experiment from Jelić et al. (2012a,b).
Different numbers of pedestrians (from 8 to 28) walk on two
circles with radii 2.4m and 4.1m.

VADERE
Crowd Simulation

VADERE
Crowd Simulation

Figure: Simulation setup for the ring experiment from Jelić et al. (2012a).
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Calibration
Calibration of the OSM’s social distance parameters to the
fundamental diagram from Jelić et al. (2012a).
lff = 0.065 + 0.724 · vff and α = 0.065
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Figure: Simulation output of the OSM.
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Stride lengths
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Figure: The correlation of the stride lengths and the velocities in the
OSM (reference function from the ring experiment (Jelić et al., 2012b)).
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Stride durations
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Figure: The correlation of the stride durations and the velocities in the
OSM (reference data from the ring experiment (Jelić et al., 2012b) and
the function from (Hoogendoorn and Daamen, 2005)).
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Conclusion and future work

Conclusion:
With the OSM, one can reproduce

I the correlation of the stride length and the velocity and
I the correlation of the stride duration and the velocity.

Future work:
I To further validate the OSM, reproduce measured correlations

from other experiments that focus on stepping.
I Find out why the slopes of the stride length functions vary

that much.
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Questions?

Image created by Benedikt Zönnchen

VADERE soon to be open source!
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Settings and parameters

Parameters for the OSM:

Param. Description Value
δint intimate distance 0.45 m
δpers personal distance 1.20 m
δo distance kept from obstacles 0.8 m
µp strength of ‘pedestrian avoidance’ 55.0
ap moderation between intimate and personal

space
0.8

bp intensity of intimate space 1
cp intensity of personal space 3
µo strength of ‘obstacle avoidance’ 6.0
vff mean free-flow speed 1.4 m

s
σff variance of the free-flow speed 0.2 m

s
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Mathematical description

Mathematical description of the pedestrian avoidance in the OSM:

pj
1(x) := µp · exp

(
4

(dj (x)/(δper+rp))2−1

)
pj
2(x) := p1 + µp

ap · exp
(

4
(dj (x)/(δint+rp))2·bp−1

)
pj
3(x) := p2 + 1000 · exp

(
1

(dj (x)/rp)2·cp−1

) (1)

P j
p(x) :=


pj
3(x) dj(x) < 2rp

pj
2(x) 2rp ≤ dj(x) < δint + rp

pj
1(x) δint + rp ≤ dj(x) < δper + rp

0 else

(2)
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Mathematical description

Mathematical description of the obstacle avoidance in the OSM:

ok1 (x) := µo · exp
(

2
(dk(x)/(δo))2−1

)
ok2 (x) := o1 + 100000 · exp

(
1

(dk(x)/rp)2−1

) (3)

Pk
o (x) :=


ok2 (x) dk(x) < rp
ok1 (x) rp ≤ dk(x) < δ
0 else

(4)
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Mathematical description

Mathematical description of the target orientation (solution of the
eikonal equation) in the OSM:

F (x)‖∇Φ(x)‖ = 1 for x ∈ Ω (5)

with boundary condition

Φ(x) = 0 for x ∈ Γ (6)
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Mathematical description

Mathematical description of the utility optimisation in the OSM:

Navigation field Pi(x) for any point x ∈ Ω:

Pi(x) = Pt(x) +
n∑

j=1,j 6=i
P j
p(x) + max

k=1...m
Pk
o (x) (7)

Optimisation for the next step:

min
x∈Ω

Pi(x)

s.t. di(x)− lff ≤ 0
di(x)− α ≥ 0

(8)
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