

TUDelft

MULTI-STAGE OPTIMIZATION OF ROAD NETWORKS FOR AUTOMATED DRIVING

HEAT LAB SEMINAR: 06-12-2019

Bahman Madadi

Dr. Rob van Nes Dr. Maaike Snelder Prof. dr. Bart van Arem

AUTOMATED DRIVING AND ROAD NETWORKS: AN INCREMENTAL APPROACH

RESEARCH QUESTION

What are the possible network configurations for AVs? (e.g., dedicated lanes, zones, links, everywhere) We chose AD subnetworks: Delft case

EXPLORING AD SUBNETWORKS

Purpose:

Macroscopic static TA & explore subnetwork concept

Methodology steps:

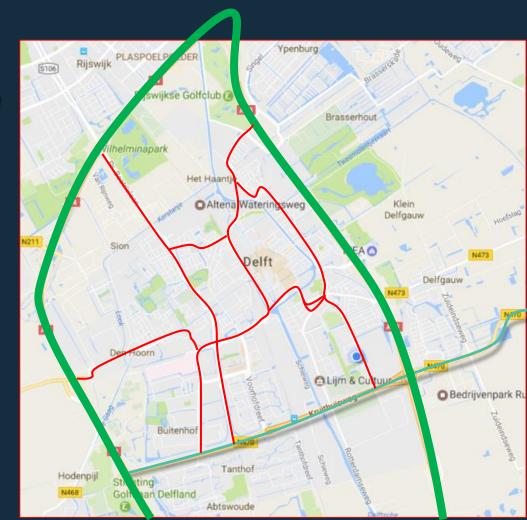
Subnetwork concept

Feasible road selection

Scenarios

ŤUDelft

Impacts


ŤUDelft

DELFT CASE 1:

INTRODUCING AD SUBNETWORKS

A priori link selection based on:

✓ Road function
✓ Potential quality
✓ Traffic segregation
✓ Complexity

DELFT CASE 1: INTRODUCING AD SUBNETWORKS

INTRODUCING AD SUBNETWORKS: FORMULATION

Minimize

$$\begin{split} Z &= \sum_{m} \frac{1}{\mu_{m}} \sum_{w \in W} \sum_{r \in \mathbb{R}^{W}} F_{m}^{w,r} \ln F_{m}^{w,r} - \sum_{m} \frac{1}{\beta_{m}} \sum_{w \in W} \sum_{r \in \mathbb{R}^{W}} F_{m}^{w,r} \ln PS_{m}^{w,r} & P_{m}^{w,r} = \frac{1}{2} \\ &+ \sum_{m \in M} \sum_{a \in A} \int_{0}^{q_{a}} c_{m,a}(x) dx, & (1) \\ \text{ s.t.} & (1) \\ q_{a} &= \gamma_{0} f_{0,a} + \gamma_{1,a}), \quad \forall \ a \in A_{0}, & (2) \\ q_{a} &= \gamma_{0} f_{0,a} + \gamma_{1,a}), \quad \forall \ a \in A_{1}, & (3) \\ \sum_{r \in \mathbb{R}^{W}} F_{m}^{w,r} &= D_{m}^{W}, \quad \forall \ w \in W, \forall \ m \in M, & (4) \\ \sum_{w \in W} \sum_{r \in \mathbb{R}^{W}} F_{m}^{w,r} \delta_{m,a}^{w,r} &= f_{m,a}, \quad \forall \ a \in A, \forall \ m \in M, & (5) \\ F_{m}^{w,r} &\geq 0, \quad \forall \ w \in W, \forall \ m \in M, \forall \ r \in \mathbb{R}^{w}. & (6) \\ T_{1}^{w,r} &= \frac{1}{2} \\ t_{a}(q_{a}) &= t_{a}^{0} \left[1 + \alpha_{a} \left(\frac{q_{a}}{\Lambda_{a}} \right)^{b_{a}} \right], & (7) \\ \text{And link cost per class is:} \\ c_{0,a}(q_{a}) &= \theta_{0} l_{a} + \eta_{0} t_{a}(q_{a}), \quad \forall \ a \in A_{1}. & (10) \\ TTT &= \sum_{a \in A} t_{a}(q_{a}) = \theta_{1} l_{a} + \eta_{1} t_{a}(q_{a}), \quad \forall \ a \in A_{1}. & (10) \\ \end{array}$$

$$P_m^{w,r} = \frac{\exp(-\mu_m C_m^{w,r} + \beta_m \ln PS_m^{w,r})}{\sum_{r \in R^w} \exp(-\mu_m C_m^{w,r} + \beta_m \ln PS_m^{w,r})}, \ \forall \ w \in W, \ \forall \ m \in M, \ \forall \ r \in R^w,$$
(11)

$$PS_m^{w,r} = \sum_{a \in r} \left(\frac{l_a}{l_r}\right) \left(\frac{1}{\sum_{r \in \mathbb{R}^w} \delta_{m,a}^{w,r}}\right),\tag{12}$$

and route-based travel cost (generalized travel cost) for two classes are given as:

$$C_0^{w,r} = \sum_{a \in A} \delta_{0,a}^{w,r} F_0^{w,r}(\theta_0 l_a + \eta_0 t_a(q_a)),$$
(13)

$$C_1^{w,r} = \sum_{a \in A_0} \delta_{1,a}^{w,r} F_1^{w,r}(\theta_0 l_a + \eta_0 t_a(q_a)) + \sum_{a \in A_1} \delta_{1,a}^{w,r} F_1^{w,r}(\theta_1 l_a + \eta_1 t_a(q_a)).$$

7)
$$TTC = \sum_{a \in A_0} (\eta_0 \bar{t}_a + \theta_0 l_a) (\bar{f}_{0,a} + \bar{f}_{1,a}) + \sum_{a \in A_1} [(\eta_0 \bar{t}_a + \theta_0 l_a) \bar{f}_{0,a} + (\eta_1 \bar{t}_a + \theta_1 l_a) \bar{f}_{1,a}],$$
(15)

9)
$$TTT = \sum_{a \in A} \bar{t}_a (\bar{f}_{0,a} + \bar{f}_{1,a}), \qquad (16)$$

10)
$$TTD = \sum_{a \in A} l_a (\bar{f}_{0,a} + \bar{f}_{1,a}).$$
(17)

DELFT CASE 1: INTRODUCING AD SUBNETWORKS (SUMMARY)

Scenarios:

3 (5) subnetworks & 5 (7) demand scenarios

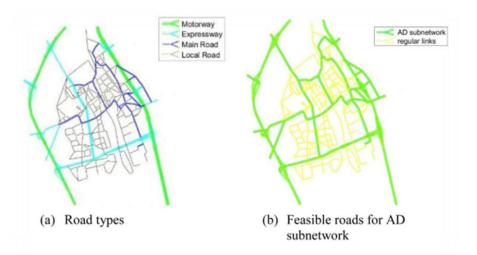
Impacts:

TTC,TTT,TTD & distribution in different road types

Sensitivity analysis:

TA AV parameters

Conclusion:


TUDelft

Optimizing trade-offs between costs and benefits

RESEARCH QUESTION

How can we optimize this configuration (selection)? Delft case 2: Optimizing urban road networks for AD

OPTIMIZING URBAN ROAD NETWORKS FOR AD

Purpose:

Define optimization problem, solutions, future extensions

Methodology:

Formulate a bi-level optimization problem

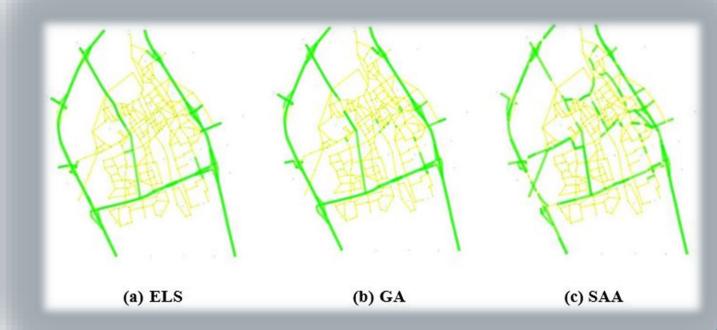
Find (develop) solution methods & measure performance

Find methodology shortcomings & best extensions (future steps)

ŤUDelft

OPTIMIZING URBAN ROAD NETWORKS FOR AD: FORMULATION

	ULMP
$PS_m^{w,r}$	\min_{I_a} s.t.
	TTC
(1)	
(2)	TAC $I_a(1$
(3)	$p_{a}^{s,t}$
(4)	$ P_{_{\hat{G}_1}} $
(5)	
(6)	
(7)	
	 (1) (2) (3) (4) (5) (6)


$$\begin{split} & \underset{I}{\inf} \qquad Z_{u} = TTC(I_{a}) + \frac{TAC(I_{a})}{\sigma}, \quad (9) \\ & \underset{I}{\text{t.}} \\ & TTC(I_{a}) = \sum_{a \in A} \left\{ (1 - I_{a}) [(\eta_{0}\tilde{t}_{a} + \theta_{0}l_{a})(\overline{f}_{0,a} + \overline{f}_{1,a})] \\ & \quad + I_{a} [(\eta_{0}\tilde{t}_{a} + \theta_{0}l_{a})\overline{f}_{0,a} + (\eta_{1}\tilde{t}_{a} + \theta_{1}l_{a})\overline{f}_{1,a}] \right\} \quad (10) \\ & TAC(I_{a}) = \sum_{a \in A} I_{a} a c_{a} \quad (11) \\ & I_{a} (1 - I_{a}) = 0 \quad , \forall a \in A \quad (12) \end{split}$$

$$\left| p_{_{\dot{G}_1}}^{s,t} \right| \ge 1 \qquad , \forall s,t \in N_1 \tag{13}$$

DELFT CASE 2: LESSONS LEARNED

Disconnected Subnetworks!

DELFT CASE 2: LESSONS LEARNED

Disconnected Subnetworks!

DELFT CASE 2: LESSONS LEARNED

Dependency on adjustment cost and demand

90% low cost

10% high cost

RESEARCH QUESTION

What is the optimal order and timing for the adjustments? Amsterdam case study 1

Purpose:

Tri-level optimization problem

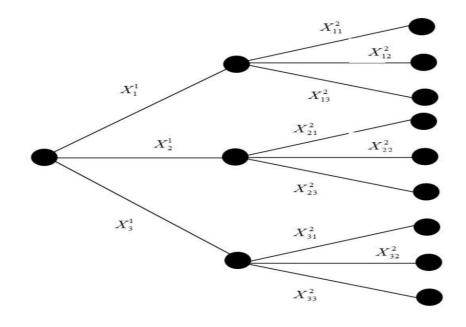
Can we solve this for a realistic network?

Behavioral (transport-related) insights from case study

Methodology:

Formulate the optimization problem

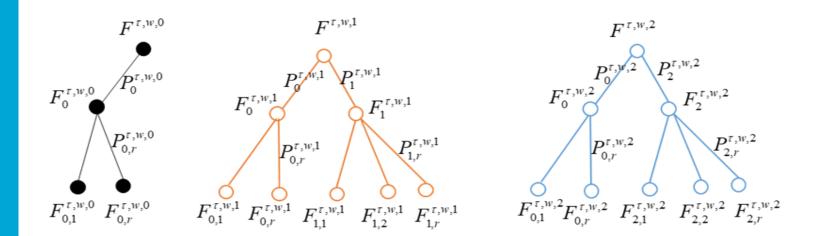
Find (develop) solution methods & measure performance


Analyze results

Upper level decision choice tree

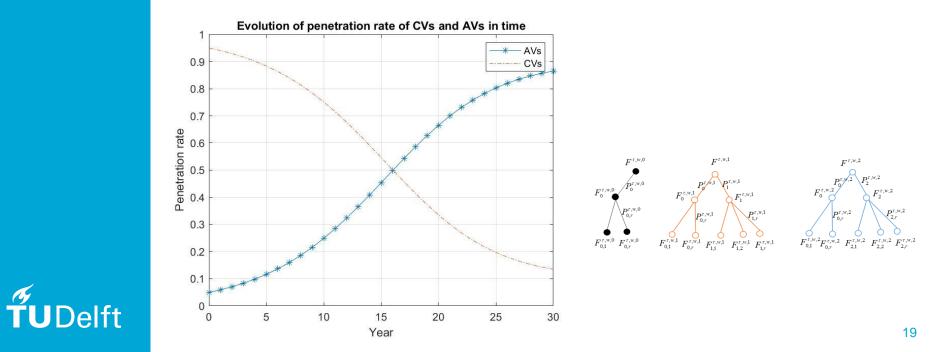
 $\tau = 0$

 $\tau = 1$



17

 $\tau = 2$


Lower level decision choice tree

AV Diffusion model

AMSTERDAM CASE STUDY (VENOM MODEL)

52,810 links 10,124 OD pairs

Several municipalities

AMSTERDAM CASE STUDY

52,810 links in the network (52,810 lower level decision variables)

AMSTERDAM CASE STUDY

5801 feasible links (2⁵⁸⁰⁴ combinations for upper level solution)

AMSTERDAM CASE STUDY: UPPER LEVEL SOLUTION ALGORITHMS

GA

EPS

Out of the box Augmented time Connectivity penalty Adapted Tailored

EGS

Novel Fully tailored

Evolution of networks and connectivity t = 0

Evolution of networks and connectivity t = 0

AMSTERDAM CASE 1: LESSONS LEARNED

More cars and increased TT! Shift towards the main roads

Before

After

AMSTERDAM CASE 1:

To do: Distribution of accessibility and mode choice

Demand supply interactions: proactive v.s. reactive Waiting for the demand or provoking it?

QUESTIONS?

