

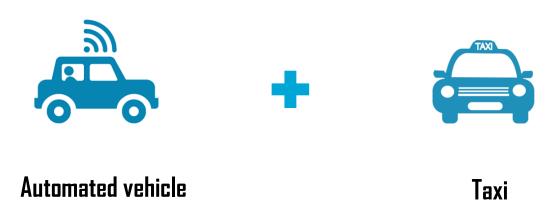
An optimization model of automated taxis in trip assignment under elastic demand for the last mile problem

First Research Seminar of the hEAT Lab

Dr. ir. Xiao Liang

Postdoc Researcher x.liang @tudelft.nl

Automated taxi (AT)

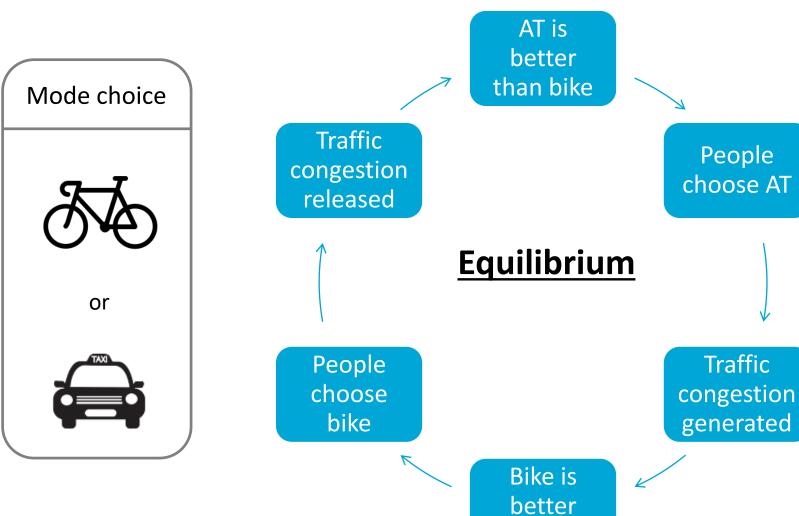


We consider automated vehicles using as taxis and aim at identifying their role in urban mobility systems.

First / last mile problem

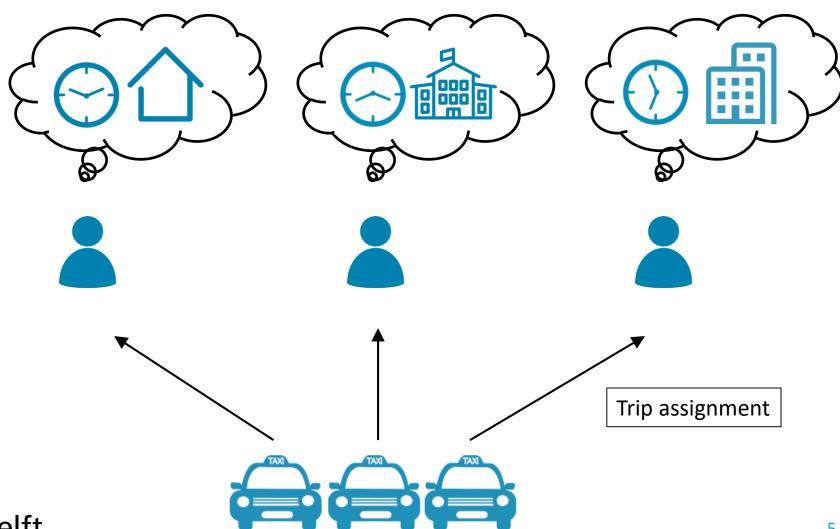
We study an AT system that provides accessibility to and from train stations. We aim to get a clear insight into the system optimization from the system planner's point of view.

Mode choice



than AT

What we want to know from this model?



Key words

- Shared mobility
- Choice modelling
- First/last mile problem

Assumption

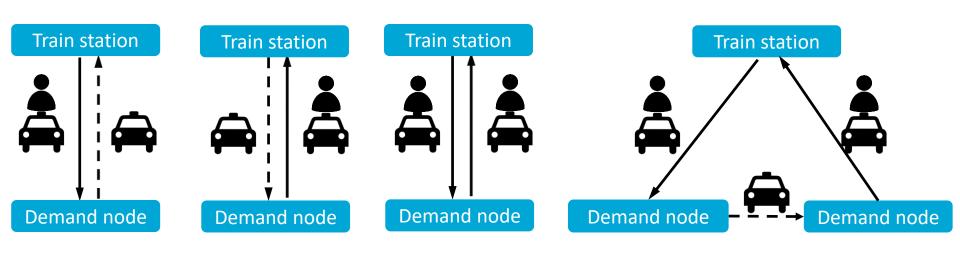
- Two travel modes are considered: by AT and by bike.
- Total demand for AT and bike is fixed.
- Travel time of AT is dynamic based on the traffic flow.

Output

- Optimize the fleet size
- Design the ATs' routes

Model formulation

System setting



Objective function: minimize the total cost by AT and by bike

Model formulation

Constraints: choice modelling

Travel time

$$U_{ijt}^{AT} = -r^{AT} \cdot d_{ij} - T_{ijt}^{AT} \cdot a, \qquad \forall \in (i,j) \in K, t \in M$$

$$\forall \in (i,j) \in \mathbf{K}, t \in \mathbf{M}$$

$$U_{ij}^{B} = -t_{ij}^{B} \cdot a, \qquad \forall \in (i, j) \in \mathbf{K}$$

$$\forall \in (i,j) \in \mathbf{K}$$

Probobility

$$P_{ijt}^{AT} = \frac{\exp(U_{ijt}^{AT})}{\exp(U_{ijt}^{AT}) + \exp(U_{ij}^{B})}, \quad \forall \in (i, j) \in K, t \in M$$

$$\forall \in (i,j) \in \mathbf{K}, t \in \mathbf{M}$$

Constraints: dynamic travel time

Travel time Flow
$$T_{ijt_1} = t_{ij}^{min} \cdot \left(1 + 0.15 \cdot \left(\frac{S_{ijt_1t_2} + v_{ijt_1t_2}}{cap_{ij}}\right)^4\right), \quad \forall \in (i, j) \in K, t \in M$$

Solving algorithm

Customized gradient algorithm

Initialize each $P = 0.5, \forall \in (i, j) \in K, t \in M$

Calculate the value

Q:served demand by AT

U: utility T: travel time

Solve the optimization model

Obj.: objective function value S: traffic flow F: fleet size

Stop

Stopping criteria?

Yes

No

- <u>Calculate the partial derivative of each P to Obj. (descent direction)</u>
- Calculate the step size
- <u>Update each P</u>

 $P = P - step \ size * descent \ direction$

Case study

Small case example

Zone 1	Zone 2		
Train station	Zone 3		
Zone 4	Zone 5		

• Demand zones: 5

• Time length: 5 hours

• Requests: 132

Results

Initial value variation

Price rate: 0.5 €/min

Initial value of P	Obj	j. valu (€)	Number of iterations	Fleet size	Total ticket cost (€)	Total travel time (hour)	Share of AT
30%	7	'44.0	5	20	120.0	35,3	36%
50%	6	558.5	7	19	167.5	26,7	51%
70%	6	95.0	3	23	175.0	24,4	53%

Results

Price rate variation

P initial value: 50%

Price rate (€/min)	Obj. value (€)	Fleet size	Total ticket cost (€)	Total travel time by AT (hour)	Total travel time by bike (hour)	Satisfied requests by AT	Share of AT
0.5	658.5	19	167.5	12.5	14.2	67	51%
0.4	761.0	15	90.0	10.9	32.5	45	34%
0.3	703.5	18	85.5	14.0	22.5	57	43%

Conclusion

- This customized gradient algorithm is able to **find a good solution** to the original non-linear model.
- Initial values of *P* is a critical control parameter with respect to the final best solution.
- AT service price rate is a key issue that affects the utility of AT and the result of mode split.

Thank you!

First Research Seminar of the hEAT Lab

Dr. ir. Xiao Liang

Postdoc Researcher x.liang@tudelft.nl