
0 9 0 4 8 - B - 3 5 . q x d   3 2 1P a g e  A M   1 2 : 0 6  0 9 / M a y / 0 3   

Safety and Reliability – Bedford & van Gelder (eds) 
© 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 551 7 

Two-stage Bayesian models – application to ZEDB project 

C. Bunea, T. Charitos & R.M. Cooke

Delft University of Technology, Delft, Netherlands


G. Becker 
RISA, Berlin, Germany 

ABSTRACT: A well-known mathematical tool to analyze data for nuclear power facilities is the two-stage 
Bayesian models. In this paper we review this mathematical model, its underlying assumptions and supporting 
arguments. Furthermore, we will verify the software implementations of the ZEDB database and compare the 
results. Lastly, an assessment of the relevance of new developments will take place, while the viability of the 
two-stage Bayesian approach will be discussed. 

1 INTRODUCTION 

ZEDB [Becker and Schubert, 1998] is the major 
German effort to collect data from nuclear facilities. 
The goal of the project is to create a reliability data 
base which contains all major plant events: failure 
events, operational experience, maintenance actions. 
As a mathematical tool to analyse ZEDB data, a two-
stage Bayesian model was chosen. Firstly we identify 
the standard conditional independence assumptions 
and derive the general form of the posterior distribu­
tion for failure rate �0 at plant of interest 0, given fail­
ures and observation times at plants 0, 1, … n. Any 
departure for the derived mathematical form neces­
sarily entails a departure from the conditional inde­
pendence assumptions. Vaurio’s one stage empirical 
Bayes model is discussed as an alternative to the two-
stage model [Vaurio, 1987]. Hofer [Hofer et al., 1997, 
Hofer and Peschke, 1999, Hofer, 1999] has criticized 
the standard two-stage model and proposed an alter-
native, which is also discussed. Finally, the methods 
of Pörn and Jeffrey for choosing a non-informative 
prior distribution are discussed. 

2	 BAYESIAN TWO-STAGE HIERARCHICAL 
MODELS 

Bayesian two-stage or hierarchical models are widely 
employed in a number of areas. The common theme 
of these applications is the assimilation of data from 
different sources, as illustrated in Figure 1. The data 
from agent i is characterized by an exposure Ti and a 
number of events Xi. The exposure Ti is not considered 
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Figure 1. Bayesian two-stage hierarchical model. 

stochastic, as it can usually be observed with certainty. 
The number of events for a given exposure follows a 
fixed distribution type, in this case Poisson. The param­
eter(s) of this fixed distribution type are uncertain, and 
are drawn from a prior distribution. The prior distribu­
tion is also of a fixed type, yet with uncertain parame­
ters. In other words, the prior distribution itself is 
uncertain. This uncertainty is characterized by a hyper-
prior distribution over the parameter(s) of the prior. 

In Figure 1, the hyperprior is a distribution P(Q) over 
the parameters Q of the prior distribution from which 
the Poisson intensities �1, … �n are drawn. In sum, our 
model is characterized by a joint distribution: 

(1) 

To yield tractable models, such models must make two 
types of assumptions. First, conditional independence 
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assumptions [Pörn, 1990, Iman and Hora, 1990] are 
made to factor (1). Second, assumptions must be 
made regarding the fixed distribution types and the 
hyperprior distribution P(Q). The conditional inde­
pendence assumptions may be read from Figure 1, by 
treating this figure as a “belief net”. In particular, this 
figure says: 

CI.1 Given Q, �i is independent of {Xj, �j}j�i 

CI.2 Given �i, Xi is independent of {Q, �j , Xj}j�i 

The expression “Xi is independent of {Q, �j , Xj}j �i ” 
entails that Xi is independent of Q, and Xi is inde­
pendent of �j. 

With these assumptions we can derive the condi­
tional probability P(�0|X0, … Xn) for the failure rate at 
plant 0, given Xi failures observed at plant i, i � 0, 
… n. This is sometimes called the posterior probabil­
ity for �0. 

2.1 Derivation of posterior probability for �0 

We assume throughout that the plant of interest is 
plant 0. We seek an expression for 

(2) 

We step through this derivation, giving the justification 
for each step. A more detailed exposition is found in 
[Cooke et al., 1995]. “#” denotes proportionality, 
“CI.1” means that conditional independence assump­
tion i is invoked, i � 1, 2; “BT” denotes Bayes theorem: 
and “TP” denotes the law of total probability; and “FB” 
denotes Fubini theorem. The Fubini theorem (see 
[Cooke et al., 2002] for a more detailed discussion) 
authorizes switching the order of integration if the inte­
grals are finite [Royden, 1968, p 269], 

(3) 

(4) 

Expression (4) is normalized by integrating over 
all l0. 

2.2 Summary of significant features 

1. If Q � q0 is known with certainty, then there is no 
influence from X1, …Xn on �0. Indeed, in this case 
the posterior density in �0 is simply proportional to 
P(X0|�0) P (�0|q). 

2. As the numbers Xi, Ti , i � 1… n get large, Xi/T i → 
�i, then the Poisson likelihood P(Xi|�i) converges to 
a Dirac measure concentrating mass at the point 
Xi � Ti�i. In the limit the “hyperposterior” 

(5) 

becomes 

(6) 

(6) corresponds to the situation where P(q) is 
updated with observations �1, … �n. Note that as 
the observation time increases, the number n does 
not change. If n is only modest (say in the order 10) 
then the effect of the hyperprior will never be dom­
inated by the effect of observations (see [Cooke 
et al., 2002] for a more detailed discussion). We 
say that the hyperprior persists in the posterior dis­
tribution P(�0|X0, … Xn). 

3. It is shown in [Cooke et al., 1995], [Hennings and 
Meyer, 1999] that improper hyperpriors P(q) do 
not always become proper when multiplied by 
[+i�1…n P(�i � Xi/Ti|q)]P(q). In other words, the 
hyperposterior may well remain improper. 

2.3 Selected literature review 

Two-stage Bayesian models have been implemented 
by various authors. [Kaplan, 1983] used a log normal 
prior with a Poisson likelihood, which of course is not 
a natural conjugate. This method has been imple­
mented by ZEDB. [Iman and Hora, 1989, 1990] and 
[Hora and Iman, 1987] proposed a natural conjugate 

322 



0 9 0 4 8 - B - 3 5 . q x d   3 2 3P a g e  A M   1 2 : 0 6  0 9 / M a y / 0 3   

gamma prior. [Vaurio, 1987] proposed a one-stage 
empirical Bayes approach, using other plants to deter-
mine the prior. The SKI data bank [1987] uses a two-
stage model developed by Pörn [1990]. This model 
was reviewed in [Cooke et al., 1995], and further dis­
cussed in [Meyer and Hennings, 1999]. Recently 
[Hofer et al., 1997], [Hofer and Peschke, 1999] and 
[Hofer, 1999] have suggested that an incorrect chance 
mechanism underlies the two-stage models, and have 
proposed their own model. In this section we briefly 
review these developments. 

In the two-stage Bayesian models considered here a 
Poisson likelihood is used. The prior is usually gamma 
or log normal. The second stage places a hyperprior 
distribution over the parameters of the prior gamma or 
log normal distribution. We briefly recall the defini­
tions and elementary facts of the Poisson, Gamma, 
and log normal distributions in Table 1 below. 

Using a gamma prior with parameters as above, the 
term +i�1…n 
P(Xi|�i)P(�i|q)d�i in (4) becomes after 
carrying out the integration: 

(7) 

Further calculation to solve equation (4) must be 
performed numerically. It is shown in [Cooke et al., 
1995] that improper hyperpriors may remain improper 
after assimilating observations. The asymptotic behav­
ior of the “hyperposterior” 
P(a, b|X1…Xn, T1…Tn) a P(X1…Xn, T1…Tn|a, b) 

P(a, b) 

will essentially be determined by the maximum of 
P(X1…Xn, T1…Tn|a, b). The significant fact is that 
P(X1…Xn, T1…Tn|a, b) has no maximum; it is 
asymptotically maximal along a ridge, see (Figure 2). 

Table 1. 

2.4 Vaurio 

[Vaurio, 1987] proposed an analytic empirical Bayes 
approach to the problem of assimilating data from 
other plants. A simple one-stage Bayesian model for 
one plant would use a Poisson likelihood with intensity 
�, and a ,(�|a, b) prior. Updating the prior with Xi fail­
ures in time Ti yields a ,(�|a � Xi, b � Ti) posterior. 
Vaurio proposes to use data from the population of 
plants to choose the ,(�|a, b) prior by moment fitting. 
Any other two moment prior could be used as well. 
Data from other plants are not used in updating, hence, 
this is a one-stage model. 

The model is consistent, in the sense that as Xi, Ti → 
�, with Xi/Ti → �i, his model does entail that E(�i|Xi, 
Ti) → �i. Elegance and simplicity are its main advan­
tages. Disadvantages are that it cannot be applied if all 
Xi � 0, or if the population consists of only 2 plants. 
Further, numerical results indicate that the model is 
non-conservative when the empirical failure rate at 
plant 0 is low and the empirical failure rates at other 
plants are high. A final criticism, which applies to 
most empirical Bayes models is that the data for the 
plant of interest is used twice, once to estimate the 
prior and once again in the Poisson likelihood. 

2.5 Hofer 

Hofer has published a number of articles [Hofer et al., 
1997], [Hofer, 1999] and [Hofer and Peschke, 1999] 
in which the two-stage models are faulted for using a 
“wrong chance mechanism”, and a new model is pro-
posed. He does not explicitly formulate conditional 
independence assumptions, and does not derive the 
posterior by conditionalizing the joint as done above. 
Rather, the model is developed by shifting between 
the point of view of “observing �i ” and “observing 
(Xi, Ti)”. [Hofer, 1997] criticizes [Hora and Iman, 1990] 
for using the wrong order of integration of improper 
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integrals (see [Cooke et al., 2002] for a more detailed 
discussion). In later publications, a “deeper” reason 
is found to reside in the use of a “wrong chance 
mechanism”. Hofer’s model appears to result in a 
posterior of the following form: 

(8) 

Notice that this does not appear to have the form 
of (4). 

Although Hofer does not explicitly formulate his 
conditional independence assumptions, he does use 
them. E.g. he uses CI.1 to derive the expression in the 
denominator (see equation (4) of [Becker and Hofer, 
2001]). If CI.1 holds, then necessarily 

(9) 

and (8) reduces to (4). If CI.1 does not hold, then the 
origin of the product + P(�i|q) is unclear. Hofer says 
that P(�1…�n) � +  r(�i), where r(�i) is a noninfor­
mative prior, which he takes to be constant. This 
entails that the �i are unconditionally independent. It 
is not difficult to show that if �i are unconditionally 
independent, and independent given q, that then �i is 
independent of q. Indeed, independence implies that 
for all �i, P(�1, … �n) � +  P(�i) � +
P(�i|q) P(q)dq. 
By conditional independence; P(�1, …�n) � 
P(�1, … 
�n|q)P(q)dq � 
+ P(�i,|q)P(q)dq. The �i are identi­
cally distributed given q; take �i � �; i � 1, …n. 
These two statements imply [
P(�|q)nP(q)dq]1/n � 

P(�|q)P(q)dq. Since the integrand is non-negative, 
this implies that P(�|q) � constant � P(�) [Hardy, 
Littlewood and Polya, 1983, p 143]. This would make 
the entire two-stage model quite senseless. If P(�1… 
�n) � +  r(�i) � constant in the numerator of (8), but 
not in the denominator, then (8) is not equivalent to 
(4), but rests on conflicting assumptions. 

In any event, if (8) does not reduce to (4) then the 
assumptions CI.1, CI.2 do not both hold. Hofer does 
not say which assumptions are used to derive (8), in 
fact (8) is not derived mathematically, but is “woven 
together” from shifting points of view. The danger of 
such an approach is that conflicting assumptions may 

be inadvertently introduced. This appears to be the 
case, as the �i are at one point assumed to be inde­
pendent, and at another point are assumed to be con­
ditionally independent given q. 

2.6 Hyperpriors 

Pörn (1990) introduces a two-stage model with a 
gamma prior for �, similar to (Hora and Iman, 1990). 
He provides an argument for choosing the following 
non-informative (improper) densities for the parameters 
v, m�: g(v) � 1/v, v � 0, and k(m�) � 1/�(m�(1 � m�)), 
m� �  0, where v � 1/a is the coefficient of variation 
and m� �  Ta-b is the expected number of failures 
at time T, given � and b . Assuming independence 
between these parameters and transforming back to 
the hyperparameters a and b, a � 1/v2 b � T-v2m, a 
joint (improper) hyperprior density for a and b is 
obtained proportional to: 1/b�(a(a � b-T)). 

Another frequently used principle, called Jeffrey’s 
rule, is to choose the non-informative prior P(q) for a 
set of parameters q proportional to the square root of 
the determinant of the information matrix 
n(q): 

(10) 

and L is the log-likelihood function for the set of the 
parameters. 

Hora and Iman (1990) apply this rule to the two-
dimensional parameter vector (a, b) for the Gamma 
distribution of the failure rate � . They get the (approx­
imate) improper hyperprior: 1/a1/2b, a, b � 0. 

3 ZEBD SOFTWARE VERIFICATION 

Three data sets are used to check the concordance 
with the results from [Becker and Hofer, 2001]. 
Differences between our results and those of ZEDB 
reflect differences that may arise from an independent 
implementation based on public information. Although 
ZEDB recommends the lognormal model, both the 
lognormal and gamma models are supported, and 
both are benchmarked here. The data sets are shown 
in Tables 2–4. 

3.1 Gamma model 

The computation may be broken into three steps: 
Firstly, truncate the range of (� , � ) to a finite rectan­
gle. Then identify a range for �0 which contains all the 
“plausible” values. Finally, for every “plausible” value 
of �0, evaluate numerically the integrals over a and b, 
and interpolate to find the 5%, 50% and 95% quantiles. 
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Table 2. Data set 1 (4 in [Becker and Hofer, 2001]). 

Nr. failures Obs. time Nr. failures Obs. time 

7 24000 0 24000 
1 24000 0 24000 
3 24000 0 24000 
2 24000 2 24000 
1 24000 0 24000 
2 24000 0 24000 

Table 3. Data set 2 (2 in [Becker and Hofer, 2001]). 

Nr. failures Obs. time Nr. failures Obs. time 

1 20000 0 6000 
0 2000 1 10000 
0 4000 2 12000 

Table 4. Data set 3 (3 in [Becker and Hofer, 2001]). 

Nr. failures 0 0 1 
Obs. Time 12000 2000 3000 

Remark: The underlined field is the plant of interest. 

The likelihood P(X1, …Xn, T1, …Tn|a, b) as a func­
tion of a and b(2.7) is presented in Figure 2. Values 
for (X1, …Xn, T1, …Tn) are taken from data set 1. For 
uniform hyperpriors, this likelihood is proportional to 
the hyperposterior distribution P(a, b|X, T). Note that 
P(a, b|X, T) does not peak but “ridges”. This means 
that a “natural” truncation for a and b cannot be 
defined; that is, we cannot define a finite rectangle for 
a and b which contains most of the hyperposterior 
mass. In our simulations, these ranges were chosen in 
a manner similar to [Cooke et al., 1995], using Pörn’s 
heuristic. The inability to localize the hyperposterior 
mass for (a, b) means that we cannot localize the pos­
terior mass 

For each finite rectangle for a, b, the mass in �0 
will be localized, but other choices for a, b could sig­
nificantly shift the region in which �0 is localized. 
This means, of course, that the method of truncation 
in step 1 will influence the plausible values in step 2, 
and can have a significant effect on the results. 

Figures 3 and 4 represent the hyperposterior distri­
bution for Pörn’s approach and Jeffrey’s hyperpriors; 
also with (X1, …Xn, T1, …Tn) from data set 1 below. 
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Hyperposterior distribution using Porn's rule 

6 

0 

1 

0.5 

1000 
2000 

3000 
4000 

x 10-10 

4 

2 

0 

5000 

alfa 0 beta 

Figure 4. 

Table 5. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 1. 

Uniform Pörn Jeffrey 
5% 2.3971 E-5 2.8429 E-5 2.8665 E-5 
50% 8.0511 E-5 8.4990 E-5 8.5678 E-5 
95% 2.0012 E-4 2.0598 E-4 2.0670 E-4 

Ranges TUD ZEDB 
a: 0.033…1 0.002…351 
b: 50…5000 582…232,219 

Tables 5–7 compare our results for the uniform, 
Pörn and Jeffrey prior, and give the integration ranges 
for a and b for our computation and for the ZEDB 
results. Table 8 compares the TUD and ZEDB results. 
Note that the 5% quantile for dataset 3 is a more than 
a factor three lower in the TUD results. In dataset 1 
the agreement is better, as there are more plants, more 
operational hours and more failures. These differences 
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Table 6. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 2. 

Uniform Pörn Jeffrey 
5% 4.2371 E-5 3.9306 E-5 4.3845 E-5 
50% 1.4603 E-4 1.4278 E-4 1.4908 E-4 
95% 2.0012 E-4 2.0598 E-4 2.0670 E-4 

Ranges TUD ZEDB 
a: 0.03…1.2 0.01…1926 
b: 50…5000 789…350,098 

Table 7. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 3. 

Uniform Pörn Jeffrey 
5% 3.3976 E-5 3.6503 E-5 3.6394 E-5 
50% 1.7514 E-4 2.1247 E-4 2.0711 E-4 
95% 5.8914 E-4 6.6524 E-4 6.5640 E-4 

Ranges TUD ZEDB 
a: 0.0154…0.3846 0.01…503 
b: 50…5000 126…91385 

Table 8. Comparison TUD (Pörn) and ZEDB for gamma 
model. 

Dataset 1 Dataset 2 Dataset 3 

Gamma Model TUD (Pörn) 
5% 2.8429 E-5 3.9306 E-5 3.6503 E-5 
50% 8.4990 E-5 1.4278 E-4 2.1247 E-4 
95% 2.0598 E-4 3.3217 E-4 6.6524 E-4 

Gamma Model ZEDB 
5% 3.2518 E-05 1.2220 E-04 1.2141 E-04 
50% 6.9926 E-05 1.7247 E-04 2.5766 E-04 
95% 1.3044 E-04 3.4473 E-04 7.4076 E-04 

are consistent with the results reported in [Cooke 
et al., 1995], where “stress-testing” the gamma model 
by exploring the range of plausible choices for a, b 
resulted in differences up to a factor 5. 

3.2 Lognormal model 

ZEDB adopted the lognormal distribution as a prior, 
based on the maximum entropy principle invoked by 
[Jaynes, 1968]. The uncertainty over parameters m and 
s is expressed by hyperpriors. [Becker, 2001] takes into 
account four types of hyperprior distribution based on 
Jeffrey’s rule. [Becker, 2001] proposes four different 
implementations of Jeffrey’s rule. We caution against 
the multivariate implementation and version of the 
Jeffrey’s rule when parameters of different kind e.g. 
location and scale parameters, are considered. In this 
case, as [Box and Tiao, 1974] suggested, it is wiser to 
choose parameters, which can be assumed independent 

and then apply the one parameter version of the rule. 
This is done only in the first and the fourth case below 
(see [Cooke et al., 2002] for a more detailed discus­
sion); case 1 is used by ZEDB. 

–	 1st case: Jeffrey’s rule is applied to the parameters 
m and s: In this case the hyperprior has the well-
known form f (m, s) # 1/s2. The same result is 
obtained, if m and s are assumed to be independ­
ent, and Jeffrey’s rule is applied twice. 

–	 2nd case: Jeffrey’s rule is applied to the parameters 
a � E(X) and CF � �(VAR(X)/E(X)) (coefficient of 
variation). The resulting hyperprior in terms of m 
and s has the form 

–	 3rd case: Jeffrey’s rule is applied to the parameters 
a � E(X) and b � �(VAR(X)). We recall that 
VAR(X) � CF2a2. The resulting hyperprior in terms 
of m and s has the form 

– 4th case: Jeffrey’s rule is applied to the parameters 
a � E(X) and s, assuming independence between 
them. In this case has we have: 

For each case the steps in the calculation are simi­
lar to those for the gamma model, except that in 
step 1, truncation is applied to the parameters of the 
lognormal density. 

The likelihood P(X1, …Xn, T1, …Tn|m, s) as a func­
tion of � and � (7) is presented in Figure 5, with val­
ues for (X1, …Xn, T1, …Tn) taken from case 1. For 
uniform hyperpriors, this likelihood is proportional to 
the hyperposterior distribution P(m, s|X, T ). Note 
that, in contrast to Figure 2, P(m, s|X, T ) does peak. 
This means that a “natural” truncation for m and s can 
be defined as any rectangle containing the peak. The 
choice which such rectangle will have negligible 
influence on the results. 

Figure 6 shows the hyperposterior distribution. 
Again, the contrast with Figures 3 and 4 is striking. 
The mass is captured within the �, � rectangle con­
taining the peak in Figure 5. 

The results are presented in Tables 9–11 and for 
each hyperprior distribution discussed. For case 1 we 
include the effect of omitting the square root in the 
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Likelihood in mu and sigma 
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Hyerposterior distribution 
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Table 9. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 1. 

Quantiles 5% 50% 95% 

1st case 2.367 E-5 6.133 E-5 1.217 E-4 
2nd case 2.803 E-5 5.805 E-5 1.067 E-4 
3rd case 2.548 E-5 5.45 E-5 1.022 E-4 
4th case 2.274 E-5 5.751 E-5 1.222 E-4 
1st case ZEDB 2.01 E-5 5.91 E-5 1.44 E-4 

Table 10. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 2. 

Quantiles 5% 50% 95% 

1st case 2.603 E-5 7.714 E-5 1.381 E-4 
2nd case 7.838 E-6 4.817 E-5 1.246 E-4 
3rd case 3.016 E-6 1.967 E-5 8.281 E-5 
4th case 8.541 E-6 4.852 E-5 1.263 E-4 
1st case ZEDB 2.539 E-5 7.710 E-5 2.058 E-4 

Table 11. The 5%, 50% and 95% quantiles of the posterior 
distribution of �0 for data set 3. 

Quantiles 5% 50% 95% 

1st case 2.414 E-5 6.935 E-5 2.501 E-4 
2nd case 2.179 E-5 3.794 E-5 1.357 E-4 
3rd case 2.126 E-5 3.261 E-5 7.895 E-5 
4th case 2.186 E-5 3.860 E-5 1.468 E-4 
1st case ZEDB 1.12 E-5 6.228 E-5 3.398 E-4 

Jeffrey prior. The corresponding ZEDB results are 
shown in each table. The differences are smaller than 
with the gamma model the differences noted above. 

4 TRUNCATION 

Using a gamma prior, the method of truncation seems 
to have a large influence on the posterior distribution of 
� . It has been shown in section 2.3 that the likelihood 
in a and b has no maximum, but it is asymptotically 
maximal along a ridge. [Cooke et al., 1995] showed 
that different choices of truncation ranges can affect 
the median and the 95% quantile by a factor 5. In (4), 
the term +i�1…n 
[P(Xi|�i)P(�i|q)d�i] cannot be 
calculated analytically when we have a lognormal dis­
tribution as prior for �. Hence, we cannot study the 
asymptotic behavior of the “hyperposterior” P(m, s| 
X1…Xn, T1…Tn) # P(X1…Xn, T1… Tn|m , s)P(m, s) 
analytically. Performing numerical integration (Figure 
9), one can see that a maximum occurs in the likeli­
hood in m and s. Hence, if the parameters of the log-
normal distribution m and s are truncated in a way that 
includes the bulk of mass around the maximum, then 
how they are truncated will not make a significant 
difference. To save time in the computation process, 
truncation is performed around the significant values 
of likelihood in m and s (Figure 5). Figure 7 shows this 
same likelihood, but a larger integration rectangle for m 
and s; integration over the larger rectangle produces 
effectively the same result. The intervals for integration 
over �, were determined as in [Becker and Schubert, 
1998]. One remark can be made: if the domains of inte­
gration are not large enough the posterior cumulative 
distribution of � will not go to one. Using an iterative 
loop in software implementation, the natural interval of 
integration can be found. 

The possibility of truncating the domains of integra­
tion so as to include the bulk of mass around the max­
imum of the prior is a significant argument in favor of 
the lognormal prior over the gamma prior. From Table 1 
we see that if the variance of a gamma distribution 
is proportional to the mean, hence they go to zero at 
the same rate. For the lognormal the variance is pro­
portional to the square of the mean, and hence the 
variance goes to zero faster than the mean. We can 
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Figure 7. Likelihood m, s dataset 1; m � �17.5…�3, 
s � 0.1 . …4, � �  2 * 10�6 …3 * 10�4 
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Figure 8. Likelihood m, s dataset 3: m � �15.5…�6, 
s � �0.1…4, � �  2 * 10�5…3 * 10�3. 

anticipate concentration of mass near s � 0 in such 
cases. In any event, with sufficient observation times 
failures will be observed and the lognormal prior will 
peak away from zero and hence admit a good trunca­
tion heuristic. For the gamma this is not the case. 
Figure 8 shows the likelihood of m, s for dataset 3. 
Here a peak is not visible at all, but mass seems to 
concentrate at s � 0. These figures also give the inte­
gration ranges for m, s, and �. 

5 CONCLUSIONS 

Two-stage models provide a valid method for assi­
milating data from other plants. The conditional 
independence assumptions are reasonable and yield a 

tractable and mathematically valid form for the fail­
ure rate a plant of interest, given failures and opera­
tional times at other plants in the population. However 
the choice of hyperprior must be defensible since 
improper hyperpriors do not always become proper 
after observations. The lognormal model enjoys a sig­
nificant advantage over the gamma model in that, as 
observation time increases, a natural truncation of the 
hyperparameters m, s is possible. In the context of a 
literature survey, Vaurio’s one-stage empirical Bayes 
model is elegant and simple but will not work with 
zero observed failures or with a population of two 
plants. Moreover, Hofer’s model appears to rest on 
shifting viewpoints involving conflicting assump­
tions. Consistent application of the standard condi­
tional assumptions collapses his model into the form 
(4), which he criticizes as a “wrong chance model”. 
Further discussion should wait until the conditional 
independence assumptions and mathematical deriva­
tion are clarified. 
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