Towards a Global Standard for Estimating Life Cycle Greenhouse Gas Emissions from Public Transport Services

Marko Kapetanović, Niels van Oort







### Overview

- Motivation & Status Quo
- Scope Definition
- Calculation Methods and Data
- Way Forward



## Motivation

• Effective management of GHG emissions

Public transport operators (PTOs) are major fleet operators, and in some cases builders of extensive infrastructure systems.

• Compliance with new corporate reporting regulation

Further new reporting obligations and standards will follow for may PTOs due to the implementation of the Corporate Sustainability Reporting Directive (CSRD).

### • Impact of the energy transition

Shift of GHG emissions from the operation phase (direct fuel combustion) to the upstream and downstream processes (energy carriers and vehicles supply chain).

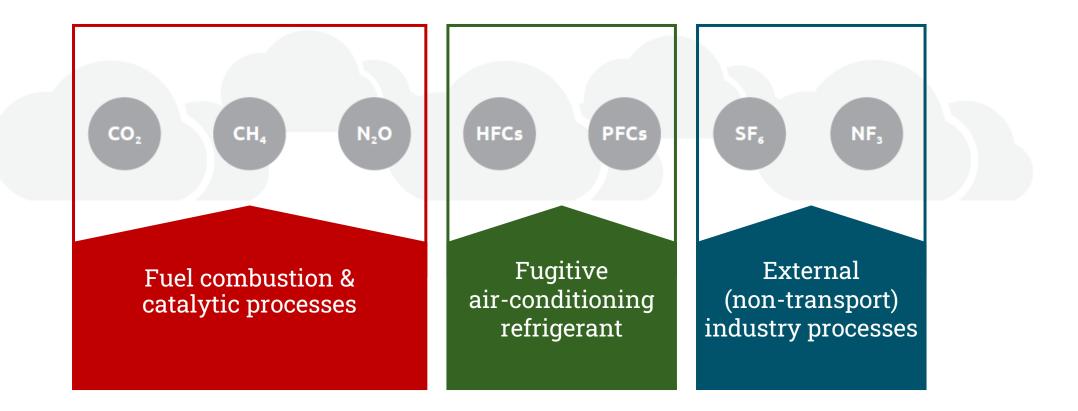
• Users' environmental consciousness

Providing this information to the users (travelers) would enable well-founded choices when planning and making a trip.



### **Status Quo**





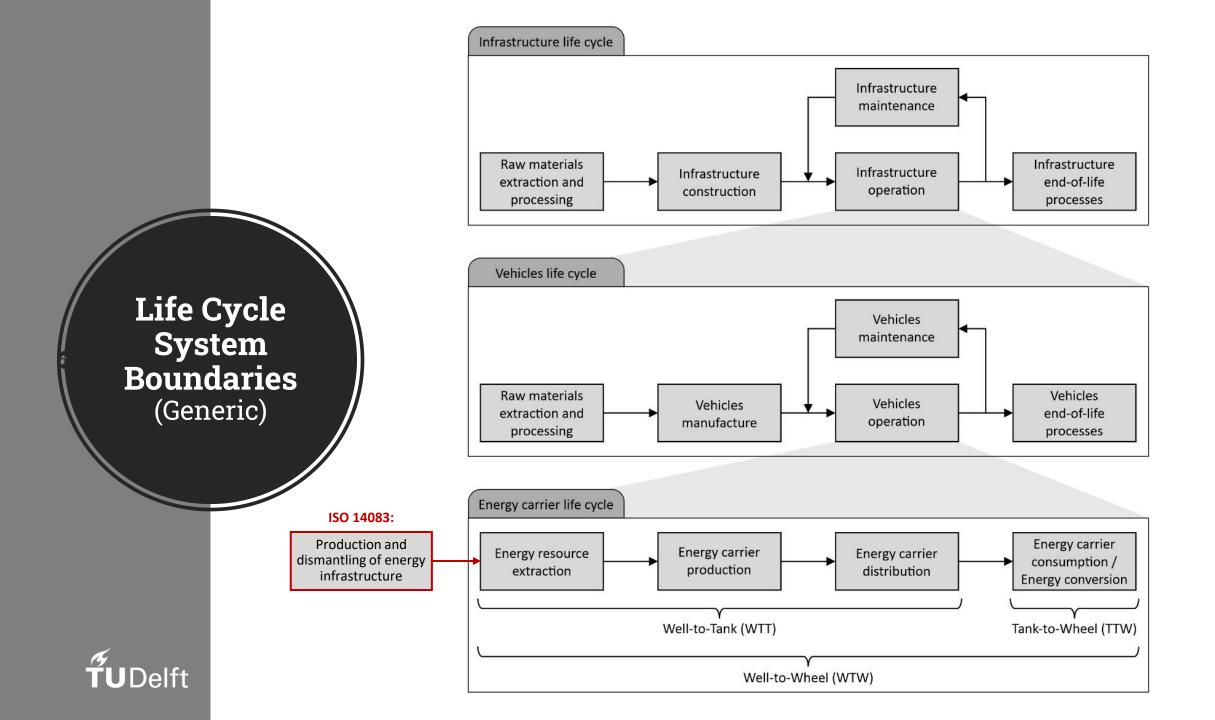

## Overview

- Motivation & Status Quo
- Scope Definition
- Calculation Methods and Data
- Way Forward

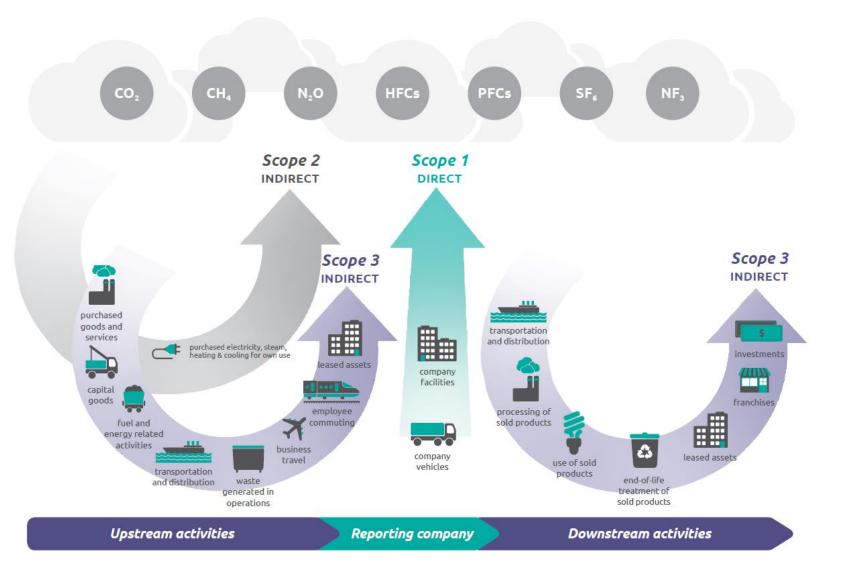


### **Types of GHG Emissions**






## **Types of GHG Emissions**


#### **GWP values for 100-year time horizon between different IPCC assessment reports**

| GHG                  | Chemical<br>formula              | Second Assessment<br>Report (SAR) | Fourth Assessment<br>Report (AR4) | Fifth Assessment<br>Report (AR5) | Sixt Assessment<br>Report (AR6) |
|----------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|
| Carbon dioxide       | CO <sub>2</sub>                  | 1                                 | 1                                 | 1                                | 1                               |
| Methane              | $CH_4$                           | 21                                | 25                                | 28                               | 29.8/27.0                       |
| Nitrous oxide        | N <sub>2</sub> O                 | 310                               | 298                               | 265                              | 273                             |
| CFC-12               | $CCl_2F_2$                       | 8100                              | 10900                             | 10200                            | 12500                           |
| HCFC-22              | CHCLF <sub>2</sub>               | 1500                              | 1810                              | 1760                             | 1960                            |
| HFC-134a             | CH <sub>2</sub> FCF <sub>3</sub> | 1300                              | 1430                              | 1300                             | 1530                            |
| Sulphur hexafluoride | SF <sub>6</sub>                  | 23900                             | 22800                             | 23500                            | 25200                           |
| Nitrogen trifluoride | NF <sub>3</sub>                  | -                                 | 17200                             | 16100                            | 17400                           |





Life Cycle System Boundaries (GHG Protocol)



### **ŤU**Delft

## Life Cycle System Boundaries | PTO Perspective



Scope 1

- Direct fuel combustion (TTW)
  Air-conditioning refrigerant leakage
- Production and distribution of electricity (WTT)

- Scope 3
- Production and distribution of fuels (WTT)
- Production, maintenance and disposal of vehicles
- Construction, maintenance and disposal of infrastructure

## Overview

- Motivation & Status Quo
- Scope Definition
- Calculation Methods and Data
- Way Forward



## **Direct Combustion Emissions**

### Emissions of $CO_2$ | Consumption (fuel) based approach

 $\frac{Emissions \ CO_2}{[kg \ CO_2]} = \frac{Fuel \ consumption}{[l]} \times \frac{Fuel \ density}{[\frac{kg}{l}]} \times \frac{Low \ heating \ value}{[\frac{MJ}{kg}]} \times \frac{Energy-based \ emission \ factor}{[\frac{kg \ CO_2}{MJ}]}$ 

### Emissions of $CH_4$ and $N_2O \mid$ **Distance (activity) based approach**

 $\frac{Emissions CH_4}{[g CH_4]} = \frac{Vehicle-distance travelled}{[km]} \times \frac{Vehicle-specific distance-based emission factor}{[\frac{g CH_4}{km}]}$ 



 $CO_2$ 

### Total direct combustion GHG emissions

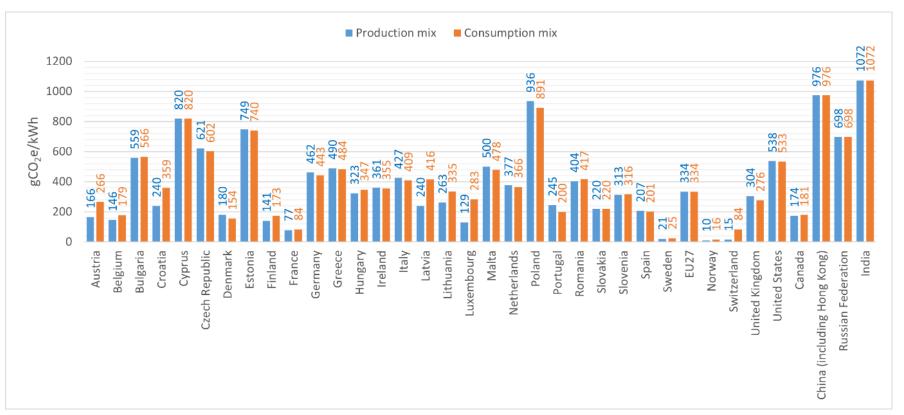
 $\frac{Total \ GHG \ emissions}{[kg \ CO_2 e]} = \frac{Emissions \ CO_2}{[kg \ CO_2]} + \frac{Emissions \ CH_4}{[kg \ CH_4]} \times GWP \ (CH_4) + \frac{Emissions \ N_2 O}{[kg \ N_2 O]} \times GWP \ (N_2 O)$ 



### **Fugitive Refrigerant Emissions**

#### **Mass Balance Method**

- Most accurate method.
- Accounts for the changes in refrigerant inventory in a defined time period.
- Requires data on stored refrigerant inventory, purchases, sales, returns, recycling, and disposal, for standalone reserves and for charged equipment.


#### **Equipment-Based Method**

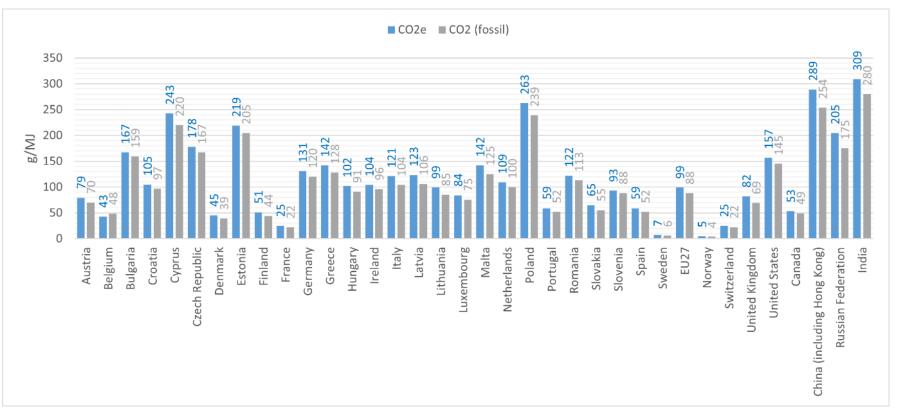
- Uses default emission factors for mobile air-conditioning equipment from the IPCC, allow estimation of emissions associated with the size, installation, operation, and disposal (and refrigerant recovery) of mobile air conditioning equipment.
- Requires data on the amount of refrigerant charged into new equipment, the proportion of operating time during the year, and the quantity of refrigerant of disposed equipment.



## Well-to-Wheel Emissions | Electricity

### **Production vs Consumption Mix**




GHG emission factors (in gCO2e/kWh) of electricity at medium voltage level (including infrastructure) for production and consumption mixes in the year 2021.

Source: EcoTransit World (EWI, 2024)



## Well-to-Wheel Emissions | Electricity

### **High-Voltage Railway Power Supply**



GHG emission factors of the electricity supply for railway transport (WTT at pantograph, countrybased production mix, including infrastructure) in the year 2021



Source: EcoTransit World (EWI, 2024)

## Well-to-Wheel Emissions | Electricity

#### **Emission Factors Databases**

| IEA | (2021) |
|-----|--------|
|     |        |

- Commercial database;
- Emission factors based on IPCC AR4 values;
- Information on electricity trades and losses;
- Not ISO 14083-compliant (limited to combustion emissions of the power plant only)

#### ecoinvent (2018)

- Commercial database;
- Production and consumption mixes;
- Full energy life cycle

#### **EcoTransIT** (2021)

- Production and consumption mixes;
- Full energy life cycle;
- Based on own modelling using Eurostat and IEA background data in mixes

### **EPA eGRID** (2022)

- Production mix only;
- US data only;
- Transmission and distribution losses omitted;
- Data is limited to combustion emissions of the power plant only



## Well-to-Wheel Emissions | Fuels

### Default TTW and WTW GHG emission factors for liquid and gaseous fuels (in kgCO<sub>2</sub>e/MJ)

| Fuel      | EN 16258 |      | ISO 14083 |       |               |      | GLEC V3 |       |               |      |
|-----------|----------|------|-----------|-------|---------------|------|---------|-------|---------------|------|
|           | Europe   |      | Europe    |       | North America |      | Europe  |       | North America |      |
|           | TTW      | WTW  | TTW       | WTW   | TTW           | WTW  | TTW     | WTW   | TTW           | WTW  |
| Gasoline  | 75.2     | 89.4 | 75.1      | 90.1  | 73.0          | 90.2 | 75.1    | 99.1  | 73.0          | 90.5 |
| Ethanol   | 0        | 58.1 | 0.3       | 48.2  | 0.3           | 55.6 | 0.02    | 47.9  | 0.3           | 51.5 |
| Diesel    | 74.5     | 90.4 | 74.1      | 87.3  | 75.0          | 90.5 | 74.1    | 96.6  | 75.7          | 91.4 |
| Biodiesel | 0        | 58.8 | 4.1       | 38.3  | 4.1           | 20.6 | 0.05    | 34.3  | 0.8           | 22.0 |
| LPG       | 67.3     | 75.3 | 67.1      | 81.6  | 64.8          | 78.5 | 67.1    | 90.3  | 64.8          | 78.7 |
| CNG       | 59.4     | 68.1 | 56.6      | 72.7  | 56.8          | 73.7 | 55.2    | 77.8  | 57.4          | 74.6 |
| LNG       | -        | -    | 57.9      | 75.5  | 57.0          | 76.7 | 56.5    | 81.1  | 57.6          | 76.9 |
| HVO       | -        | -    | 0.1       | 28.6  | 0.05          | 17.7 | 0.05    | 28.6  | 0.8           | 18.6 |
| Hydrogen  | -        | -    | 0         | 114.4 | -             | -    | 0       | 160.7 | -             | -    |



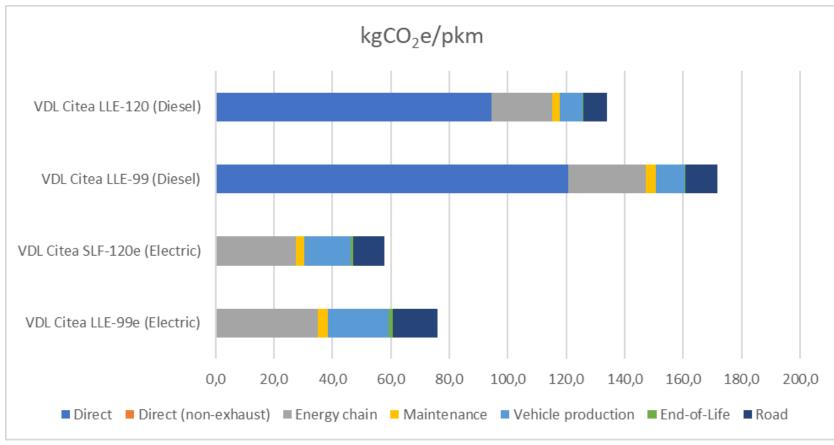
## Well-to-Wheel Emissions | Fuels

### Default TTW and WTW GHG emission factors for liquid and gaseous fuels (in kgCO<sub>2</sub>e/MJ)

| EN 16258       |            |                  | ISO 14083            |                                    |                  |              | GLEC V3         |               |             |  |
|----------------|------------|------------------|----------------------|------------------------------------|------------------|--------------|-----------------|---------------|-------------|--|
|                | Europe     |                  | Europe North America |                                    | Europe           |              | North Am        | North America |             |  |
|                |            | WTW              | TTW                  |                                    |                  | WTW          | TTW             |               |             |  |
|                | y based on | JRC <sup>4</sup> | • <sup>7</sup> Gase  | ous fuels fo                       | r Europe         | based        |                 |               | date to the |  |
| Eth <b>WTW</b> | v3 report  | 58.1             |                      | RC WTW v5                          | <b>•</b>         | 55.6         | 0.02            | t IPCC AR     | - 0.0       |  |
|                |            |                  |                      | d fuels for<br>coinvent v3         | 75 1             | ased<br>90.5 | • Inclu<br>74.1 | ided meth     | ane slip    |  |
|                |            |                  | • <b>Fuels</b>       | for North A                        | America l        | based        |                 |               |             |  |
|                |            |                  |                      | REET <sub>L6</sub><br>lels based o | 64.8<br>n RED II |              |                 |               |             |  |
|                |            |                  | P.C. C               | ded non-CO                         | 56.0             |              |                 |               |             |  |
|                |            |                  |                      | sions 5                            | 57.0             |              |                 |               |             |  |
|                |            |                  |                      |                                    |                  |              |                 |               |             |  |
|                |            |                  |                      |                                    |                  |              |                 |               |             |  |



## Vehicles and Infrastructure Life Cycle

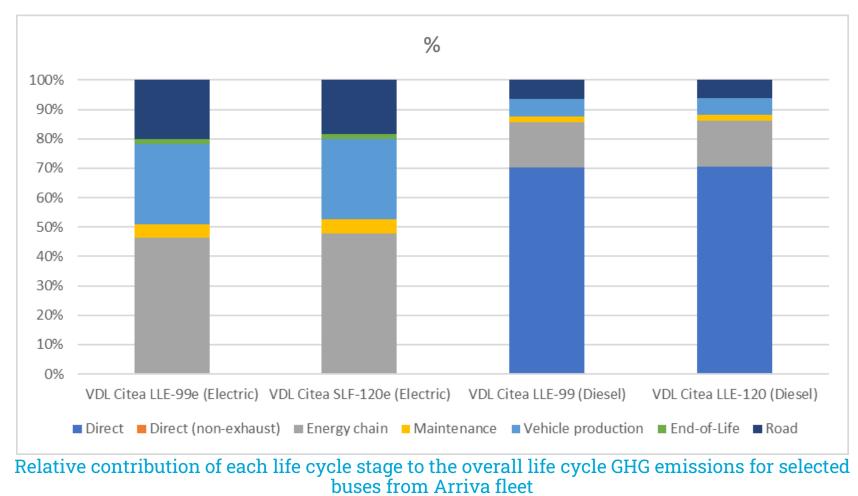

### Most comprehensive emission factors databases

| Calculator                                                              | Mode/vehicle type coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Argonne<br>Mational Laboratory<br>GREET 2 2023: Vehicle-<br>Cycle Model | • <b>Road</b> : passenger car, SUV; including HEV, PHEV, EV, FCV powertrains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Mobitool factors V3.0                                                   | <ul> <li>Soft mobility: walking, kick-scooter, bike, e-bike (various speed ranges; cargo bike).</li> <li>Road: scooter (gasoline, e-scooter; various power ranges), city bus (midibus, single deck, double deck, articulated; diesel, hybrid diesel, CNG, battery electric with charging at depot or opportunity charging, hydrogen fuel cell electric), coach (single deck, double deck; diesel, hybrid diesel, CNG, fuel cell electric), trolleybus (articulated; battery-electric), motorbike (gasoline, battery-electric; various power ranges), passenger car (compact, medium, large, large SUV; diesel, gasoline, CNG, hybrid diesel, hybrid gasoline, plug-in hybrid diesel, plug-in hybrid gasoline, battery-electric, fuel cell electric).</li> <li>Rail: tram, train (regional, long distance, high-speed; Switzerland, Germany, France, Italy, Austria).</li> <li>Water: passenger ship (diesel).</li> <li>Air: cable car, helicopter (single engine, twin engine), airplane (within Europe, intercontinental; various classes).</li> </ul> |  |  |  |  |  |



# Vehicles and Infrastructure Life Cycle

### Arriva Nederland Case




Life cycle GHG emissions for selected buses from Arriva fleet calculated using ISO 14083, GLEC and mobitool factors



# **Vehicles and Infrastructure Life Cycle**

### **Arriva Nederland Case**





## Overview

- Motivation & Status Quo
- Scope Definition
- Calculation Methods and Data
- Way Forward



## Way Forward

#### Methodology – from WTW to life cycle

• Revision/update of the methodology of current standards (e.g., ISO 14083) by extending the scope of calculations from WTW to full life cycle perspective.

#### Access to life cycle inventory databases

 Enabling open access to the most comprehensive commercial life cycle inventory databases (e.g., ecoinvent).

#### **Environmental Product Declarations**

• Enforce/stimulate production of Environmental Product Declarations (EPDs) by vehicle and equipment manufacturers.

#### Harmonization & regular update

 Involvement of all main stakeholders (national and international standardization bodies, transport sector, manufacturing sector) in the process of harmonization across different geographical industry contexts.





# **Questions???**

Marko Kapetanović M.Kapetanovic@tudelft.nl

