Cognitive modeling of decision making in human drivers

Arkady Zgonnikov, David Abbink

Gustav Markkula

About me

- MSc in applied mathematics
- PhD on modeling human control behavior
 - Virtual balancing tasks
 - Car following, steering
- Previous postdoc in cognitive psychology
 - Decision making
 - Interplay between motor behavior and cognition
- Postdoc @ Cognitive Robotics (3mE) & AiTech
 - Modeling & managing human-AV interactions
 - Meaningful human control: how to?

Human-AV interaction

Human-AV interaction: existing approaches

Intention recognition

Kooij, J. F. P. et al. "Context-Based Path Prediction for Targets with Switching Dynamics." *International Journal of Computer Vision* 127, no. 3 (March 2019): 239–262.

Game-theoretic motion planning

Sadigh, D. et al, "Planning for cars that coordinate with people: Leveraging effects on human actions for planning and active information gathering over human internal state." *Autonomous Robots*, 42(7), 1405–1426. (2018)

Limitations of current approaches

- Human models are chosen based on computational convenience
- Basic assumptions of these models are not cognitively plausible
 - "humans are moving obstacles"
 - "humans operate like on-off switches"
 - "humans optimize a utility function"
 - "all traffic behavior can be captured by one utility function"
- Models are not validated against the actual driver behaviour
- Alternative way?
 - Utilize the available knowledge about human behavior
 - Check how well the model describes the humans
 - No silver bullet: Focus on context-specific models of stereotypical interactions

Stereotypical human-AV interactions

Pedestrian crossing

Overtaking

Lane merging

Left turn across path

- In all these interactions, a human faces a binary decision-making task
- What do we know about human decision-making?

Decision making: Evidence accumulation model

$$dx = \alpha dt + dW$$

Response Time

Ratcliff, R. (1978). A theory of memory retrieval. *Psychological review*, 85(2), 59.

Decision making: Evidence accumulation model

Ratcliff, R. (1978). A theory of memory retrieval. *Psychological review*, 85(2), 59.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. *Journal of neuroscience*, *22*(21), 9475-9489.

• Can evidence accumulation explain decisions in traffic?

Experimental study

Gap acceptance in left turns across path

Experimental setup

- Virtual driving simulator
- 7 participants
- Two sessions, about 60 min each
- Each session: four routes 10 min each
- Auditory navigation cues
- Each route: 15 left turns, 5 right turns, 5 go straight

Left turns

- The driver is instructed to stop at the intersection before making a left turn
- When the driver stops, the oncoming car appears
- Oncoming car starts at
 - distance (d) = $\{90,120,150\}$ s
 - ullet fixed speed v chosen such that
 - time-to-arrival (TTA) = $\{4,5,6\}$ s
- Distance and TTA conditions are independent variables

Turn trajectory

Wait trajectory

Dependent variables

- Decision (turn/wait)
 - Hypothesis: probability of turning will increase with TTA and distance
- Response time (turn decisions only)

- Hypothesis: RT will decrease with time and distance gaps
 - For large gaps, evidence in favour of turning is very strong \rightarrow fast response
 - For small gaps, relative evidence favours waiting \rightarrow takes more time to arrive to "turn" decision

Results

decision ~TTA + distance + (d|subject)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.5	0.24	-2	0.042
TTA	0.96	0.098	9.8	1.2×10^{-22}
distance	1.4	0.17	8.2	1.7×10^{-16}

Results

RT ~ TTA + distance + (I|subject)

	Estimate	Std. Error	df	t value	Pr(> t)
Intercept TTA distance	-0.72 0.028 -0.0052	0.033 0.0089 0.01	6.8 3.4×10^2 3.4×10^2	-22 3.2 -0.52	1.4×10^{-7} 0.0017 0.6

Interim conclusions

- Probability of turning increases with distance and time gap
- Response time increases with time gap
- Substantial individual differences in effect magnitudes
- What processes lead to the observed behavior?

Cognitive process model

Mechanism 1: dynamic accumulation of perceptual information

- Previous studies suggest both distance and time gap affect the decision
- Perceptual information (combination of TTA and distance) is accumulated over time...
- ... and is subject to noise $dx = \alpha \big((TTA + \beta d) \theta_{crit} \big) dt + dW$ $\alpha, \beta, \theta_{crit}$: free parameters

Mechanism 2: collapsing decision boundary

- Response is constrained by the environment
 - At small gaps, the driver has to accumulate the evidence faster, or there will be no time left to complete the maneuver
- Task constraints (oncoming car) induce urgency signal
- Decision boundaries collapsing with closing gap $b(t) = \pm b_0 f(TTA)$

where f decreases with TTA

Model results

Model results

Full RT distributions

Model cross-validation

except the condition to be predicted

Model cross-validation

- → Model predictions, data, d=90m
- ⊕- Model predictions, data, d=120m
- Model predictions, ▲ data, d=150m

Summary

- Decisions and response times in left-turn gap acceptance decision can be explained by
 - Accumulation of dynamically varying evidence
 - ... constrained by closing window of opportunity to turn
- Proof-of-concept of how cognitive process models can help to understand and predict human road user behavior

Discussion

Discrete choice vs process models

- Numerous discrete choice models of gap acceptance
 - Effect of kinematic variables (distance, velocity, time gap)
 - Sociodemographic effects (age, sex, driving experience)
 - Sequential effects (waiting time)
- Discrete choice models vs cognitive process models
 - What (which gaps are accepted, and under which conditions) vs How? (cognitive mechanism, i.e. how the information is processed over time)
 - Static vs dynamic
 - Simplicity vs fidelity
- For human-robot interaction, dynamic, high-fidelity models are needed in order to be able to predict how humans react to different control policies

$$G_{n,i}^{\text{cr}} = 34.01 - 0.30 \cdot \text{SS} + 5.15 \cdot \text{FG} + 0.42 \cdot \text{FS} - 0.14 \cdot \text{OS}$$

 $-2.35 \cdot \text{RG} - 7.00 \cdot \text{Age}_1 - 4.95 \cdot \text{Age}_2 - 2.84 \cdot G$
 $+0.23 \cdot P + 1.05 \cdot \text{Km} - 7.5 * E - 5 \cdot \text{CD}$

$$P_{n,i}(\text{accept gap}) = \frac{1}{1 + \exp\left[-0.22 \cdot \left(G_{n,i} - G_{n,i}^{\text{cr}}\right)\right]}$$

Farah et al. (2009). A passing gap acceptance model for two-lane rural highways. *Transportmetrica*, 5(3), 159–172.

Cognitive models for virtual AV testing

PI: Gustav Markkula University of Leeds COMMOTIONS: Computational Models of Traffic Interactions for Testing of Automated Vehicles (£1.4M)

Next steps

- Finer-grained modeling
 - Response times for "wait" decisions
 - Incorporating acceleration/deceleration
 - Changes-of-mind
- Developing cognitive models for other interactions
 - Attention / situation awareness
- Integrating dynamic model predictions in motion planning

Meaningful human control over automated systems

- Increased autonomy of Al → Need to ensure human responsibility
- MHC as tracing and tracking (Santoni de Sio & van den Hoven, 2018)
 - Tracing: humans remain morally responsible for Al's actions
 - <u>Tracking</u>: Al is responsive to relevant human reasons (i.e. "control" signals)
- Hot take: In high-stakes, time-critical human-Al interactions, in order for Al to correctly interpret human actions (and identify the reasons behind them), it should have an adequate mental model of human

Collaborators

David Abbink

Gustav Markkula

Preprint

SHOULD I STAY OR SHOULD I GO? EVIDENCE ACCUMULATION DRIVES DECISION MAKING IN HUMAN DRIVERS

Arkady Zgonnikov

AiTech & Department of Cognitive Robotics Delft University of Technology Mekelweg 2, 2628 CD Delft, Netherlands a.zgonnikov@tudelft.nl

David Abbink

Department of Cognitive Robotics Delft University of Technology Mekelweg 2, 2628 CD Delft, Netherlands d.a.abbink@tudelft.nl

Gustav Markkula

Institute for Transport Studies University of Leeds 34-40 University Road, Leeds LS2 9JT, UK g.markkula@leeds.ac.uk

https://psyarxiv.com/p8dxn