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About me

* MSc in applied mathematics

* PhD on modeling human control behavior
* Virtual balancing tasks
* Car following, steering

* Previous postdoc in cognitive psychology
* Decision making

* Interplay between motor behavior and cognition

* Postdoc @ Cognitive Robotics (3mE) & AiTech

* Modeling & managing human-AV interactions
* Meaningful human control: how to?




Human-AV interaction

Are you going? Or should I go?

You go fir-S'I'.

What if I point a lot
and flail my arms around? \

This is confusing.

Wait, maybe you should go. ’

Let's just sit here
and reflect.




Human-AV interaction: existing approaches

Kooij, J. F. P. et al. “Context-Based Path Prediction for
Targets with Switching Dynamics.” International Journal of
Computer Vision 127, no. 3 (March 2019): 239-262.
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* Game-theoretic motion planning
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Sadigh, D. et al, “Planning for cars that coordinate with people: Leveraging effects on human actions for planning and
active information gathering over human internal state.” Autonomous Robots, 42(7), 1405-1426. (2018)




Limitations of current approaches

* Human models are chosen based on computational convenience

* Basic assumptions of these models are not cognitively plausible
* “humans are moving obstacles”
* “humans operate like on-off switches”
* “humans optimize a utility function”
* “all traffic behavior can be captured by one utility function”

* Models are not validated against the actual driver behaviour

* Alternative way!
* Utilize the available knowledge about human behavior
* Check how well the model describes the humans
* No silver bullet: Focus on context-specific models of stereotypical interactions



Stereotypical human-AV interactions

Overtaking

Left turn across path

* |In all these interactions, a human faces a binary decision-making task

* What do we know about human decision-making?



Decision making: Evidence accumulation model

dx = adt + dW
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Ratcliff, R. (1978). A theory of memory retrieval. Psychological review, 85(2), 59



Decision making: Evidence accumulation model

dx = adt + dW
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Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task. Journal
of neuroscience, 22(21), 9475-9489.

* Can evidence accumulation explain decisions in traffic?



Experimental study



Experimental setup

* Virtual driving simulator

* 7 participants
* Two sessions, about 60 min each

* Each session: four routes 10 min
each

* Auditory navigation cues

* Each route: |5 |left turns, 5 right
turns, 5 go straight




Left turns

* The driver is instructed to stop at the
intersection before making a left turn

* When the driver stops, the oncoming
car appears

* Oncoming car starts at
* distance (d) = {90,120,150}s
* fixed speed v chosen such that
* time-to-arrival (TTA) = {4,5,6}s

e Distance and TTA conditions are
independent variables




Turn trajectory
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Wait trajectory

Y position, meters

t=0: TTA=6.0s, d=117m, v=19.58m/s, min_d=3.3m
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Dependent variables

* Decision (turn/wait)
* Hypothesis: probability of turning will increase with TTA and distance
* Response time (turn decisions only)

® Velocity =0: oncoming car appears

v X Gas pedal > 0: decision is made
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* Hypothesis: RT will decrease with time and distance gaps

* For large gaps, evidence in favour of turning is very strong > fast response
* For small gaps, relative evidence favours waiting = takes more time to arrive to “turn” decision



Results

Probability of turn
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Results

Estimate  Std. Error df tvalue Pr(=|t])
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Interim conclusions

* Probability of turning increases with distance and time gap
* Response time increases with time gap

e Substantial individual differences in effect magnitudes

* What processes lead to the observed behavior?



Cognitive process model



Mechanism 1l: dynamic accumulation of
perceptual information

* Previous studies suggest both ;120 —
distance and time gap affect the B _
decision )
w 67
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over time... et
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Mechanism 2: collapsing decision boundary

* Response is constrained by the environment

* At small gaps, the driver has to accumulate the
evidence faster, or there will be no time left to
complete the maneuver |
I

* Task constraints (oncoming car) induce urgency
signal

* Decision boundaries collapsing with closing gap : ";"
b(t) = + by f (TTA) N
v

where f decreases with TTA
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Probability of turn
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Model results
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Response time, s

Model results
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Full RT distributions
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Model cross-validation

TTA=4 TTA=6 T1A=4 T1A=6
d=90 . . . d=90 . . o
d=150 o . .
d=150 °® ° °

Fit using all data (9 conditions) o o
Hold-one-condition-out: fit using all data

except the condition to be predicted



Model cross-validation
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Summary

* Decisions and response times in left-turn gap
acceptance decision can be explained by
* Accumulation of dynamically varying evidence
* ... constrained by closing window of opportunity to turn

* Proof-of-concept of how cognitive process models
can help to understand and predict human road user
behavior



Discussion



Discrete choice vs process models

* Numerous discrete choice models of gap acceptance

* Effect of kinematic variables (distance, velocity, time gap)
* Sociodemographic effects (age, sex, driving experience)
* Sequential effects (waiting time)

* Discrete choice models vs cognitive process models

* What (which gaps are accepted, and under which
conditions) vs How? (cognitive mechanism, i.e. how the
information is processed over time)

* Static vs dynamic
 Simplicity vs fidelity

* For human-robot interaction, dynamic, high-fidelity
models are needed in order to be able to predict
how humans react to different control policies
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Farah et al. (2009). A passing gap acceptance model for
two-lane rural highways. Transportmetrica, 5(3), 159-172.
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Cognitive models for virtual AV testing
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University of Leeds
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Next steps

* Finer-grained modeling
* Response times for “wait” decisions

* Incorporating acceleration/deceleration
* Changes-of-mind

* Developing cognitive models for other interactions
* Attention / situation awareness

* Integrating dynamic model predictions in motion planning



Meaningful human control over
automated systems

* Increased autonomy of Al > Need to ensure human responsibility
* MHC as tracing and tracking (Santoni de Sio & van den Hoven, 2018)

* Tracing: humans remain morally responsible for Al’s actions

* Tracking:Al is responsive to relevant human reasons (i.e.“control” signals)

* Hot take: In high-stakes, time-critical human-Al interactions, in order
for Al to correctly interpret human actions (and identify the reasons
behind them), it should have an adequate mental model of human
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