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ABSTRACT: As an alternative to standard two-stage Bayesian models, a non-parametric or Dirichelet two-
stage model is presented. The analytic solution of the model and its clear interpretation are its main advantages 
over the classical models. A number of case study are simulated in order to check the robustness of the model. 
Three data sets from German project – ZEDB are also used to compare the results of the Dirichelet model with 
the results for standard one-stage and two-stage Bayesian models. 

1 INTRODUCTION 

Within the context of a recent review of a two-stage 
Bayesian model for processing data at a population of 
German nuclear plants, a nonparametric or Dirichelet 
two stage model was developed. This model has some 
advantages relative to the standard two stage models: 
it is analytically solvable, no numerical integration 
need to be performed, and it allows an intuitive inter­
pretation of the (hyper)parameters – so called “equiv­
alent observations”. We check the robustness of this 
model with a simple numerical example. Preliminary 
calculations show some sensitivity of the model with 
regard to the number of cells that characterized the 
prior distribution and their end points. For the pur­
poses of comparison with classical Bayesian model 
[Vaurio, Hofer, Becker], the results for three data sets 
are presented. Considering its apparent advantages, 
the authors may recommend that the Dirichlet model 
deserves further development, to qualify it for practi­
cal use in data base analysis. 

2 BAYESIAN TWO STAGE HIERARCHICAL 
MODELS 

A two-stage model is really nothing more than a joint 
distribution [Cooke et al 2002]. To be useful, however, 
we must derive conditional distributions. Typically 
we want to use data from “other plants” to make pre-
dictions about a given plant. This is very attractive in 
cases where the data from the given plant is sparse. 

By specifying the model assumptions one can 
derive the posterior distribution P(l0|X0, … Xn) for 
failure rate l0 at plant of interest 0, given Xi failures 
and Ti observation times at plant i, i �0, 1, … n. First, 
we can identify the conditional independence 
assumptions in order to factor the joint distribution. 
The conditional independence assumptions met in the 
literature, with one possible exception [Hofer et al 
1997][Hofer 1999], are stated below: 

CI.1 Given Q, li is independent of {Xj, lj}j.i 
CI.2 Given li, Xi is independent of {Q, lj, Xj}j.i, 

where Q is the hyperparameter of the prior distribu­
tion from which the Poisson intensities l1… ln are 
drawn. 

The expression “Xi is independent of {Q, lj, Xj}j.i ” 
entails that Xi is independent of Q, and Xi is independ­
ent of lj. 

Giving the conditional independence assumptions, 
[Cooke et al 2002] derived the explicit form of the pos­
terior distribution P(l0|X0, … Xn) for failure rate l0: 

(1) 

Assumptions must be made also regarding the 
fixed distribution types and the hyperprior Q. In the 
two stage Bayesian models considered here, the like­
lihood of the failure times from each plant i, P(Xi, 
Ti|li), given li and given any information from other 
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plants, are independent and follow a Poisson distribu­
tion with parameter li. 

Parametric two stage Bayesian models consider usu­
ally gamma or log normal as prior distribution P(li|Q). 
The second stage places a hyperprior distribution over 
the parameters of the prior gamma or log normal distri­
bution. 

Controversies arise over the choice of hyperprior. 
[Cooke et al 1995] showed that the noninformativeness 
is not a good criteria if it leads to improper distribution. 
Since improper hyperpriors do not always become 
proper after observation, they should be avoided if 
property cannot be demonstrated. 

Another major criticism to parametric two stage 
Bayesian models is the non-analytically solution of the 
model. Numerical integration should be performed 
in order to obtain the posterior distribution for l0. 
[Cooke et al 2002] showed that the method of trunca­
tion seems to have a large influence on the posterior 
distribution of l0. 

3 VAURIO MODEL 

As an alternative to standard two-stage Bayesian mod­
els, [Vaurio, 1987] proposed an analytic empirical 
Bayes approach to the problem of assimilating data 
from other plants. A simple one-stage Bayesian model 
for one plant would use a Poisson likelihood with inten­
sity l and a Gamma(l|a, b) prior. Updating the prior 
with Xi failures in time Ti yields a Gamma (l|a � Xi, 
b � Ti) posterior. Vaurio proposes to use data from the 
population of plants to choose the Gamma(l|a, b) prior 
by moment fitting. Any other two moment prior could 
be used as well. Data from other plants are not used in 
updating, hence, this is a one-stage model. 

We sketch Vaurio’s model in the simple case that the 
observation times at all n � 1 plants are equal to T. 
The population mean and (unbiased) variance are esti­
mated as: 

A shifted variance estimate, which is positive when 
at least one of the Xi � 0, i � 0, … n; is defined as: 

V � (m/nT 

V and m are used to solve for the shape a and scale 
b of a gamma prior G(li|a, b): 

a � m2/V 
b � m/V 

Using the familiar gamma-Poisson one stage 
model, the posterior mean and variance for li after 

observing Xi failures in time T, are: 

(2) 

The model is consistent, in the sense that as 
Xi, Ti → �, with Xi/Ti → li, his model does entail that 
E(li|Xi, Ti) → li. Elegance and simplicity are its main 
advantages. Disadvantages are that it cannot be applied 
if all Xi � 0, or if the population consists of only 2 
plants. Further, numerical results in section 5 indicate 
that the model is non-conservative when the empirical 
failure rate at plant 0 is low and the empirical failure 
rates at other plants are high. A final criticism, which 
applies to most empirical Bayes models is that the data 
for the plant of interest is used twice, once to estimate 
the prior and once again in the Poisson likelihood. 
Thus, Xi occurs in (2) twice, once as Xi, and again in 
the estimate of a and b. This may contribute to the 
non-conservativism noted in section 5. 

4 A NON-PARAMETRIC OR DIRICHLET 
MODEL 

Given the problems with the approaches described 
above, we explore the possibility of a non-parametric 
Bayesian two stage model. Very roughly, in this 
model we select a number of points L0, L1, … Lk. The 
parameters of our prior distribution are probabilities 
q � (q1, … qk), adding to unity, such that: 

(3) 

The mechanism for doing this is the Dirichlet dis­
tribution. In this section we set up the model in simple 
terms, and examine its assumptions. 

4.1 Prior parameters 

The prior distribution P(l|q) is characterized by 

a fixed number of points: L0 � L1 � … Lk• 
a probability vector q � (q1, … qk); qi � 0, �qi � 1• 
a probability density g(l) defined on (L0, Lk)• 

4.2 Prior distribution 

The points L0, … Lk and the density g(l) are chosen 
by the user in a manner discussed below, and are not 
uncertain. There is no hyperprior over these. Letting 
Ci � (Li � 1, Li), the prior may be written as 

(4) 

Here, 1A(x) denotes the indicator function taking 
the value 1 if x � A, and zero otherwise. 
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We shall take g(l) to be the uniform density, then 
g(l) is constant and we may write this as: 

(5) 

Note that a gamma distribution for g(l) will pro-
vide also an analytical solution of the model. 

4.3 Hyperprior 

The hyperprior is a Dirichlet distribution character­
ized by parameters a1 … ak; ai � 0: 

(6) 

where D(a1, … ak) is the Dirichlet integral: 

(7) 

where q1 � … qk �1. 
For reasons explained below, the parameters are 

sometimes called “equivalent observations of l � Ci ”. 
We will choose ai �1; i �1, … k. Then the 

D(a1, … ak) � 1/(k �1)!, and may be absorbed into 
the normalization constant, so that the hyperprior 
becomes: 

P(q) � 1 (8) 

4.4 Updating the model 

4.4.1 Hyperposterior 
Considering only plant i, after observing Xi failures at 
plant i, the hyperposterior becomes 

(9) 

Since Xi is an integer, the integral in (9) can be 
evaluated explicitly. We find for Ch � (Lh�1, Lh): 

(10) 

4.4.2 Posterior 
Substituting (10) into (9), and this into (1) we find: 

(11) 

The integral is taken over the set {q � q1, … 
qk|qi ) 0, �qi � 1}. We can write the integrand as a 
sum of products. 

Let us consider one such term. We may write this 
term as 

(12) 

Where, since there are n �1 plants it total, 

The terms A1,h(1)A2,h(2)…An,h(n) do not contain q, 
and we may evaluate this integral explicitly for each 
term, using the Dirichlet integral. We find 

(13) 

Where the summation goes over all kn terms, and 
r � r1, … rk is specific to each of the kn terms. Note that 
(13) expresses P(l0|X0, … Xn) completely in terms of 
P(l0|X0), Lj, j � 0, … k; Xi, Ti, i � 1, … n. In other 
words, this model is completely solvable analytically. 

If n is, say 10, and k is, say 4, then we have 
410 � 106 such terms, which is a feasible number. 

4.5 Equivalent observations 

The parameters a1, … ak of the hyperprior are some-
times called equivalent observations. Indeed, the 
Dirichlet distribution is the natural conjugate for the 
multinomial likelihood. Consider rolling a die with k 
faces M times, where the probability of seeing face i 
is qi. The probability of seeing face “i” ri times; i � 
1, … k is 

(14) 

The result of updating the Dirichlet prior 
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with these observations is again a Dirichlet: 

(15) 

This suggests that the parameters ai of the original 
Dirichlet prior may be interpreted as if we started 
with the prior 

P(q) 5 1/D(1, 1… 1) 

and observed face “i” ai – 1 times, i � 1, k. This yields 
a useful heuristic for interpreting the parameters of 
the hyperprior in the ordered Dirichlet two stage 
model. When we choose the Dirichlet hyperprior (7) 
with ai � 1, we are adopting a (hyper)prior belief state 
in which we have not yet observed one l falling in any 
cell Cj, j � 1, … k. 

4.6 Choosing parameters 

The Dirichlet model requires the user to choose 
parameter values which cannot be updated. These are 

1. The number k of cells C1, … Ck, 
2. The points L0 	 L1 	 L2, … 	 Lk 
3. The values a1, … ak. 
4. The density g(l). 

We have already indicated that the parameters ai are 
chosen equal to one, to reflect “no equivalent obser­
vations”. 

The number of cells should be chosen so as to 
guarantee that after a long period of observation at 
each of the n � 1 plants, the hyperprior is “forgotten”. 
If we consider (15), we see that the hyperprior is for-
gotten when most of the terms ri are greater than zero. 
This suggests that with, say 10 to 15 plants, the number 
of cells should not exceed, say, four. 

Given that we will have k cells, we must choose the 
points Lj defining the cells Cj � (Lj � 1, Lj). Since L 
is a measure of li � limTi→ � 

Xi/Ti, the end points 
L0 and Lk should be chosen such that the term 
exp(�LTi)�j � 0 … Xi (LTi) 

j/j! in (9), with L0 	 L 	 Lk, 
covers all the possible values. This corresponds to 
calculate the hyperposterior distribution in one cell 
scenario for all i � 0, 1 … n plants. Hence, the lower 
and the upper bounds will be the minimum of L0, 
respectively the maximum of Lk, found for every plant 
i � 0, 1 … n. Figure 1 shows the hyperposterior distri­
bution as a function of L in one cell scenario, for a plant 
with one failure over 10000 hours of observation. Using 
the assimptotic properties of term exp(�LTi)�j � 0 … Xi 
(LTi) 

j/j!, a natural band can be found as L0 � 10�6 

and Lk � 10�3. 
The points Lj , j . 0 and j . k, should be chosen 

such that we expect, before performing observations, 

Figure 1. Hyperposterior distribution as a function of L in 
one cell scenario. 

that the number of 

which, after a very long observation period at each 
plant, we will see, falling into each cell Cj is equal. 

Finally we must choose the density g(l). We have 
chosen the uniform density as it is the least informa­
tive. Other choices could be made without sacrificing 
tractability. 

4.7 Summary of significant features 

We summarize the significant features of the Dirichlet 
model with the choices described above: 

1. The model is solvable analytically, no numerical 
integration need be preformed. 

2. The hyperprior has a clear intuitive interpretation. 
3. The hyperprior is minimally informative in the sense 

of “no equivalent observations”, and is proper. 
4. The size and number of the cells Cj is chosen to 

insure that the hyperprior does not persist on observ­
ing n � 1 plants. 

5 NUMERICAL EXAMPLE 

We illustrate this model with a simple numerical exam­
ple. These computations have all been performed on a 
spreadsheet, as no numerical integration is required. 
Nonetheless, for 7 plants the time required to compute 
the normalized posterior for l0 is about 10 minutes. We 
illustrate the model with 4 other plants, having between 
1000 hours and 4000 hours operational time. Plant 0 
is computed in three cases, namely with zero failures 
and 100, resp. 1000 resp. 10,000 operating hours. The 
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Table 1. 

Plant T X X/T 
1 1000 5 5.00E-3 
2 3000 20 6.67E-3 
3 3500 50 1.43E-2 
4 4000 100 2.50E-2 
0 100 0 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-4 5.00E-3 1.00E-2 1.00E-1 

Ex w.o. Ex w. 5% 50% 95% 
4.08E-3 4.83E-3 7.57E-4 4.70E-3 9.46E-3 

Prob (li � Cj) 

Plant 0 0.04877 0.3447 0.23865 0.36783 
Plant 1 1.42E-5 0.38402 0.54887 0.06709 
Plant 2 �2.2E-16 0.08297 0.88174 0.03528 
Plant 3 �2.2E-16 6.0E-11 0.00653 0.99347 
Plant 4 3.3E-16 3.6E-15 �1.4E-15 1 

Table 2. 

Plant T X X/T 
1 1000 5 5.000E-3 
2 3000 20 6.667E-3 
3 3500 50 1.429E-2 
4 4000 100 2.500E-2 
0 1000 0 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-4 5.00E-3 1.00E-2 1.00E-1 

Ex w.o. Ex w. 5% 50% 95% 
1.10E-3 1.16E-3 8.67E-5 8.88E-4 3.05E-3 

Prob (li � Cj) 

Plant 0 0.39346 0.59979 0.00669 4.5E-5 
Plant 1 1.42E-5 0.38402 0.54887 0.06709 
Plant 2 �2.2E-16 0.08297 0.88174 0.03528 
Plant 3 �2.2E-16 6.0E-11 0.00653 0.99347 
Plant 4 3.3E-16 3.6E-15 �1.4E-15 1 

results are shown in Tables 1, 2 and 3. Each table shows 
the operational data from the four other plants and the 
cells. This data is the same in each table. Also shown is 
the (unnormalized) probability that li falls in cell Cj; 
this data differs for l0 in each table. Very small nega­
tive probabilities are caused by numerical errors in 
EXCEL. “Ex w.” and “Ex w.o.” denote updating with 
and without the data from plants 1 … 4. Data from 
other plants has the effect of raising the posterior 
expectation. 

For plant 0 with 1000 operating hours, Table 2 
shows that the updating with other plants now has less 
effect on the posterior expectation. 

For 10,000 operating hours and still zero failures at 
plant 0, the posterior expectations with and without 
other plants are practically the same. Now, after 10,000 

Table 3. 

Plant T X X/T 
1 1000 5 5.000E-3 
2 3000 20 6.667E-3 
3 3500 50 1.429E-2 
4 4000 100 2.500E-2 
0 10000 0 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-4 5.00E-3 1.00E-2 1.00E-1 

Ex w.o. Ex w. 5% 50% 95% 
1.23E-4 1.23E-4 8.67E-5 7.22E-5 2.84E-4 

Prob (li � Cj) 

Plant 0 0.99316 0.00674 1.9E-22 3.7E-44 
Plant 1 1.42E-5 0.38402 0.54887 0.06709 
Plant 2 �2.2E-16 0.08297 0.88174 0.03528 
Plant 3 �2.2E-16 6.0E-11 0.00653 0.99347 
Plant 4 3.3E-16 3.6E-15 �1.4E-15 1 

Table 4. 

Plant T X X/T 
1 1000 5 5.000E-3 
2 3000 20 6.667E-3 
3 3500 50 1.429E-2 
4 4000 100 2.500E-2 
5 2000 15 7.500E-3 
6 2500 15 6.000E-3 
0 100 0 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-4 5.00E-3 1.00E-2 1.00E-1 

Ex w.o. Ex w. 5% 50% 95% 
4.08E-3 5.49E-3 8.93E-4 5.75E-3 9.54E-3 

Prob (li � Cj) 

Plant 0 0.04877 0.3447 0.23865 0.36783 
Plant 1 1.42E-5 0.38402 0.54887 0.06709 
Plant 2 �2.2E-16 0.08297 0.88174 0.03528 
Plant 3 �2.2E-16 6.0E-11 0.00653 0.99347 
Plant 4 3.3E-16 3.6E-15 �1.4E-15 1 
Plant 5 1.8E-14 0.04874 0.79475 0.15651 
Plant 6 5.2E-13 0.19397 0.78374 0.02229 

hours, the expectation at plant 0 is determined only by 
the data at plant 0, and the other plants have almost no 
effect. Note that the probability for l0 is concentrated 
in cell C1. 

For purposes of comparison, Table 4 shows the 
results of updating with 6 other plants, when plant 0 
has experience no failures in 100 operating hours. 
Plants 5 and 6 have empirical failure rates in the same 
order as the first 4 plants. We see that the results are a 
bit larger than those of Table 1. 

Table 5 gives the results of the Dirichlet model for 
the Data set 2 of [Becker and Hofer 2001], and com-
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Table 5. 

Plant T X X/T 
1 20000 1 5.00E-5 
2 2000 0 0 
3 4000 0 0 
4 6000 0 0 
5 10000 1 1.00E-4 
0 12000 2 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-6 5.00E-5 5.00E-4 1.00E-3 

Ex w.o. Ex w. 5% 50% 95% 
2.32E-4 2.31E-4 7.45E-5 2.13E-4 4.32E-4 
Gamma 1.22E-4 1.72E-4 3.45E-4 
Lgnormal 2.54E-5 7.71E-5 2.06E-4 
Vaurio 3.34E-5 1.14E-4 2.74E-4 

Prob (li � Cj) 

Plant 0 3.44E-5 0.02308 0.91492 0.06145 
Plant 1 0.00468 0.25956 0.73526 0.0005 
Plant 2 0.00993 0.08521 0.53696 0.23254 
Plant 3 0.01976 0.16147 0.68339 0.11702 
Plant 4 0.02949 0.22963 0.69103 0.04731 
Plant 5 0.00121 0.08899 0.86937 0.03993 

pares these with the results for standard Bayesian 
models [Cooke et al 2002]. We see that the results are 
of the same order, though a bit higher. The intervals 
(Li–1, Li) are chosen to bound the empirical rates 
(when failures are present). 

Table 6 compares the Dirichlet results with 
Vaurio’s estimator. To avoid numerical procedures, all 
observation times are equal. We see that there are sig­
nificant differences. In general, Vaurio’s estimate is 
closer to the empirical failure rate of plant 0. In those 
cases where plants 1..5 exhibit a high empirical fail­
ure rate, and the plant of interest, plant 0, has no fail­
ures, Vaurio’s estimate is lower than the Dirichlet 
estimate by a factor 2. This feature is observed for 
short observation times (1000 hours) and long obser­
vation times (10,000 hours). 

These results indicate that Vaurio’s estimate dis­
plays a non-conservativism when the empirical fail­
ure rate at the plant of interest is much lower than the 
empirical failure rates of other plants in the popula­
tion. The two-stage Dirichlet model (and presumably 
the other two stage models) are more sensitive to the 
empirical failure rates at 6 other plants. 

Finally, we include the Dirichlet results for data 
sets 1 and 3 of [Becker and Hofer 2001]. The results 
are in the same order as those for classical Bayesian 
models [Cooke et al 2002], but tend to be a bit more 
conservative. 

Figure 2 shows the density for l0 with and without 
updating from other plants. We see that the other plants 
have a (weak) tendency to lower the failure rate at 
plant 0. 

Table 6. 

Plant T X X/T 
1 10000 0 0 
2 10000 0 0 
3 10000 0 0 
4 10000 0 0 
5 10000 0 0 
0 10000 5 0.0005 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-6 5.00E-5 5.00E-4 1.00E-3 

Ex w. 5% 50% 95% 
Dir 5.03E-4 2.03E-4 4.16E-4 9.37E-4 
Vaurio 4.87E-4 

Plant T X X/T 
1 10000 5 0.0005 
2 10000 5 0.0005 
3 10000 5 0.0005 
4 10000 5 0.0005 
5 10000 5 0.0005 
0 10000 0 0.0005 

L0 L1 L2 L3 L4 
1.00E-8 5.00E-6 5.00E-5 5.00E-4 1.00E-3 

Ex w. 5% 50% 95% 
Dir 1.30E-4 1.81E-5 1.02E-4 3.17E-4 
Vaurio 5.79E-5 

Plant T X X/T 
1 1000 0 0 
2 1000 0 0 
3 1000 0 0 
4 1000 0 0 
5 1000 0 0 
0 1000 5 0.005 

L0 L1 L2 L3 L4 
1E-8 5.00E-6 5.00E-5 5.00E-4 1.00E-2 

Ex w. 5% 50% 95% 
Dir 5.61E-3 2.54E-3 5.46E-3 9.05E-3 
Vaurio 4.87E-3 

Plant T X X/T 
1 1000 5 0.005 
2 1000 5 0.005 
3 1000 5 0.005 
4 1000 5 0.005 
5 1000 5 0.005 
0 1000 0 0.005 

L0 L1 L2 L3 L4 
1E-8 5.00E-6 5.00E-5 5.00E-4 1.00E-2 

Ex w. 5% 50% 95% 
Dir 1.41E-3 4.39E-4 1.09E-3 3.39E-3 
Vaurio 5.79E-4 

6 CONCLUSIONS 

The Dirichlet model enjoys two advantages relative to 
the other models discussed here. First, it is analytically 
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Table 7. Results for datasets 1 and 3. 

Dataset 1 5% 50% 95% 
Dirichelet 1.12E-05 7.79E-05 2.34E-04 
Gamma model 3.25E-05 6.99E-05 1.30E-04 
Lognormal model 2.01E-05 5.91E-05 1.44E-04 
Vaurio’s model 1.83E-05 6.84E-05 1.73E-04 

Dataset 3 5% 50% 95% 
Dirichelet 1.45E-04 4.75E-04 9.25E-04 
Gamma model 1.21E-04 2.58E-04 7.41E-04 
Lognormal model 1.12E-05 6.23E-05 3.40E-04 
Vaurio’s model 2.84E-05 2.19E-04 7.64E-0.4 

Figure 2. Dirichlet model, failure rates with and without 
updating from other plants, dataset 1. 

solvable, no numerical integration need to be per-
formed, and second, it allows an intuitive interpreta­
tion of the (hyper)parameters – so called “equivalent 
observation”. It must be emphasized that this is a first 

implementation of this model. Additional testing 
should be performed before declaring the model fully 
operational. In particular, heuristics should be devel­
oped for choosing the number of cells Cj, and the val­
ues of their endpoints. Preliminary calculations show 
some sensitivity of the model in this regard. 
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