

Modelling human interaction to improve traffic safety and vehicle automation

Gustav Markkula Chair in Applied Behaviour Modelling Human Factors & Safety Group Institute for Transport Studies, University of Leeds

2021-09-29, TU Delft TTS Lab Webinar

Markkula - TU Delft TTS Lab Webinar

Acknowledgments

interACT

European Commission

Bì

Engineering and Physical Sciences Research Council

 How to make AVs that can successfully coexist with humans (and improve human traffic safety at the same time)?
 → By developing high-fidelity models of human road user interaction

What kinds of models?

Conceptual, cognitive, and machine-learned models

AV deployment: two main risks

Human frustration

Human injury

subtleties of local interactions

near-crashes

crashes

Markkula - TU Delft TTS Lab Webinar

Human-human interaction failures in crashes

Markkula - TU Delft TTS Lab Webinar

Why high-fidelity models of human interactions for AVs?

To make...

- ... AVs drive like humans?
- ... online AV predictions about human behaviour
- ... agents for virtual environments, for simulated AV testing

(Waymo Safety Report 2020)

Machine-learned (data-driven) models

- Achieve realistic-looking routine traffic
- Challenges in relation to "main risks":
 - Human behaviour in (near-)crashes
 Very rare in any real-traffic dataset
 - Human behaviour in local interactions
 How do we know models are capturing the important subtleties?
- \rightarrow Complement with
 - conceptual models
 - cognitive models

Insight into how mechanisms generalise

Conceptual models

Cognitive models

Machine-learned models

Markkula - TU Delft TTS Lab Webinar

Conceptual models

- What is "interaction"?
- What behaviours do human road users exhibit in interactions?
- What factors shape these behaviours, and how?

• ...?

Cognitive models

Machine-learned models

Defining interaction

 Traffic conflict/safety perspectives
 Sociological perspectives

 Game-theoretic perspectives
 Communication/ linguistics perspectives

Collision avoidance, order of access, reciprocity, coordination, communication

(b)

(OP)

Merging paths Crossing path (MP) (CP) **Space-sharing conflict:** An observable situation from which it can be reasonably inferred that two or more road users are *intending to occupy the same region of space at the same time* in the near future.

head-on paths head-on paths (UHP) (CHP)

(Markkula et al., 2020, Theor Iss Erg Sci; <u>link</u>) **Interaction:** A situation where the behaviour of at least two road users can be interpreted as being influenced by a space-sharing conflict between the road users.

Human behaviour in interactions

HAV projecting lights/symbols to

Human behaviour in interactions

HAV projecting lights/symbols to

2021-09-29

UNIVERSITY OF LEEDS

How to...

- Model both routine and near-crash interactions?
- Leverage insights from cognitive (neuro-)science?
- Test/parameterise?

Conceptual models

Cognitive models

Machine-learned models

Framework for routine and near-crash driving

(Markkula, 2014, 2015; Markkula et al, 2018)

Explains behavioural (and neural) responses in routine + near-crash situations

Generalising to road user interactions

(Pekkanen et al., 2021, Comp Brain & Beh, <u>preprint link</u>)

Variable-drift diffusion model

Markkula - TU Delft TTS Lab Webinar

2021-09-29

Markkula - TU Delft TTS Lab Webinar

UNIVERSITY OF LEEDS

Predicting AV interaction efficiency

UNIVERSITY OF LEEDS

What model assumptions are needed to achieve what behavioural phenomena?

Conceptual models

- Do they generalise to nearcrash situations?
- Can we improve them using (insights from) cognitive models?
- Do the models behave like humans in the "important ways"?

...?

Cognitive models

Machine-learned models

CSP-LSTM prediction of highway driving

	Evaluation Metric	Prediction horizon (s)	CV	C-VGMM + VIM [6]	GAIL-GRU [13]	V-LSTM	S-LSTM	CS-LSTM	CS-LSTM(M
(USDOT FHWA, 2016,	RMSE (m)	1	0.73	0.66	0.69	0.68	0.65	0.61	0.62
		2	1.78	1.56	1.51	1.65	1.31	1.27	1.29
		3	3.13	2.75	2.55	2.91	2.16	2.09	2.13
		4	4.78	4.24	3.65	4.46	3.25	3.10	3.20
		5	6.68	5.99	4.71	6.27	4.55	4.37	4.52
		1	3.72	2.02	-	1.17	1.01	0.89	0.58
	2	2	5.37	3.63	-	2.85	2.49	2.43	2.14
	NLL	3	6.40	4.62	-	3.80	3.36	3.30	3.03
		4	7.16	5.35	-	4.48	4.01	3.97	3.68
		5	7.76	5.93	-	4.99	4.54	4.51	4.22

Kinematical lead/lag and order of access

Courtesy lane changes

Safe and acceptable AVs – and improved human traffic safety – requires complementary models of different types

Constrained scenarios Underlying mechanisms Conceptual models

Terminology/taxonomy Describing the behavioural phenomena

Cognitive models Machine-learned models

Unconstrained scenarios ML-behavioural science?

Thanks for listening!

gustav.markkula@leeds.ac.uk @markkula