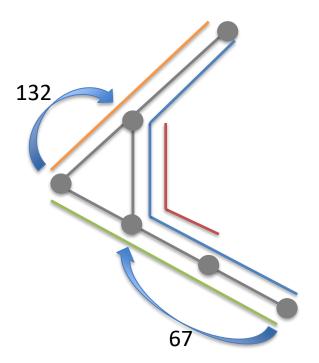
LOB Digital Rail Traffic

Railway line planning for varying demand

with focus on stop planning, frequency setting, and asymmetric lines

Renate van der Knaap

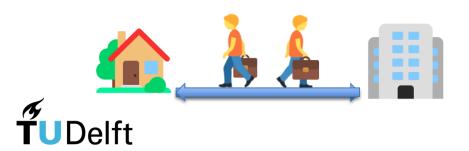
N. van Oort, M. de Bruyn & R.M.P. Goverde Department of Transport and Planning LNMB Conference 2024


Outline

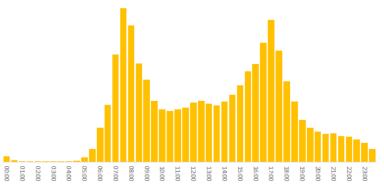
- Railway line planning: what & why for varying demand?
- Methodology: How to find flexible line plans?
- Preliminary case study results
- Key takeaways

Railway line planning

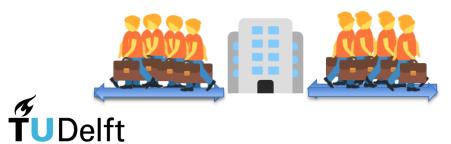
- Input:
 - Railway network
 - Demand
 - Line pool
- Goal:
 - Determine set of lines
 - Each line has:
 - Route through network
 - Stopping pattern
 - Frequency



Line plan and demand

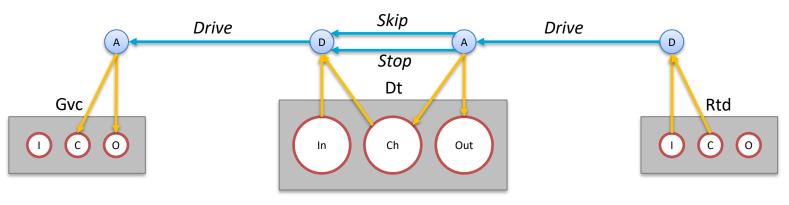

- Quality of service
- Dependent on demand

- Demand changes throughout the day
 - Volume
 - Structure

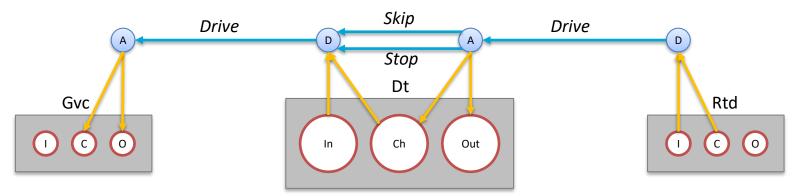

Number of trips per half hour on an average workday

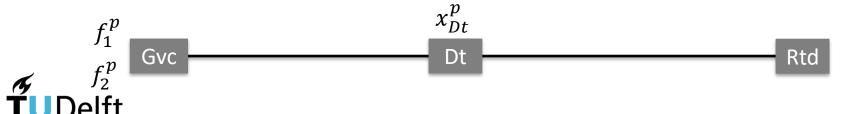
Source: Guis, Banninga, Verschuren - TRENO: gemiddeld is niet goed genoeg - rekenen met pieken en dalen in vervoersvraag (2018)

Line planning for varying demand


- Applied variations in the Netherlands
 - Extra trains during peak hours
 - Lower frequencies in the evening & weekend
- Room for improvement:
 - Mainly symmetric lines (stopping pattern and frequency)
 - Stopping pattern is fixed (IC & Sprinter trains)
- Aim: create a line plan that better matches the demand that is varying throughout the day

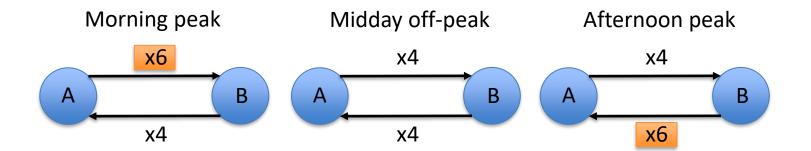
Methodology


- Mixed-Integer Linear Programming (MILP)
- Objective: Minimize total generalized journey time (GJT) of passengers
 - Waiting time for first train
 - In-vehicle time
 - Transfer waiting time
- Routing passengers in change-and-go network



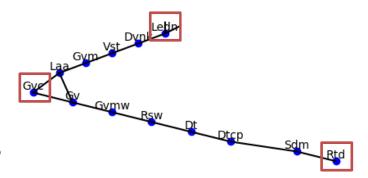
Decision variables

Passenger flow variables



- For each line in the line pool and each period:
 - Stop choice (binary)
 - Frequency choice (binary)

Constraints


- Passenger flow conservation
- Usage of arcs in change-and-go network
- Budget on cost of line plan
- Frequencies over the day should be symmetric

Case study

- Part of Dutch railway network
 - Rtd = Rotterdam Centraal
 - Gvc = Den Haag Centraal
 - Ledn = Leiden
- Demand: 2019 smart-card data of NS
- 3 periods on average Tuesday:
 - Morning peak
 - Midday off-peak
 - Afternoon peak

Preliminary results of case study

- Different plans in different periods
- Compared to 2023 line plan:

• Average GJT per passenger reduced by 4 minutes

Key takeaways

- Passenger railway demand changes throughout the day,
- But changes to the line plan are limited
- Find line plans that are more flexible to the demand with MILP model
- Different line plans are optimal for different periods
- Passengers can benefit from more flexibility (in terms of GJT),
- But will have to accept more transfers.

LOB Digital Rail Traffic

TUDelft

Renate van der Knaap

r.j.h.vanderknaap@tudelft.nl

tudelft.nl/drtlab tudelft.nl/citg/smartptlab