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Fractals

Recapitulation: Fractals

Exact, statistical or qualitative self similiar behavior over all or many scales

A fractal (fractional) dimension greater than their topological dimension

Multifractals: Spectrum of different fractal dimensions
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Fractal Time Series

Time series can not only describe systems with fractal behavoir (i.e complex systems, strange

attractors), but be fractal by itself

Fractal behavoir can be monofractal or multifractal

Examples: path of brownian motion, time series of fully developed turbulence, stock market time

series like S&P500, heartbeat time series
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Traffic Time Series

Typical time series of traffic flow measured by loop detectors

Typical variables: flow, velocity, and density over a time interval

Different classes of observed vehicles (passenger, motorcycles trucks/transports, public transport)

Flow Velocity Density
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Traffic Time Series

Exhibit complex behavior, different “phases” (syncronized traffic flow, jamming)

Nonstationary, trends over many scales

Resemble time series of fractal or multifractal systems like random walks or time series from

hydrodynamics

Some velocity time series have been shown to exhibit multifractal behavior

velocity time series vs random walk
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Multifractal analysis of time series

A framework for multifractal analysis of time series...

1. Divide the timeseries into intervals over a range of scales

2. Calculate roughness grain exponents α for each interval

3. For each scale, consider scaling functions τ

4. Normalize the time series

5. Repeat 1-3 with the normalized series

6. Calculate the Legendre Transform τ∗ for each α and τ at different scales and analyse the graphs

of τ∗(α)
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Dyadic Scales

As an alternative of just varying the interval size, we analyse the time series at dyadic scales:

For an integer n, we divide the series into 2n nonoverlapping, equal sized intervals.

The length of each interval is 2−n

Each dyadic interval is contained in exactly one dyadic interval of twice the size and spanned by

two intervals half the size

The set of all intervals for given n: ξn
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Multifractal Detrended Fluctuation Analysis

Calculating grain exponents α with MDFA

1. ”Profile” the time series:

Xp(i) =
N∑

i=1

Xi − ⟨X⟩

for a time series Xi with length N

2. Calculate the Coefficients

D(I(k)) =
(

1
#In(k)

∑
χ∈In(k)

(
Xp(χ)− Pdp

i

)p
)1/p

where I is a dyadic interval, #I is the cardinality of the points in I, Pdp
i is a polynomial fit of degree

dp fitting the X ∈ I

Physics of Transport and Traffic 30.10.2015 TGF’15



Multifractal Detrended Fluctuation Analysis

Calculating grain exponents α with MDFA

3. αn,k is the exponent such that Dx shows power law behavior to the interval size:

αn,k =
log(Dx (In(k))

log(2−n)
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Legendre Spectrum

Calculate the Legendre Spectrum:

τ∗X ,n(α) = inf
q∈R

{αq − tx,n(q)

with

tx,n(q) = −
1
n

log2

∑
I∈ξn

2−nqαX (I)

Calculate τ∗ for a range of q ∈ [−50, 50]
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Normalization

Due to method and choosen scaling with dyadic intervals, the grain exponents α drift with scale n. It is

necessary to normalize the signal.

First linearly regress with the following ansatz:

n
(
1 − τX ,n(1)

)
= A + nD

Find a factor C that zeros A for an arbitrary n0:

n0
(
1 − τX/C,n0

(1)
)
= n0D

Recalculate α and τ with the normalized time series X/C

D estimate for the most likely fractal dimension of X
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Legendre Spectrum

Analyse the multifractal spectrum τ∗(α) over α at different scales n

Example: Path of wiener process with 220 steps (theoretically expected α = 0.5)
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Analysing Traffic Time Series

Empirical and simulated traffic time series in comparison:

Detector data from the A3 motorway in germany north of cologne, middle lane

Simulation model:

- A multilane Nagel-Schreckenberg cellular automaton variety

- Tuned every minute with empirical data

- Simulating the freeway network of North-Rhine Westphalia (Germany)

Physics of Transport and Traffic 30.10.2015 TGF’15



Analysing Traffic Time Series - Motivation

Analyse and compare multifractal spectra of

Empirical and simulated traffic time series

Passenger and transport traffic time series

Traffic time series at different scales (around one day and one week)
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Results

Comparison of multifractal spectrum for velocity time series (empirical vs. simulated, 16384

datapoints)

Physics of Transport and Traffic 30.10.2015 TGF’15



Results

Comparison of multifractal spectrum for traffic flow time series (empirical vs. simulated, 16384

datapoints)
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Results

Comparison of multifractal spectrum for velocity time series (empirical vs. simulated, 2048

datapoints)
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Results

Comparison of multifractal spectrum for traffic flow time series (empirical vs. simulated, 2048

datapoints)

Physics of Transport and Traffic 30.10.2015 TGF’15



Results

Computing α, τ(α) and the likeliest fractal dimension estimator Dg for succeeding time series of

2048 empirical measurements

Dg,flow = 1.916, 1.931, 1.933, 1.927

Dg,vel = 1.829, 1.894, 1.834, 1.874
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Results

Computing α, τ(α) and the likeliest fractal dimension estimator Dg for succeeding time series of

2048 simulated data points

Dg,flow = 1.946, 1.936, 1.932, 1.933

Dg,vel = 1.851, 1.861, 1.754, 1.805
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Results

Comparing multifractal spectra of empirical passenger and transport traffic velocity time series
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Results

Comparing multifractal spectra of empirical passenger and transport traffic flow time series
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Conclusions

Both empirical and simulated time series show signatures of fractal and multifractal behavior

Estimated fractal dimensions of traffic time series about Dg = 1.8 − 1.9 (slightly larger than

Brownian Motion)

Simulated time series shows stronger multifractal behavior in velocity time series and weaker

multifractal behavior in traffic flow

Multifractal spectra show little difference over multiple intervals (about 1.5 days each)

Spectrum of transport velocity time series shows monofractal behavior and slightly larger fractal

dimension estimate

Multifractal spectrum of transport traffic flow similar to passenger traffic flow
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