

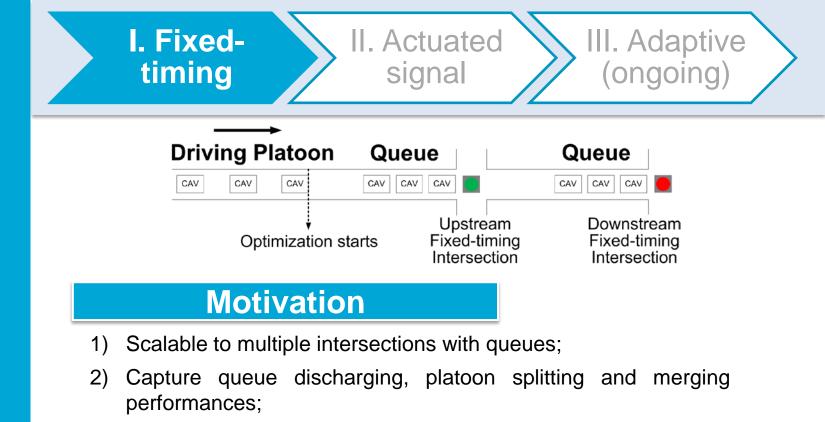

First hEAT Lab Seminar

Vehicle Trajectory Planning Considering Traffic Signals on Urban Roads

Meiqi Liu

Meng Wang, Serge Hoogendoorn Transport & Planning, TU Delft December 6 2019




# CONTENTS

- I. Platoon trajectory planning under <u>fixed</u> traffic signal
- II. Platoon trajectory planning under <u>actuated</u> traffic signal
- III. Platoon trajectory planning under <u>adaptive</u> traffic signal (ongoing)



# I. Platoon trajectory planning under fixed traffic signal





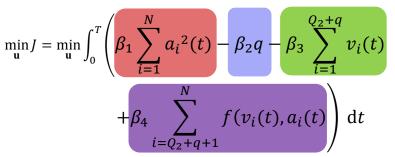
3) Multi-criteria in the objective function, jointly optimizing fuel efficiency and travel delay of the whole platoon.





## **Control objectives**

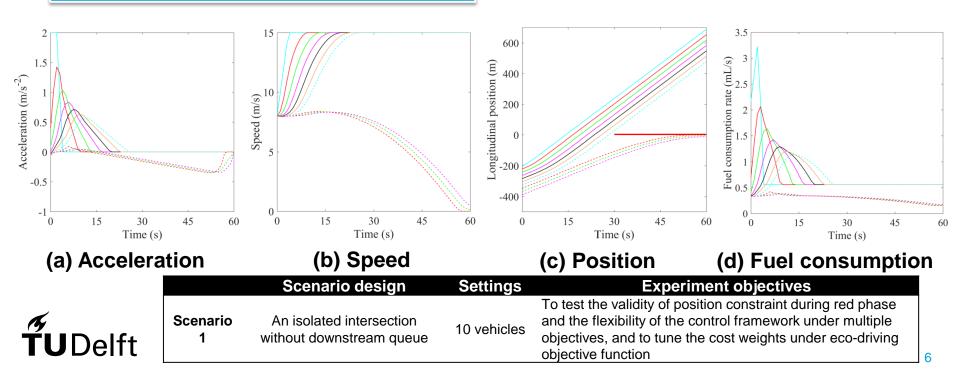
- 1) driving comfort
- 2) throughput in green phase


- $\rightarrow$
- 3) travel delay of passing vehicles (speeds)
- 4) fuel consumption of vehicles that stop

## **Controller Constraints**

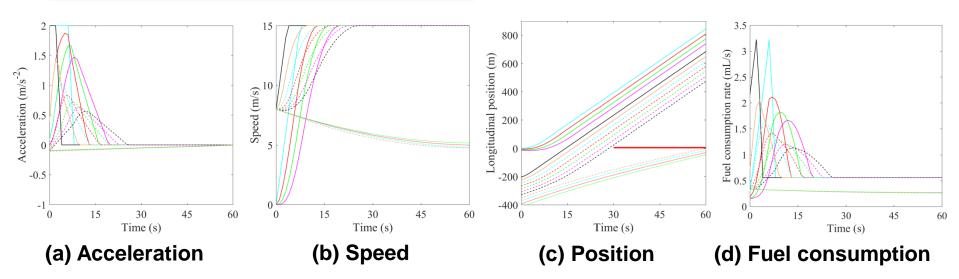
- 1) Admissible acceleration: $a_{\min} \le a_i(t) \le a_{\max}$
- 2) Limited speed:  $0 \le v_i(t) \le v_{max}$
- 3) No-collision requirements:  $x_i(t) x_{i+1}(t) \ge v_{i+1}(t)t_{\min} + x_0 + l$
- 4) Red phase position constraint:

 $x_{q_j}(t=g_j) \ge L_j$ 


## $\mathbf{t} \quad x_i(g_j \le t \le g_j + r_j) \le L_j \quad i \in (Q_{j-1}, Q_j)$



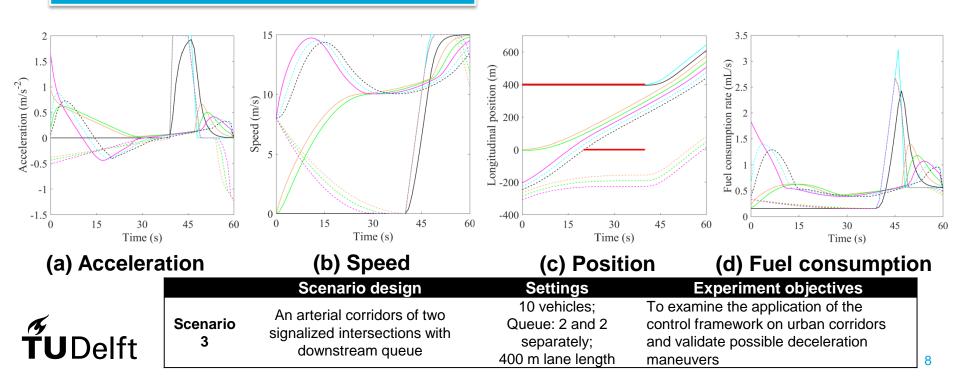
**u** -- control input variable;  $a_i(t)$  -- accelerations at time step t; i -- vehicle sequence number; q -- throughput in green phase; N -- the number of controlled vehicles; i=1 to  $i=Q_2$  -- queues on downstream intersections;  $i=Q_2+1$  to  $i=Q_2+q$  -- q passing vehicles at the most upstream intersection.

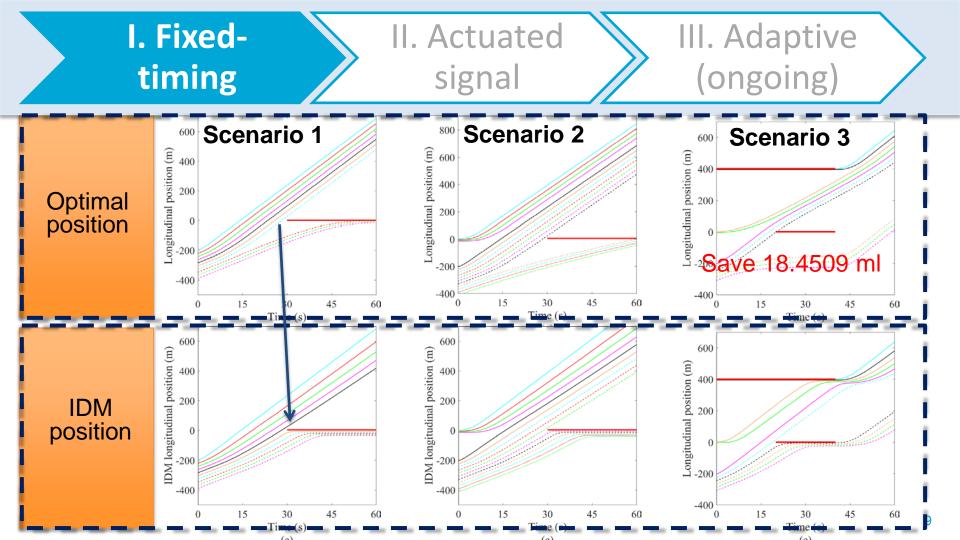



#### **Simulation results: Scenario 1**



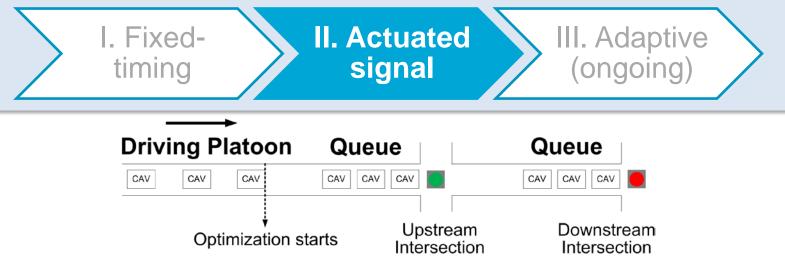



### **Simulation results: Scenario 2**




|                 |               | Scenario design                                | Settings                               | Experiment objectives                                                                               |
|-----------------|---------------|------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>ŕU</b> Delft | Scenario<br>2 | An isolated intersection with downstream queue | 15 vehicles;<br>4 queueing<br>vehicles | To evaluate the effectiveness of downstream queue constraints and the scalability of control system |




#### **Simulation results: Scenario 3**





# II. Platoon trajectory planning under actuated traffic signal





- **Red phase**: Position constraint → penalty term
- Control approach: Feedforward (open loop) → feedback (closed loop)
- Signal control approach: fixed timing  $\rightarrow$  (semi-) actuated signal

Control objectives

Delft

Optimizing multi-criteria of the whole platoon (e.g. driving comfort, travel delay, throughput);

Guarantee no-collision and safe driving requirements;

- Stop/decelerate before the stop-line during the red phase;
- Computational load.

#### **Controller formulization**

- **Control variable**: acceleration *u*
- **State variables**: longitudinal position *x*, speed *v*
- System dynamics model:  $\frac{d}{dt}\mathbf{x} = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = f(\mathbf{x}, \mathbf{u})$
- Initial condition:  $\mathbf{x}(0) = \mathbf{x}_0$

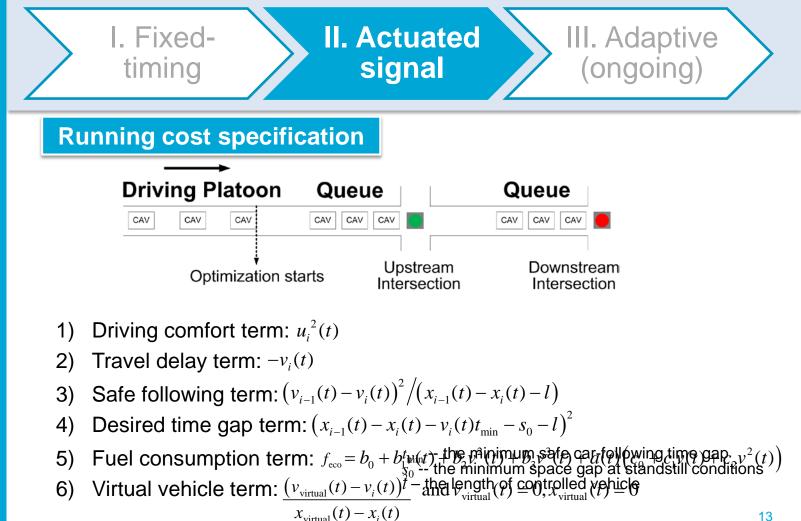
I. Fixed-

timing

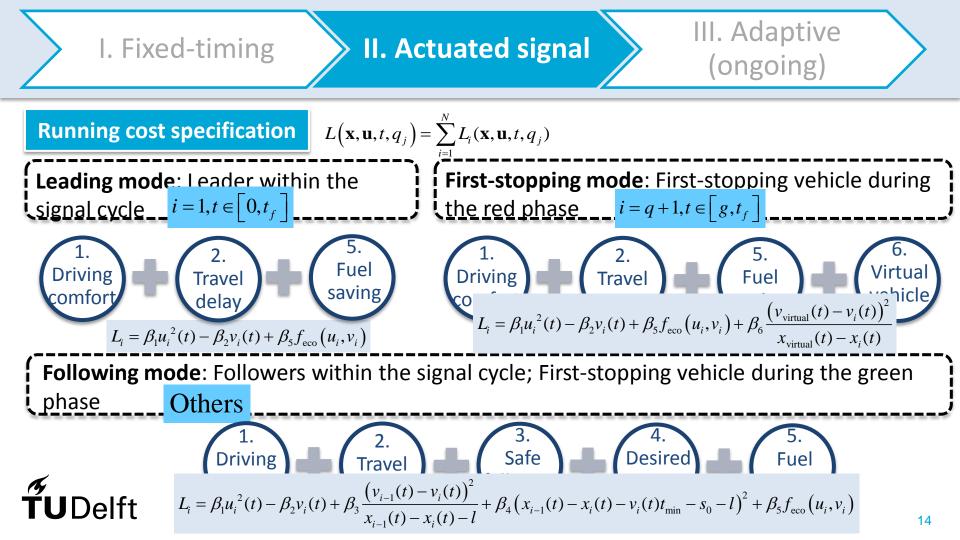
- **Constraints**:  $\mathbf{x}(t) \in X, \mathbf{u}(t) \in U, t \in [0, t_f]$
- **Cost function**:  $\min_{\mathbf{u},q} J(\mathbf{x},\mathbf{u},t,q) = \min_{\mathbf{u},q} \int_0^{t_f} \overline{L(\mathbf{x},\mathbf{u},t,q)} + G(\mathbf{x}(t_f)) dt$

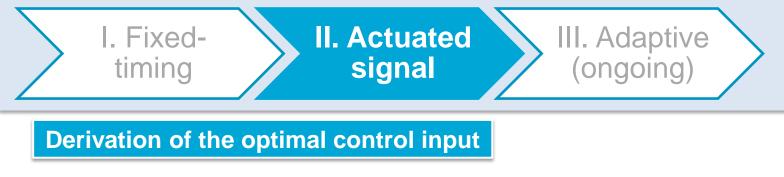
**II.** Actuated

signal


- *i* -- vehicle sequence number
- q -- the maximal throughput
- L -- running cost

Delft


G -- terminal cost


III. Adaptive

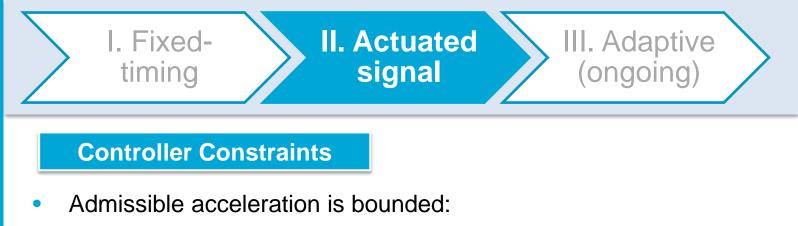
(ongoing)



## **J**Delft






- The control problem is solved based on Pontryagin's principle.
- Define Hamiltonian and introduce co-state  $\lambda$ :  $H_i(\mathbf{x}, \mathbf{u}, \lambda, t, q_j) = L_i(\mathbf{x}, \mathbf{u}, t, q_j) + \lambda \mathbf{f}_i(\mathbf{x}, \mathbf{u}, t)$

$$=\beta_{1}u_{i}^{2}-\beta_{2}v_{i}+\beta_{3}\frac{\left(v_{i-1}-v_{i}\right)^{2}}{x_{i-1}-x_{i}-l_{i}}+\beta_{4}\left(x_{i-1}-x_{i}-v_{i}t_{\min}-s_{0}-l_{i}\right)^{2}+\beta_{5}f_{eco}\left(u_{i},v_{i}\right)+\beta_{6}\frac{\left(v_{virtual}^{j}-v_{q_{j}+1}\right)^{2}}{x_{virtual}^{j}-x_{q_{j}+1}}+\lambda_{1}^{i}v_{i}+\lambda_{2}^{i}u_{i}$$

• Thus, the optimal control law is:  $u_i^* = \begin{cases} \lambda_2^i + \lambda_2^i \end{pmatrix}$ 

$$-\frac{\lambda_{2}^{i}}{2\beta_{1}} \qquad \lambda_{2}^{i} + \beta_{5}\left(c_{0} + c_{1}v_{i} + c_{2}v_{i}^{2}\right) \ge 0$$
  
$$\frac{\lambda_{2}^{i} + \beta_{5}\left(c_{0} + c_{1}v_{i} + c_{2}v_{i}^{2}\right)}{2\beta_{1}} \qquad \lambda_{2}^{i} + \beta_{5}\left(c_{0} + c_{1}v_{i} + c_{2}v_{i}^{2}\right) < 0$$





 $a_{\min} \leq u_i(t) \leq a_{\max}$ 

• Speed should be lower than the limit speed but nonnegative:

 $0 \le v_i(t) \le v_{\max}$ 



# II. Actuated signal

#### **Solution approach**

I. Fixed-

timing

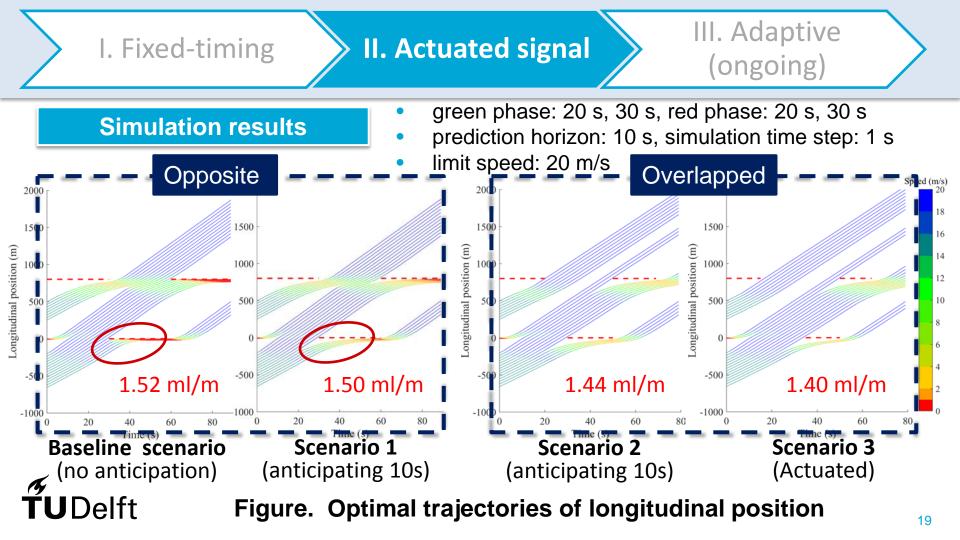
- Discretization
- iPMP algorithm
- MPC framework

Delft

- Constrain control variables
- Computational time

#### Model predictive control closed-loop

III. Adaptive


ongoing

- Anticipate signals: update cost weights ahead of the beginning of the red phase
- Implement actuated signal: adjust the signal settings and update cost weights

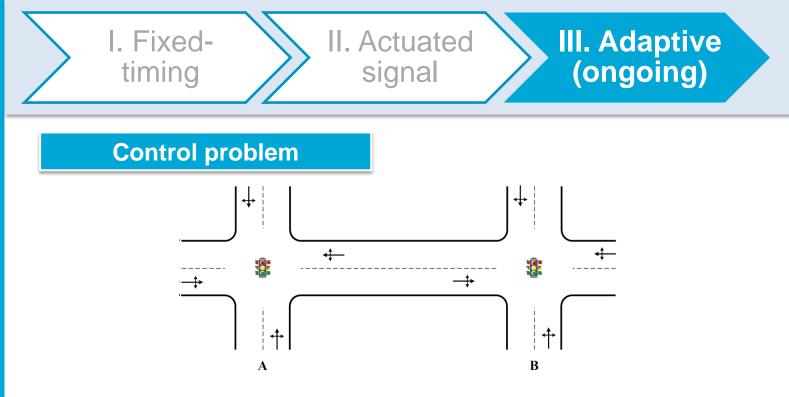
#### **Optimal control open-loop**

- Solve the state (co-state) dynamic equation forward (backward) in time
- o Update the co-state
- Implement the solution of the first time step from optimal control
- Update the system state
- Finish the simulation horizon

| I. Fixed-timing II. Actuated signal (ongoing) |                                                                                                  |                                         |                                                                                                                                                                                                               |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| design Do<br>int                              | sition $x(t)$ (a) oppownstream<br>ersection $30 \text{ s}$ Jpstream<br>tersection $30 \text{ s}$ | site signal setting<br>30 s 30 s 30 s t | Position $x(t)$ (b) overlapped signal settingDownstream<br>intersection $20 \text{ s}$ $30 \text{ s}$ $20 \text{ s}$ $10 \text{ s}$ Upstream<br>intersection $30 \text{ s}$ $20 \text{ s}$ $30 \text{ s}$ $t$ |  |  |  |  |
|                                               | Signal setting                                                                                   | Anticipation time of the red phase      | Objectives                                                                                                                                                                                                    |  |  |  |  |
| Baseline<br>scenario                          | Opposite<br>(pre-timed)                                                                          | No                                      | Test the validity of the red phase (virtual vehicle) term                                                                                                                                                     |  |  |  |  |
| Scenario 1                                    | Opposite<br>(pre-timed)                                                                          | 10 s                                    | Compare and explore the benefits of anticipation                                                                                                                                                              |  |  |  |  |
| Scenario 2                                    | Overlapped<br>(pre-timed)                                                                        | 10 s                                    | Prove the workings of the adjustment in signal settings                                                                                                                                                       |  |  |  |  |
| Scenario 3                                    | Actuated                                                                                         | 10 s                                    | Investigate the workings under the actuated signal plan                                                                                                                                                       |  |  |  |  |






- A receding horizon control framework is proposed at signalized intersection, aiming at optimizing throughput, driving comfort, travel delay, fuel consumption and safety.
- The red phase is represented by keeping the safe gap with a virtual vehicle standstill at the stop bar during the red duration with certain anticipation time.
- Simulation under four scenarios verified the performance of the approach.
  - The red phase term with anticipation works better;
  - The flexibility is demonstrated (i.e. changes in signal parameters under pretimed and actuated signal plan)

20



# III. Platoon trajectory planning under adaptive traffic signal





- The integrated optimization of traffic signals and vehicle trajectories at full intersections
- Upper layer: optimize signal

#### Simplification

I. Fixed-

timing

Current/ Initial signal timing plan

#### First-stopping vehicles

II. Actuated

signal

**Estimated** O optimize acceleration in a linear relationship with time

## trajectories Followers

O apply car-following model

#### Update signal plan

- based on enumeration
- the length of green and red time
- signal phase sequence

#### First-stopping vehicles

O optimize acceleration:  $a_1(k_1,b_1) = k_1t + b_1$   $a_2(k_2,b_2) = k_2t + b_2$ O running cost:  $L(\mathbf{x},\mathbf{u},t) = f_{eco}(u(k,b),v(k,b))$ 

O terminal cost: (at the end of red phase)

III. Adaptive

(ongoing)

 $G(\mathbf{x}(t_f))dt$ 

O...

to stimulate the first-stopping vehicle to reach the stop-line with the maximal speed; under the collision-free position constraints





First hEAT Lab Seminar

#### Vehicle Trajectory Planning Considering Traffic Signals on Urban Roads

Meiqi Liu

Meng Wang, Serge Hoogendoorn Transport & Planning, TU Delft December 6 2019 24

