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Abstract

This paper extends the results in [7]. We show that a partial correlation vine represents
a factorization of the determinant of the correlation matrix. We show that the graph of an
incompletely specified correlation matrix is chordal if and only if it can be represented as an
m-saturated incomplete vine, that is, an incomplete vine for which all edges corresponding
to membership-descendents (m-descendents for shot) of a specified edge are specified. This
enables us to find the set of completions, and also the completion with maximal determinant
for matrices corresponding to chordal graphs.
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1 Introduction

This paper extends the results in [7]. We show that the graph of an incompletely specified correla-
tion matrix is chordal if and only if it can be represented as an m-saturated incomplete vine, that
is, a vine whose all edges corresponding to membership-descendents (m-descendents for short)
of a specified edge are specified. We also show that the product of 1 minus the squared partial
correlations over all edges of any regular vine equals the determinant of the correlation matrix.
Combining with previous results, we have the following picture: a partially specified correlation
matrix corresponding to a chordal graph is completable if and only if the partial correlations in
its m-saturated vine representation are in the interval (—1,1), the set of completions are obtained
from the set of assignments of values in (—1, 1) to the unspecified edges of the m-saturated vine,
and the completion with maximal determinant is obtained by assigning 0 to the unspecified edges.

After briefly reviewing definitions of graphs, regular vines and their properties, we prove that
a partial correlation vine represents a factorization of the determinant. We then examine the
completion problem for special graphs. Using a result on junction trees, we show that having a
chordal graph is equivalent to being representable as an m-saturated incomplete vine. This enables
us to find the set of completions, and the completion with maximal determinant for matrices
corresponding to chordal graphs.

2 Preliminary definitions

2.1 Partial and multiple correlations

A partial correlation can be defined in terms of partial regression coefficients.

Let us consider variables X; with zero mean and standard deviations o;, i = 1,...,n. Let the
numbers b12;3,...7n7 ey bln;?,...m—l minimize
2
E ((Xl - b12;3,...,nX2 T e T bln;2,...,n71Xn) ) .

Definition 2.1 (Partial correlation)

[V

P12:3,...n = Sgn(b12;3,...n) (b12;3,... nb21;3,..n)% , etc.



Equivalently we could define the partial correlation as

p . Ci2
12;3,...n = T ———»
" VC11C2

where C; ; denotes the (i, j)th cofactor of the correlation matrix.
The partial correlation pis;3.....n, can be interpreted as the correlation between the orthogonal pro-
jections of X; and X5 on the plane orthogonal to the space spanned by X3,...,X,,.

Partial correlations can be computed from correlations with the following recursive formula [11].

P12:3,....n—1 — P1n;3,...,n—1 " P2n;3,...,n—1
P1233,.n = - > : (1)
\/1 ~ Pin3,...n—1 \/1 ~ Pap;3,....n—1

Definition 2.2 (Multiple correlation) The multiple correlation Ry . ,} of variables X,
with respect to X, ..., X, is

D
Ci

where D is the determinant of the correlation matrixz. It is the correlation between 1 and the best
linear predictor of X1 based on X, ..., X,.

1- R%{Z...,n}

In [6] it shown that Ryg .. ) is non negative and satisfies:

- R%{Z...,n} = (1 - p%n)(l - p%,nfl;n)(l - p%,n72;nfl,n)'“(1 - p%Z;B...n)' (2)
It follows from [6], that Ryys, ..,y is invariant under permutation of {2,...,n} and
D= (1 - R%{Q,...,n}) (1 - R§{37...7n}) (1 - R?’L—l{n}) ; (3)

Of course R,,_1{n} = Pn—1,n-

2.2 Graphs

In this subsection we introduce few definitions used in graph theory. Let G = (N, E) be a graph
with nodes N and edges E. We say that G(U) is a subgraph of a graph G if G(U) is the graph
with node set U C N and with edge set {{uv} € E|u,v € U}. We say that G(U) is a subgraph of
G induced by the vertex set U. U is a cliqgue in G when G(U) is a maximal complete subgraph, that
is a graph in which every pair of vertices is joined. The subset of vertices of G is called complete
if it induces a complete subgraph. A path of length k between vertices @ and f is a sequence
a = ag,...,ap = (3 of distinct vertices of G such that (a;—1,;) € E for alli =1,....,k. A cycle of
length k is a path of length & in which the end points are identical. A subset C' C V is said to be
(a, B)-separator if all paths from « to 8 intersect C. The subset C is said to separate A from B
if it is an (a, 8)-separator for every a € A and 8 € B.

A triple (A4, B, C) of disjoint subsets of the vertex set N of an undirected graph G is said to
form a decomposition of G, or to decompose G, if N = AU B UC and the following two conditions
hold:

1. C separates A from B;
2. C'is a complete subset of N.

The above definition allows any of sets A, B and C' to be empty. If both A and B are non-empty,
we say that the decomposition is proper.
We say that an undirected graph G is decomposable if either



1. it is complete, or;

2. it possesses a proper decomposition (A4, B,C) such that both subgraphs G(4 U C) and
G(B U C) are decomposable.

The graph G is said to be chordal if every cycle of G with length > 4 has a chord, (a chord of
the cycle C' is an edge joining two nonconsecutive nodes of C).

T = (N, E) is a tree with nodes N and edges E if E is a subset of unordered pairs of N with
no cycle. Hence tree is a special case of chordal graph.

Let C be a collection of subsets of a finite set N and T a connected tree with C at its node set.
T is said to be a junction tree if any nonempty intersection C; N Cy of a pair Cy, Cs of sets in C
is contained in every node on the unique path in 7 between C; and Cs. If C is a family of cliques
of a graph G and 7 is a junction tree with C its node set then we say that 7 is a junction tree
(of cliques) for the graph G. The junction tree T for graph G with k cliques C1,Cs, ..., C) has the
property that the intersections S;; = C; N C; between any two neighboring nodes in 7 separate
graph G [4]. S;; is called separator associated with the edge between C; and Cj.

The following shows a very strong connection between chordality and decomposability of a
graph.

Theorem 2.1 [}] A graph G is decomposable if and only if G is chordal.

Theorem 2.2 [/] There exists a junction tree T of cliques for the graph G if and only if G is
chordal.

3 Vines

Graphical models called wvines were introduced in [10, 3, 7]. A vine V on n variables is a nested
set of trees V = (T4, ..., T,,—1) where the edges of tree j are the nodes of tree j+1,j =1,...,n — 2
and each tree has the maximum number of edges. A regular vine on n variables is a vine in which
two edges in tree j are joined by an edge in tree j + 1 only if these edges share a common node,
j=1,...,n— 2. The formal definitions follow.

Definition 3.1 (Regular vine) V is a reqular vine on n elements if
1. V= (T17 .. 7Tn—1)7

2. T is a tree with nodes Ny = {1,...,n}, and edges E;;
fori=2,...,n—1 T; is a tree with nodes N; = E;_; .

3. (proximity) for i = 2,...,n — 1, {a,b} € E;,#a/Ab = 2 where A denotes the symmetric
difference.

A regular vine is called a canonical vine if each tree T; has a unique node of degree' n — i,
hence has maximum degree. A regular vine is called a D-vine if all nodes in T} have degree not
higher than 2 (see Figure 1). There are n(n —1)/2 edges in a regular vine on n variables. An edge
in tree T} is an unordered pair of nodes of T}, or equivalently, an unordered pair of edges of T};_;.
By definition, the order of an edge in tree T is j —1, j =1,...,n — 1.

A regular vine is just a way of identifying a set of conditional bivariate constraints. The
conditional bivariate constraint associated with each edge are determined as follows: the variables
reachable from a given edge via the membership relation are called the constraint set of that edge.
When two edges are joined by an edge of the next tree, the intersection of the respective constraint
sets are the conditioning variables, and the symmetric differences of the constraint sets are the
conditioned variables. More precisely the constraint, the conditioning and the conditioned set of
an edge can be defined as follows:

IThe degree of node is the number of edges attached to it.



Definition 3.2 1. Fore€ E;,i <n —1
U} is the complete union of e, that is, the subset of {1,...,n} reachable from e by the
membership relation.

2. Fori=1,...,n—1,e€ E;, if e ={j,k} then the conditioning set associated with e is
D.=U;NU;
and the conditioned set associated with e is
{Cej, Cer} ={Uj \ De, U \ De}.
3. The constraint set associated with e = {j, k} is
CVe. ={D,,C. j,Ce 1}

Note that for e € Ey, the conditioning set is empty. One can see that the order of an edge is
the cardinality of its conditioning set.
Fore € E;,i <n—1,e={j,k} we have U = Uy UU;.

The following proposition is proved in [3, 7]:
Proposition 3.1 LetV = (T1,..T,—1) be a regular vine, then

n(n—1)

2 J

1. the number of edges is

2. each conditioned set is a doubleton, each pair of variables occurs exactly once as a conditioned
set,

3. if two edges have the same conditioning set, then they are the same edge.

The following definitions provide the vocabulary for studying vines.

Definition 3.3 (m-child; m-descendent) If node e is an element of node f, we say that e is
an m-child of f; similarly, if e is reachable from f via the membership relation: e € e; € ... € f,
we say that e is an m-descendent of f.

Lemma 3.1 For any node K of order k > 0 in a reqular vine?, if variable i is a member of the
conditioned set of K, then i is a member of the conditioned set of exactly one of the m-children of
K, and the conditioning set of an m-child of K is a subset of the conditioning set of K.

Proof. If the conditioning set of an m-child of K is vacuous, the proposition is trivially true, we
therefore assume k > 1. Let K = {A, B} where A, B are nodes of order k£ — 1. By regularity
we may write A = {41, D}, B = {B1, D} where A1, B1, D are nodes of order k — 2. Cx denote
the constraint set of node X, we write Cx = C4 U Cp. By assumption, i € C4ACp. Suppose
i € Ca, theni ¢ Cp. Ca = C41 UCp, and since Cp C Cp and i ¢ Cp, we have i ¢ Cp. It
follows that i € Cx1 ACp; that is, i is in the conditioned set of A. Since the conditioning set of A
is Cy1 NCp C Cp, we have C4y N Cp C C4 NCp; that is, the conditioning set of A is a subset
of the conditioning set of K.O

The edges of a regular vine may be associated with partial correlations, with values chosen arbi-
trarily in the interval (—1,1) in the following way:

Fori =1,...,n—1, with e € E; and {j,k} the conditioned variables of e, D, the conditioning
variables of e, we associate

Pjk;D. -
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Figure 1: Partial correlations D-vine (left) and canonical vine (right) on 4 variables.

The result is called a partial correlation vine.

Theorem 3.1 [3] shows that each such partial correlation vine specification uniquely determines
the correlation matrix, and every full rank correlation matrix can be obtained in this way. In
other words, a regular vine provides a bijective mapping from (—1, 1)(2) into the set of positive
definite matrices with 1’s on the diagonal.

Theorem 3.1 For any reqular vine on n elements there is a one to one correspondence between
the set of n xXn positive definite correlation matrices and the set of partial correlation specifications
for the vine.

All assignments of the numbers between -1 and 1 to the edges of a partial correlation regular vine
are consistent, in the sense that there is a joint distribution realizing these partial correlations,
and all correlation matrices can be obtained this way.

One verifies that the correlation between ith and jth variables can be computed from the sub-vine
generated by the constraint set of the edge whose conditioned set is {i,j} using recursive the
formulae (1), and the following lemma.

Lemma 3.2 [7] If z,z,y € (—1,1), then also w € (—1,1), where

w = z/(1 —22)(1 — y2) + zy.

A regular vine may thus be seen as a way of picking out partial correlations which uniquely
determine the correlation matrix and which are algebraically independent. The partial correlations
in a partial correlation vine need not satisfy any algebraic constraint like positive definiteness. The
”completion problem” for partial correlation vines is therefore trivial. An incomplete specification
of a partial correlation vine may be extended to a complete specification by assigning arbitrary
numbers in the (—1,1) interval to the unspecified edges in the vine.

Partial correlation vines have another important property that the product of 1 minus the
square partial correlations equals the determinant of the correlation matrix.

2Equivalently one can formulate this lemma for edges of V.



Theorem 3.2 Let D be the determinant of the correlation matrix of variables 1, ...,n; with D > 0.
For any partial correlation vine;

n—1

D = H (1= pfkp.) (4)
1 ecE;

1=
where {j,k} and D, are conditioned and conditioning sets of e.

Proof. Re-indexing if necessary, let {1,2|3,...,n} denote the constraint of the single node of
topmost tree T,,—1. Collect all m-descendants of this node containing variable 1. By Lemma 3.1,
1 occurs only in the conditioned sets of the m-descendent nodes, and the conditioning set of an
m-child is a subset of the conditioning set of its m-parent. By Proposition 3.1 variable 1 occurs
exactly once with every other variable in the conditioned set of some node. Re-indexing {2,..n}
if necessary, we may write the constraints of the m-descendants of the top node as

{1,23,...,n}, {1,314, ...,n}, ..{1,n—1|n}, {1,n}.
The partial correlations associated with these m-descendent nodes are

£1,2;3,...,n5 P1,3;4,....,n5 ---Pl,n—1;n5 Pl,n-

and are exactly the terms occurring in (2). Hence we may replace the terms in the product on
the right hand side of (4) containing these partial correlations by 1 — Rf{2 ...ny- Note that (2) is

invariant under permutation of {2,...,n}. Remove variable 1 and nodes containing 1. These are
just the nodes whose constraints are given above. We obtain the subvine over variables {2, ...,n}.
By Lemma 3.1, 2 is in the conditioned set of the top node of this subvine. We apply the same
argument re-indexing {3, ...,n} if necessary. With this re-indexing, we may replace the product of
terms in (4)

(1 - p§,3;4,...,n)’ (1 - pg,4;5,...,n)’ (1 - pg,n)
by 1—R3.; - Proceeding in this way we obtain (4).0

4 The completion problem

A symmetric real (n X n) matrix with off-diagonal elements in the interval (-1,1) and with ”?1”’s
on the main diagonal is called a proto correlation matriz. Let A be an n X n partially specified
proto correlation matrix such that the unspecified cells are given by index pairs

(ikajk)’ (.]k:“f): k= 17"'7K' (5)

We must fill these unspecified elements such that the resulting matrix B = [b;;]; j=1,...,» i positive
definite. Thus we must find a vector (x1, ..., x), such that

bik,jk = bjk,ik:-rk, k:].,...,K,

bij = ag, otherwise

and B is positive definite.

4.1 Optimization approach

We could approach this problem by trying to find a projection of A on the set of positive definite
matrices. However, the constraint of positive definiteness is quite strong. The set of positive defi-
nite matrices is not a simple set. Thus, algorithms that search elements of this set are complicated.



The partial correlations specified on a regular vine are algebraically independent and they
uniquely determine the correlation matrix. Thus, the partial correlation vine can be seen as an
algebraically independent parametrization of the set of correlation matrices.

We thus formulate the completion problem as the following optimization problem. Let A be a
partially specified proto-correlation matrix for n variables, let V be a regular vine on n variables,
let = be a vector of partial correlations assigned to the edges of V, and let B(z) be the correlation
matrix calculated from V with z. We then minimize

> |4ij — B(x)s]

where the sum is over the specified cells of A. If the sum is zero, then A is completable. Notice
that the set of vectors « which we must search is simply (-1, 1)(3)

4.2 Completion problem for some types of graphs

For some special cases of partially specified matrices the completion problem is quite simple. They
are usually discussed from the perspective of the graph corresponding to the matrix.

Definition 4.1 Let A be an n-by-n partially specified proto correlation matriz. Let G = (N, E)
be a graph with nodes N = {1,2,...,n} and edges set E. G is said to be a graph for A or A is
said to correspond to G (denoted by Ag) if for i # j, {i,j} ¢ E implies that a;; and aj; are
unspecified.

Deciding whether a partially specified matrix A can be completed to a positive definite matrix
is simple if the graph G for A is a chordal graph. In this case Ag is completable if for every clique
K in G the submatrix of A corresponding to elements in K is positive definite [1]. A matrix with
this property is called partial positive definite. The positive definite completion of A, say B, that
has maximal determinant can be obtained. B has a property that unspecified cells of A are equal
to zero in the inverse of B [5].

If A corresponds to G which is a cycle then to decide about the completability of A the following
condition must be checked [2]. First, for all e in E for which the corresponding element of A is
denoted a., one must calculate

be = ;arccos(ae).

A is completable if b = (be).cp satisfy condition

Y obe— D be<|F|-1

e€F c€C\F
for C a cycle in G, F C C with |F| odd.

The set of completions for Ag can be found by solving a system of equations [2].
The above conditions separately or coupled are proved to be sufficient also in different cases.
For extensive exposition we refer the reader to e.g. [8, 9].

4.3 Completion problem with vines

In analogy to incompletely specified correlation matrices one can define an incomplete reqular vine
and incomplete partial correlation regular vine (incomplete vine, and incomplete partial correlation
vine for short). An incomplete vine is a regular vine from which some edges have been removed,
and an incomplete partial correlation vine is an assignment of partial correlations to the edges
of an incomplete vine. An incomplete proto correlation matrix A is analogous to an incomplete
partial correlation vine and the graph for A is analogous to the incomplete vine.



The completion problem for special cases of graphs can be solved using incomplete partial
correlation vines [7]. We show that chordal graphs correspond to incomplete regular vines with
a very simple structure. In this case the set of completions and the completion maximizing the
determinant are easily obtained.

Definition 4.2 (m-saturated incomplete vine) An incomplete vine is m-saturated if all m-
descendants of an edge in its edge set belong to the edge set of the incomplete vine.

In Figure 2 an m-saturated and non m-saturated D-vines on four variables are shown.
[5] [3] [5] [3]
Ml Bl s Kl Bl By Bl s Kl Bl

Figure 2: M-saturated (left) and non m-saturated (right) D-vines on 4 variables.

Remark 4.1 Notice that an m-saturated vine can be easily extended to fully specified vine by
adding missing edges in trees of higher order. This extension is not in general unique.

Lemma 4.1 Let A be an incomplete proto correlation matriz and let V be an incomplete vine
whose conditioned sets correspond to the specified cells of A. IfV is m-saturated, then A determines
a unique partial correlation specification of V.

Proof. We must show that if p;; is specified in A; then the partial correlation p;j.p in V with
conditioned set {i,j} can be calculated from the specified correlations (we note that these values
need not be in (—1,1)). The proof is by induction on the cardinality of D. When D has cardinality
zero the statement is obvious. The m-saturation property together with regularity means that
correlations for the conditioned sets in the subvines over {i, D} and {j, D} are given. Since {3, j}
is specified, then the submatrix of A on {4, j, D} is fully specified. Hence any partial correlations
involving variables in {3, j, D} can be calculated. O

The value p;j;p calculated in the above proof need not be in (—1,1), as indeed A may not
be completable. Note also that if the edge e € E,,_1 belongs to the edge set of an m-saturated
incomplete vine, then there are in fact no missing edges and the vine is complete. An m-saturated
incomplete partial correlation vine V corresponds to a incomplete correlation matrix A if the con-
ditioned sets of V’s edge set correspond to the specified cells of A. In this case A is of a special
form. All submatrices corresponding to the constraint sets of edges in V are fully specified. Hence
the constraint sets of the edges in V of highest order are cliques in the graph G corresponding to
A. If an incomplete proto-correlation matrix corresponds to an m-saturated incomplete partial
correlation vine, then the latter is not in general unique. It suffices to consider an incomplete
correlation matrix in which only cell {i,j} is unspecified. Any regular vine whose single edge
e € E,,_; has conditioned set {i,j} will, upon removing this edge, yield a m-saturated incomplete
vine which can be specified by A.

We can define a partial ordering of edges in an m-saturated vine as follows:
e1 > ey if es is m-descendent of e;. (6)

For chordal graphs we can construct m-saturated incomplete vines preserving the separation
properties of the graph.



Theorem 4.1 G = (N, E) is chordal if and only if there exists an m-saturated incomplete vine V
on N with conditioned sets E.

Proof. Let a chordal graph G be given. Since G is chordal then by Theorem 2.2 there exists a
junction tree T with cliques C1,...,C} for G. We construct an m-saturated vine corresponding
to T recursively. One clique in 7, say Cy, corresponds to a complete vine on elements of Cj.
Let us assume that we have constructed an m-saturated vine for Ci,...,C;. We show how this
m-saturated vine can be extended by adding Cj;1, 1 < j < k — 1. If the intersection of Cj4q
with C1,...,C; is empty then subvine on elements of C;; is unconstrained. However, if there
exists 1 <i < j such that S; 11 = C; N Cjy1 # 0 then variables in Sj 1 = [J]_; Sij+1 have been
already placed in the m-saturated vine for Ci, ..., C;. The m-saturated subvine for S;; is already
determined. Since the m-saturated vine can be always extended to complete vine (see remark
4.1) then the subvine for Cj;1 is constrained to contain the m-saturated subvine for S;i,. For
the m-saturated vine the subvines corresponding to cliques Cfi, ..., C}, are complete vines and the
union of their constraint sets is E.

Conversely, let V be a m-saturated vine. Let ey, es, ..., € be maximum edges of V with respect
to partial ordering defined in (6). Let C, Ca, ..., C be the constraint sets of ey, ..., ex, respectively.
Let G be a graph corresponding to V. We prove that the graph G is decomposable by induction on
the number of maximal edges. If V is complete (it has one maximum edge) then G is decomposable,
otherwise, consider a completion of V as in remark 4.1. Let the constraint set of the top node e
of this completion be i,j|N \ {i,j}. By Lemma 3.1 and Proposition 3.1 ¢ is in the conditioned
sets of all m-children of nodes containing ¢, and never occurs in a conditioning set. It follows that
all nodes containing ¢ must be ordered by the m-descendent relation, and this means that the
constraint sets of nodes containing 7 are ordered by the subset relation. Hence only one clique,
say Cs can contain i.

Counsider the triple (4, B,C) = ({i}, N\ Cs,Cs \ {i}). Since i belongs only to Cs then the set
C separates A from B, moreover since Cy is a clique then C' is a complete subset of N. G(AU C)
is complete hence decomposable and G(B U C) is decomposable by the induction step. From
Theorem 2.1 G is chordal. O

In [7] it is shown that positive definiteness of a proto correlation matrix can be checked by
calculating partial correlations on a regular vine. If all partial correlations on this vine are from
the interval (-1,1) then this matrix is positive definite. Hence checking completability of a partially
specified proto correlation matrix corresponding to an m-saturated incomplete vine specification
V is quite easy: if all partial correlations obtained via Lemma 4.1 are in (—1, 1), then the matrix is
completable. Moreover, the set of completions is easily obtained as the set of assignments of values
in (—1,1) to the unspecified edges of V. It follows from Theorem 3.2 that the completion with
maximal determinant is obtained by assigning the value 0 to the unspecified partial correlations.
We record this as:

Theorem 4.2 If A is a partially positive definite correlation matrix then the set of completions of
A is the set of correlation matrices computed by assignments of values in (—1,1) to the unspecified
edges to the m-saturated incomplete partial correlation vine corresponding to A. The completion
with maximal determinant is the correlation matriz computed by assigning the value 0 to the
unspecified edges.

Example 4.1 Let us consider the chordal graph G in Figure 3.

This graph corresponds to the m-saturated vine mY in Figure 4 (left).

All partial correlations assigned to the edges of mYV can be calculated from specified correlations
in the correlation matriz corresponding to G. mY can be extended to completely specified vine V
in Figure 4 (right). Of course this extension is not unique. Additional edges in V are presented
with dotted lines. From Theorem 3.2 the determinant D of the correlation matriz corresponding
to V can be calculated as

D = (1—pi,)(1—p33)(1—p3) (1 — pis) (1 — p3)



Figure 4: A m-saturated vine (left) and its extension to the complete vine.

(1- P%3 2)(1— P%eg)(l - ,0%5;4)(1 - P§4;2)
(1 P36 12)(1 = 9%4;23)(1 - P§5;24)
(1 P46 123) (1 — P%5;234)(1 - 926;1234)-

Correlations pi2, p23, P24, Pas, P26, P13;2, P16;2, P25:4 aTe given or can be calculated using recursive
formula 1. Other partial correlations can be chosen freely. To obtain the completion with mazimum
determinant one must take

P34;2 = P36;12 = P14;23 = P35;24 = P46;123 = P15;234 = P56;1234 = 0.

In [7] the partial correlation specification on the canonical vine was used to find the completion
of some types of partially specified matrices. In particular the authors showed how to solve the
completion problem for Ay where G is a wheel3.

5 Conclusions

In this paper we have shown how the matrix completion problem can be solved using partial
correlation vine. The idea was to simplify the problem by transforming it to the algebraically
independent representation of the correlation matrix. Completion problem using the optimization
approach becomes then very simple. For special types of matrices, corresponding to chordal
graphs, this transformation allows to describe all sets of completions. For other cases however
there is no guidance which vine should be used.

3A wheel is a graph composed of simple cycle and additional node connected to all nodes in the cycle.
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