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Dams’ safety is highly important for authorities around the world. The impacts of a dam failure can be enormous. Models for
investigating dam safety are required for helping decision-makers to mitigate the possible adverse consequences of flooding.
A model for earth dam safety must specify clearly possible contributing factors, failure modes and potential consequences of
dam failure. Probabilistic relations between variables should also be specified. Bayesian networks (BNs) have been
identified as tools that would assist dam engineers on assessing risks. BNs are graphical models that facilitate the
construction of a joint probability distribution. Most of the time, the variables included in a model for earth dam risk
assessment involve continuous quantities. The presence of continuous random variables makes the implementation of
discrete BNs difficult. An alternative to discrete BNs is the use of non-parametric continuous BNs, which will be briefly
described in this article. As an example, a model for earth dams’ safety in the State of Mexico will be discussed. Results
regarding the quantification of conditional rank correlations through ratios of unconditional rank correlations have not been
presented before and are introduced herein. While the complete application of the model for the State of Mexico is presented
in an accompanying paper, here some results regarding model use are shown for demonstration purposes. The methods
presented in this article can be applied for investigating risks of failure of civil infrastructures other than earth dams.

Keywords: Bayesian networks; dam safety; correlation; flood frequency; experts’ assessment; risk management

Introduction

Embankment or earth dams are among the most abundant

structures for retaining water. Donnelly (2006) states that

embankment dams are the most common type of water-

retaining structures. It is no surprise that these types of

dams fail more frequently than others. Figure 1 presents

the number of dam failures per 10-year periods from 1891

to 1990 and the proportion of the total number of failures

corresponding to embankment dams. It was built with data

from International Commission on Large Dams (ICOLD)

(1995, pp. 38–45). It may be seen that for every 10-year

period, between 50% (1891–1900) and 91.67% (1971–

1980) of the failures correspond to embankment dams.

The impacts of a dam collapse can be enormous,

encompassing the destruction of private housing, transport

and public infrastructure, industrial facilities and agricul-

tural land. The losses may also include human harm and

serious disruptions in infrastructure operation, leading to

significant total economic damages. Consequently, amodel

for earth dam safety would be convenient for assessing the

associated risks. Such amodelmust specify clearly possible

contributing factors, failure modes and potential conse-

quences of dam failure. Probabilistic relations between

variables should also be specified. Although the literature

reports studies within the dam industry, most are centred on

the analysis of specific collapse models, and only few on

mathematical models for dam risk assessment (see, e.g.

Federal Emergency Management Agency [FEMA], 2007,

2008). In this sense, Bayesian networks (BNs) can be useful

for including the aforementioned factors and consequences.

ABN is a probabilistic graphicalmodel that provides an

elegant way of expressing the joint distribution of a large

number of interrelated variables. In this case, those

representing possible causes of failure, the different failure

modes and the possible consequences. A BN consists, in

general, of a directed acyclic graph (DAG) and a set of

(conditional) distributions. Each node in the graph

corresponds to a random variable and the arcs (arrows)

represent direct qualitative dependence relationships. The

absence of arcs guarantees a set of (conditional)

independence facts. The direct predecessors (successors)

of a node are called parents (children). An univariate
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marginal distribution is specified for each node with no

parents, and a conditional distribution is associated with

each child node; i.e. the joint distribution over the random

variables denoted by the nodes of the graph.

The relatively simple visualisation of the complicated

relationships among the random variables is one of the

most appealing features a BN model. The main use of BNs

is to update distributions of given observations. This is

referred to as inference in BNs. They have been

successfully used to represent uncertain knowledge, in a

consistent probabilistic manner, in a variety of fields. These

include health benefits and costs of fish consumption

(Jesionek & Cooke, 2007), air transport safety (Ale et al.,

2008), among others. For an overview of applications of

BNs see Weber, Medina-Oliva, Simon, and Iung (2012).

With the use of BNs, contributing factors, failure

modes and possible consequences of dam failure (to carry

out risk assessments) may be specified in an intuitive and

meaningful way. In this article, a continuous BN for earth

dams risk assessment is presented. Dealing with

continuous or hybrid (discrete and continuous) BNs

imposes challenges with respect to both inference

mechanisms and quantification. A review of four methods

for hybrid BNs with their advantages and disadvantages is

presented in Langseth, Nielsen, Rumı́, and Salmerón

(2009). Another more recent approach dealing with hybrid

BNs combines them with structural reliability methods to

create a new computational framework called enhanced

BN (eBN) (Straub & Der Kiureghian, 2010).

With these ideas in mind, there are three key objectives

of the research. The first purpose is to briefly describe the

particular class of BNs that will be dealt with, the so-called

non-parametric Bayesian networks (NPBNs)1 (Hanea,

Kurowicka, & Cooke, 2006; Kurowicka & Cooke, 2005).

A comparison of NPBNs with other techniques for hybrid

BNs is out of the scope of this article. The reader may,

however, find a discussion in this context in Hanea and

Morales-Napoles (2012) where nine real applications of

NPBNs are discussed.

Additionally, in this area of research some techniques

for the quantification of NPBNs from, but not limited to,

the expert judgement methodology in the absence of data

will be reviewed. In fact, the second objective of this article

is to present an alternative approach to the one discussed in

Morales, Kurowicka, and Roelen (2008) and used in

Hanea, Jagtman, and Ale (2012) for the quantification of

NPBNs from domain experts. Although not conclusive,

previous results indicate that the most accurate way to

obtain a subjective measure of bivariate dependence is

simply to ask experts to estimate the correlation between

the two variables in question (Clemen, Fischer, &Winkler,

2000). Partly motivated by this observation, the alternative

approach for quantification of BNs from domain experts

presented here is based on estimating directly rank

correlations as opposed to estimating them from probabil-

istic statements.

While the actual application to earth dams’ safety in

Mexico is presented in the accompanying paper (Delgado-

Hernández, Morales-Nápoles, De León Escobedo, &

Arteaga-Arcos, 2012), the last objective is thus to provide

the methodological framework for the application

presented there. However, the methods described in this
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Figure 1. Number of dam failures per 10-year periods from 1891 to 1990, data derived from ICOLD (1995, pp. 38–45).
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document are general and may also be used for risk

assessment of similar civil infrastructures. The concepts

presented should be especially useful for readers that

decide to apply the NPBN methodology for risk

evaluation. Therefore, one of the main contributions of

this work is to provide a methodological guide for the

construction and understanding of results of NPBNs for

specific applications.

Concepts and definitions

Representing multivariate probability distributions for

certain phenomena can be a challenging task. Perhaps the

multivariate model which is most widely used is the joint

normal distribution. However, many phenomena behave

far from normal. This is one of the reasons for researchers

to look for alternative models such as copulas. Copulas

are part of the building blocks of the graphical models

that will be used in this article, and for that reason basic

concepts and definitions regarding them are introduced

first. The book by Nelsen (1998) is useful to gain a

general view within the subject. The book by Joe (1997)

is also an important reference on the area. Specifically,

bivariate copulas will be of special interest for this

research. Note that from now onwards bivariate copula(s)

will be referred to as copula(s) throughout the paper

unless otherwise specified.

The bivariate copula of two random variables X and Y

with cumulative distribution functions FX and FY ,

respectively, is the function C such that their joint

distribution can be written as:

FX;Y ðx; yÞ ¼ CuðFXðxÞ;FY ðyÞÞ:

Thus, a copula is a joint distribution on the unit square

with uniform univariate margins. Measures of association

such as the rank correlation may be expressed in terms of

copula (Nelsen, 1998). Notice that the copula is indexed

by the parameter u, which is related to measures of

dependence such as the rank correlation coefficient.

Dependence measures

The product moment correlation of random variables X

and Y with finite expectations E(X), E(Y) and finite

variances var(X), var(Y) is

rðX; YÞ ¼ EðXYÞ2 EðXÞEðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðYÞp :

Whenever possible rðX; YÞ will be denoted as rX;Y . The
rank correlation of random variables X and Y with

cumulative distribution functions FX and FY is

rðX; YÞ ¼ rðFXðxÞ;FY ðyÞÞ

¼ EðFXðxÞFY ðyÞÞ2 EðFXðxÞÞEðFY ðyÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðFXðxÞÞvarðFY ðyÞÞp :

The rank correlation is the dependence measure of

interest and can be defined as the product moment

correlation of the ranks of variables X and Y, and measures

the strength of monotonic relationship between variables.

As before, whenever possible, rðX; YÞ will be denoted as

rX;Y . Rank correlations may be realised by copulas and

may be expressed in the following way:

rðX; YÞ ¼ 12

ð1
0

ð1
0

Cu u; v
� �

dudv2 3;

where Cu is the copula joining variables X and Y. The

conditional rank correlation of X and Y given Z is

rðX; YjZÞ ¼ rð ~X; ~YÞ
in which ( ~X, ~Y) has the distribution of (X, Y) given Z ¼ z.

Notice that when Z is a random vector, then Z ¼ z means

Z1 ¼ z1; . . . ; Zn ¼ zn for n conditioning variables. Again,

whenever possible the conditional rank correlation will be

denoted as ri;jjk; ... ;n.
Partial correlations are also of interest in this article.

These can be defined in terms of partial regression

coefficients. Consider variables Xi with mean zero and

standard deviation si for i ¼ 1, . . . , n and let the numbers

b1,2;3, . . . ,n, . . . , b1,n;2, . . . ,n21 minimise

E½ðX1 2 b1;2;3; ... ;nX2 2 . . . 2 b1;n;2; ... ;n21XnÞ2�:
The partial correlation of X1 and X2 based on X3, . . . ,Xn is

r1;2;3; ... ;n ¼ sgn ðb1;2;3; ... ;nÞðb1;2;3; ... ;nb2;1;3; ... ;nÞ1=2;
where sgn is the signum function of b1,2,3, . . . ,n. Partial

correlations can be computed recursively from correlations

(see Yule & Kendall, 1965):

r1;2;3; ... ;n ¼ r1;2;3; ... ;n21 2 r1;n;3; ... ;n21r2;n;3; ... ;n21

ðð12 r21;n;3; ... ;n21Þð12 r22;n;3; ... ;n21ÞÞ1=2
; ð1Þ

One of the most common bivariate copulas is the normal

copula. Denote by Fr the bivariate standard normal

cumulative distribution function with correlation r, and
F21 the inverse of the univariate standard normal

distribution function, then

Crðu; vÞ ¼ FrðF21ðuÞ;F21ðvÞÞ; ðu; vÞ [ ½0; 1�2;

is called the normal copula. Notice that r is a parameter of

the normal copula. In case of a conditional bivariate copula

Structure and Infrastructure Engineering 3
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the parameter r1,2;3, . . . ,n is used instead. The relationship

between the correlation of the normal copula r (the rank

correlation of the normal variables) and the parameters r (or
r1,2;3, . . . ,n for conditional copulas) is known and given by

the following formula (Pearson, 1907, p. 12):

r ¼ 2 sin
p

6
r

� �
: ð2Þ

Bayesian networks

The influences between adjacent nodes in a BN may be

probabilistic or deterministic.2 The parent set of variable

Xi will be denoted as Pa(Xi). To specify a joint distribution

through a BN the graph must be specified together with

conditional probability functions of each variable given its

parents:

f X1; ... ;Xn
¼

Yn
i¼1

f XijPaðXiÞ: ð3Þ

If Pa(Xi) ¼ Ø then f XijPaðXiÞ ¼ f Xi
. In the case that all

nodes in the BN are discrete, the functions to be specified

are the conditional probability tables (CPT) of each node

given its parents. When variables are continuous, one

possibility is to discretise them into a large enough number

of states and use discrete BNs. In general, the number of

probabilities to be assessed K for a discrete BN on n nodes

with ki states for each Xi for i ¼ 1, . . . , n is

K ¼
X
j[S

kj 2 jSj þ
X
l[C

ðkl 2 1Þ
Y

m[MðlÞ
km ð4Þ

where S ¼ {Xj:Pa(Xj) ¼ Ø} and C ¼ {Xl:Pa(Xl) – Ø},

jSj þ jCj ¼ n and M(l) ¼ {m: Xm[Pa(Xl)}. It is clear

from Equation (4) that K grows rather quickly as the

number of states of each Xi grows. This is one of the main

drawbacks of discrete BNs (Cowell, Dawid, Lauritzen, &

Spiegelhalter, 1999; Hanea et al., 2006).

Non-parametric continuous BNs

Another way to deal with continuous nodes in a BN is with

the use of normal (Shachter & Kenley, 1989) or discrete-

normal BNs. For discrete-normal BNs (Cowell et al.,

1999), unconditional means and conditional variances

must be assessed for every normal variable. For each arc,

partial regression coefficients must be assessed. In the

absence of data, the assessment of partial regression

coefficients and conditional variances by experts is

difficult if the normality assumption does not hold.

Continuous-discrete non-parametric BNs (Hanea et al.,

2006; Kurowicka & Cooke, 2005) have been developed to

cope with some of the drawbacks that a discrete (and a

discrete-normal) model imposes.

Essentially, a non-parametric continuous (or continu-

ous-discrete) BN (NPCDBN) is a directed acyclic graph

whose nodes are associated with arbitrary univariate

random variables (that has an invertible distribution

function) and whose arcs are associated with parent–child

(un)conditional rank correlations. For each variableXi in the

network with m parents Xj ¼ Pa1(Xi), . . . ,Xk ¼ Pam(Xi),

associate the arc Paj(Xi) ! Xi with the conditional rank

correlation:

r Xi; PajðXiÞ
� �

; j ¼ 1

r Xi; PajðXiÞjPa1ðXiÞ; . . . ; Paj21ðXiÞ
� �

;
j $ 2

8<
: ð5Þ

The assignment is vacuous if Pa(Xi) ¼ Ø. Notice that

the ordering 1, . . . ,m is not unique and need not

correspond to the original labelling of the variables

j, . . . , k. These assignments together with a copula family

for which zero correlation implies independence and with

the conditional independence statements embedded in the

graph structure of a BN are sufficient to construct a unique

joint distribution. Moreover, the conditional rank corre-

lations in Equation (5) are algebraically independent,

hence any number in (21, 1) can be attached to the arcs of

a NPCDBN (Hanea et al., 2006).

Choosing the normal copula presents advantages with

respect to other copulas for building the joint distribution.

Observe that for the normal copula relation Equation (2)

holds, and since conditional correlations are equal to

partial correlations then Equation (1) may be used to

compute the correlation matrix corresponding to the graph.

Moreover, since for the joint normal distribution,

conditional distributions are also normal, then analytical

updating is possible by this choice (Hanea et al., 2006,

p. 724).

Figure 2. Example of NPCDBN on 11 nodes.

O Morales-Nápoles et al.4

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 A
ut

ón
om

a 
de

l E
st

ad
o 

de
 M

éx
ic

o]
 a

t 1
2:

07
 1

7 
Ja

nu
ar

y 
20

13
 



Figure 2 illustrates an example of a NPCDBN on 11

nodes. To illustrate the assignment of rank and conditional

rank correlations consider variable X4 with parents

Pa(X4) ¼ {Pa1(X4) ¼ X3, Pa2(X4) ¼ X2, Pa3(X4) ¼ X1}.

Notice that the indexing in the parent set is not the same

as the original index of variables and is not unique.

According to the assignment in Equation (5), the

unconditional rank correlation r4,3 is used first. Then the

conditional rank correlations r4,2j3 and r4,1j3,2 are assigned,
and so on with the other nodes.

The structure of the BN gives information about the

dependence structure in the joint distribution. For

example, variables X1, X2 and X3 are independent of

each other and their dependence with other variables is

described in terms of (conditional) rank correlations. In

general every variable in the graph is conditionally

independent of its ancestors given its parents. For a more

complete description of the semantics of a BN see Pearl

(1998, Chapter 3).

Non-parametric continuous BNs in earth dam safety in

central Mexico

Variables involved in the analysis of contributing factors,

failure modes and consequences of dam failure are mostly

continuous. For example, rainfall rate is measured in

millimetres, the piping is measured in 1 feet per second or

some similar unit and consequences of flooding are

measured in monetary or some utility unit such as US$, e

or quality adjusted life years (qalys). Often, these

continuous quantities are discretised to facilitate the

calculus of probabilities. Then, variables as the ones

described previously are given states such as low, medium

and high.

The model represents a case study for the State of

Mexico in the central region of the country. Seven dams

were identified, their names being: Embajomuy (E), San

Joaquı́n (SJ), José Trinidad Fabela (JTF), Dolores (D),

José Antonio Alzate or San Bernabé (JAA), Ignacio

Ramı́rez or La Gavia (IR) and El Guarda (EG). Their

heights range from 15 to 24m, their ages from 36 to 66

years and their capacities from 0.55 to 52.5 hm3. They are

used mainly for purposes of irrigation, flooding prevention

and hydroelectric power generation.

Variables of interest

The BN presented in Figure 2 represents the model for

earth dams’ safety to be discussed in this article. The nodes

of the graph represent univariate random variables with

invertible distribution functions and the arcs represent rank

and conditional rank correlations between these nodes. Ten

variables were identified as most relevant for the study.

Their description, units and source for the univariate

marginal distributions is presented in Table 1. The

quantification of rank correlations will be discussed later.

Table 1. Variables of interest (SEJ ¼ Structured Expert Judgement).

X1: Seismic frequency. It refers to the distribution of earthquakes.5.5 per year, in Richter magnitude scale, between
2000 and 2008 for the locations of interest. Data is available from the Mexican National Seismographic System.
Approximated by a Gamma distribution with shape parameter 9.79 and scale parameter 0.68

Field data

X2: Rainfall rate. Average value over the seven-basins (i.e. the area of influence of the 7 dams of interest) of the five-
days moving averages in [mm/day]. Data is available from ‘ERIC’, a Mexican database from 1961 to 1998. A short
overview of ERIC may be found in Carrera-Hernández and Gaskin (2008). The empirical distribution for this variable
was used

Field data

X3:Maintenance. Is the number of years between maintenance activities which would lead the dam to an ‘as good as
new’ condition

SEJ

X4: Overtopping. Water level from the crest during an event in which such a level may increase beyond the total
embankment height (mm)

SEJ

X5: Loss of global stability. Distribution of the safety factors (resisting moment/causing moment), for each of the
seven dams based on their design geometrical features. This variable helps to quantify sliding probabilities. The so
called ‘Swedish method’ is used for calculating such factors (SRH, 1976). Approximated by a Weibull distribution
with scale parameter 1.76 and shape parameter 7.57 (unitless)

Field data

X6: Piping. Distribution of water flowing through the embankment that causes its internal erosion apart from the
spillway and outlet pipe torrents (l/s)

SEJ

X7: Breaching. Refers to the average breach width, i.e. the mean of both superior and inferior breach widths, due to
embankment’s crest erosion (m). Calculated with the methods reported in Wahl (1998) with data from SRH (1976).
An empirical distribution was used

Field data

X8: Flooding. Average water level per day in the downstream flooded area during a dam failure event (mm/day) SEJ
X9: Economic cost. Both public and private total costs, due to all possible damages in infrastructures (e.g. schools,
hospitals, bridges, roads, transport systems), fields (e.g. farms, crops), housing, supply, commercial and entertainment
centres, caused by a flooding, consequence of a dam failure. It is measured in current US$

SEJ

X10:Human costs. Both public and private total costs over a time period equivalent to the maximum human remaining
life span, due to all possible damages, health and life losses, caused by a flooding, consequence of a dam failure. It is
measured in current US$

SEJ

Note: SEJ ¼ Structured Expert Judgement.

Structure and Infrastructure Engineering 5
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Variables are broadly grouped into three categories:

contributing factors (seismic frequency, rainfall rate and

maintenance), failure modes (loss of global stability,

piping, overtopping and breaching) and consequences

(flooding, human and economic costs). The model has

been kept small in order to make the quantification feasible

through structured expert judgement (SEJ) which is a

necessary step due to the lack of field data. This restriction

leads to simplifications which, nevertheless it is strongly

believed, do not inhibit the ability of the model to provide

decision-makers with valuable information. Moreover, the

model as presented here should serve as benchmark for a

larger-scale model that would encompass larger structures

across the country.

The elicitation of marginal distributions from experts

has been discussed extensively in the past. In 17 years,

approximately 67,000 experts’ subjective probability

distributions have been elicited from 521 domain

specialists with the classical model (Cooke, 1991;

Cooke & Goossens, 2008). The classical model aims at

rational consensus. Basically, it is a performance-based

linear pooling (weighted average) model. Loosely speak-

ing, in addition to the variables of interest, experts are

queried about seed or calibration variables. The latter are

variables whose value is known to the analyst but not to

the expert at the moment of the elicitation. The objective

of seed variables is to evaluate experts as uncertainty

assessors and not directly on their field of expertise.

Experts’ performance as uncertainty assessors is measured

by the calibration and information scores from seed

variables. The calibration score, ranging from 0 to 1, is the

probability that the divergence between the experts’

assessments and the observed values on seed variables

might have arisen by chance. A score higher than a

significant level a (for instance 0.05) means that the

experts’ assessments are statistically supported by the set

of seed variables.

On the other hand, the information score measures the

degree to which a distribution is concentrated relative to a

background measure. The uniform and log uniform are the

most common choices for the background measures. The

overall information score is the mean of information

scores for each variable. The weights in the classical

model are proportional to the product of calibration and

information and satisfy a proper scoring rule constraint.

These are used to derive the weights entered in the linear

pooling.

A total of four experts participated in the quantifi-

cation of the model in Figure 2. The elicitation of

variables of interest followed the same lines as the

elicitation of calibration variables. One example of a

calibration variable for this elicitation is: Consider the 7-

day moving average of the daily average precipitation

(mm) from the two stations related to the Embajomuy

Dam from January 1961 to August 1999 in ERIC II of

CONAGUA (Carrera-Hernández, & Gaskin, 2008). What

is the maximum moving average for the time period of

reference? (please state the 5th, 50th and 95th percentiles

of your uncertainty distribution). The format for variables

of interest is similar.

In total three questions about seismicity, four over

general characteristics of the sample of seven dams in the

State of Mexico, nine over precipitation and two about

water discharge were used as calibration variables. Notice

that experts could give an exact answer to the question

above based on data. However, the objective is to measure

whether experts’ assessments are accurate in a statistical

sense. For example, for a well-calibrated expert, one

would expect that approximately 1 true value from the set

of calibration variables would fall below the 5th percentile

of the experts’ assessments, 1 above the 95th, 12 above the

median and 12 below the median and so on. The elicitation

of all rank and conditional rank correlations required in the

model was carried out through SEJ.

Quantification of dependence

The literature available to guide researchers in the

elicitation of a joint distribution is much less than that

available for the elicitation of univariate distributions

(O’Hagan, 2005). Methods for eliciting rank correlations

from experts have been proposed and used in the past

(Clemen et al., 2000). One of the options is directly asking

experts for an estimate of the rank correlation between

pairs of variables. Another one is asking experts for

estimates of some other quantity, for example a

conditional probability of exceedence, or probabilities of

concordance or discordance prior to estimating, under

certain assumptions (an underlying copula, for example),

the rank correlation of interest. In Morales et al. (2008),

the elicitation of rank correlations from domain experts is

carried out through conditional probabilities of excee-

dence, the approach is also applied in Hanea and Morales-

Napoles (2012). When the (conditional) rank correlations

of one child with many parents should be elicited from

experts, this approach would require the elicitation of

conditional probabilities on a large number of condition-

ing events, making it unintuitive to some specialists.

Additionally, while not conclusive, previous results

indicate that the most accurate way to obtain a subjective

measure of bivariate dependence is simply to ask the

expert to estimate the correlation between the two

variables in question (Clemen et al., 2000); a total of 20

questions were asked to every expert. For each child node,

experts were asked to rank parent variables according to

some criteria of their preference. For example, the largest

unconditional rank correlation with the child in absolute

value was used. These questions were meant to help

experts in their next assessments.

O Morales-Nápoles et al.6
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Then for unconditional rank correlations experts would

assess P(Xchild . medianjXparent . median). This question

is translated in the application for expert A and the rank

correlation r4,3 as: Consider a situation in which the

number of years to undertake maintenance action (X3) is

above its median (30 years). What is the probability that

the loss of global stability (X4) is also above its median

(1.66)? Observe that, for this question, the median value for

the loss of global stability is equal for all experts since it

comes from data. The number of years to undertake

maintenance actions, however, comes from expert judge-

ment and is different across experts. When combining

experts’ assessments it is necessary to take these kinds of

differences into account.

The relationship betweenP(X4 . medianjX3.median)

and r4,3 under the normal copula assumption is shown in

Figure 3. Once the expert has given an assessment for the

probability of exceedence, the analyst then finds the rwhich

satisfies the expert’s conditional probability assessment and

transforms this into the corresponding rank correlation using

the inverse function of Equation (2).

If an expert believes that X4 and X3 are independent,

then because of the zero independence property,

zero correlation would entail that the experts’ answer

for P(X4 . medianjX3 . median) ¼ 0.5. A conditional

probability value in the interval [0, 0.5) corresponds to

negative correlation. Positive correlation is attained when

P(X4 . medianjX3 . median) . 0.5. In the example

presented, expert A believes that when the number of

years between rebuild maintenance are more than 30 for

earth dams, then the probability that the loss of global

stability is above 1.66 is as low as 0.3. This assessment

corresponds to a value of r4,3 ¼ 20.57.

Once the experts have provided an assessment for the

unconditional rank correlation of a given child node to its

first parent, ratios of rank correlations of the child with the

rest of the parents to the first rank correlation elicited are

asked to them. In the example, the question for expert A

would be: Given your previous estimates, what is the ratio

of r4;2=r4;3? The answer to this question depends on a

number of points. First, the statement ‘given your previous

estimates’ in this case refers to a value of r4,3 ¼ 20.57,

which is computed during the elicitation, and then given to

the expert. Observe that r4,3 is negative. Hence, if the

expert believes that the loss of global stability is positively

correlated with rainfall rate, then the ratio r4;2=r4;3 , 0,

negative correlation between the loss of global stability

and rainfall rate corresponds to r4;2=r4;3 . 0. Notice that

jr4;2=r4;3j . 1 corresponds to the expert’s belief that

jr4,2j . jr4,3j and an analogous situation is observed when

jr4;2=r4;3j , 1.

Figures 4 and 5 depict the relationship of r4;2=r4;3 to

r4,2j3 and r4,2, respectively. Observe the ratio r4;2=r4;3 [
(21.38, 1.38). BecauseX2 andX3 are independent, r4;2=r4;3
is in a symmetric interval around zero. However, if X3 and

X2 were correlated, additional constraints would be present

for the assessment of r4;2=r4;3 (see Morales et al., 2008).

The assignment of rank correlations in relation (5) entails

that r4,2j3 can be chosen freely and hence r4,2j3 [ (21, 1).

This is shown in Figure 4. However, r4,2 will be restricted

by the expert’s previous answer. In this case, given the

expert’s answer thatP(X4 . medianjX3 . median) ¼ 0.3

! r4,3 ¼ 20.57, r4,2 [ (20.78, 0.78) as observed in

Figure 5.

In the example, expert A has stated that r4;2=r4;3 ¼ 0.25.

This entails that he believes that the rank correlation between
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Figure 3. P(X4 . medianjX3 . median) versus r4,3 for expert A under the normal copula assumption.
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the loss of global stability and rainfall rate is negative and

smaller in absolutevalue than r4,3. Inparticular, r4,2 ¼ 20.14

for him. Using the dependence statements embedded in the

graph and Equations (2) and (1), the analyst may compute

the value of r4,2j3 ¼ 20.17 for this expert. According to

Figure 2, loss of global stability has one last parent node for

which the conditional rank correlation r4,1j2,3 needs to be

specified. Thus, the expert would be confronted with the

following question: Given your previous estimates, what is

the ratio of r4;2=r4;3? In this case, the statement ‘given your

previous estimates’ refers to r4,3 ¼ 20.57 and r4,2 ¼ 20.14.

Again, the possible answers to this question are restricted by

the expert’s previous answers. The relationship of r4;1=r4;3
with r4,1j2,3 and r4,1 is shown in Figures 6 and 7, respectively;
in this case, given the expert’s previous answers r4,1 [
(20.77, 0.77).
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Figure 4. r4;2=r4;3 versus r4,2j3 for expert A under the normal copula assumption given P(X4 . medianjX3 . median) ¼ 0.3 and X2 and
X3 are independent.
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Figure 5. r4;2=r4;3 versus r4,2 for expert A under the normal copula assumption given P(X4 . medianjX3 . median) ¼ 0.3 and X2 and
X3 are independent.
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In the example, expertA believes that there is a negative

correlation between seismic frequency and the loss of

global stability. The expert also believes that the correlation

between the loss of global stability and the years until

rebuildmaintenance is smaller than the correlation between

the loss of global stability and the seismic frequency. The

value for the ratio stated by expert A is r4;1=r4;3 ¼ 1.2. This

value corresponds to r4,1 ¼ 20.68. Again, by using the

dependence statements embedded in the graph and

Equations (2) and (1), r4,1 ¼ 20.68 is translated into a

conditional rank correlation of r4,1j2,3 ¼ 20.87.

The full quantification of rank correlations in the BN in

Figure 2 follows the same procedure as the one described

for the elicitation of r4,3, r4,2j3 and r4,1j2,3. For each expert a
BN is obtained. Once a joint distribution is available for

each expert these may be combined via the weight derived

from the calibration and information scores in the classical

model, as described in Morales-Nápoles (2010).
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Figure 6. r4;1=r4;3 versus r4,1j2,3 for expert A under the normal copula assumption given P(X4 . medianjX3 . median) ¼ 0.3,
r4;2=r4;3 ¼ 0.25 X1 and X2 and X3 are independent.

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–1.5

–1

–0.5

0

0.5

1

1.5
Expert A

r1,4

r 1
,4

 / 
r  

3,
4

Figure 7. r4;1=r4;3 versus r4,1 for expert A under the normal copula assumption given P(X4 . medianjX3 . median) ¼ 0.3,
r4;2=r4;3 ¼ 0.25 and X2 and X3 are independent.
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Elicitation results for the BN for earth dam safety in the
State of Mexico

In total four experts (A, B, C and D) participated in the

elicitation exercise. Three of them hold positions at the

National Water Commission (CONAGUA) in the State of

Mexico. The other holds a position in the Municipality of

Zinacantepec as water manager. Two of the experts are

lecturers in the civil engineering programme at the

Autonomous University of the State of Mexico (UAEM).

Having invited them to take part in the research, individual

interviews were agreed with each expert and the

questionnaire included six questions to elicit marginal

distributions, 20 to elicit the rank and conditional rank

correlations from Figure 2 and 20 calibration variables.

After processing the results of the elicitation, no

individual expert had a calibration score corresponding to a

p-value above 5%. Information scores were within a 2.5

factor for the four experts. Expert B had the lowest

calibration score, however was also the most informative.

In contrast, Expert A had the largest calibration score and is

the least informative. This is a recurrent pattern; however,

low informativeness does not translate automatically into

better calibration (Cooke & Goossens, 2008, p. 669).

In the classical model, experts’ scores are the product

of calibration and information scores. Experts with a

calibration score lower than the significance level are

weighted with zero. The global weight decision-maker

(GWDM) uses the information score per variable, while

the item weight decision-maker (IWDM) uses the average

information score. In the example, the GWDM and IWDM

were equal, hence in the future the latter exclusively will

be referred. In this elicitation, the GWDM is better

calibrated than each expert individually; however, its

information scores are lower than the information scores

of each expert individually. The calibration score of the

GWDM is still lower than 5% which fails to confer the

requisite level of confidence for the study.

On the other hand, the equal weight decision-maker

(EWDM) does not take into account experts’ performance

on calibration variables and gives equal weight to all

experts. However, this was the only expert with a p-value

above 5%. For this reason, the EWDM is the recommended

choice and further analysis will be conducted with this

combination. The cost of this choice is in the information

scores (about three times smaller than the GWDM). The

results of the combination scheme are presented in Table 2.

Model use

One of the advantages of BNs is that once the model has

been fully quantified, whenever evidence becomes

available the joint distributionmay be updated accordingly.

In the case of NPBNs, one may exploit the fact that the

normal copula is used to build the joint distribution. This

process is referred to as conditionalisation or inference.

Figure 8 shows the model from Figure 2 in UNINET, a

stand-alone application developed at the Technical

University of Delft for NPBNs (Cooke et al., 2007).

Marginal distributions are represented by histograms.

Means and standard deviations (after the ^ sign) are

shown. Figure 8 will be referred to as baseline or

unconditional case. Figure 9 presents the model when 18

earthquakes per year, 16mm/day of rain in a five-day

moving average period and 60 years without rebuilt

maintenance are observed.

The original baseline case histograms are shown in

Figure 9 in grey, whereas the updated belief (conditional

distribution) is shown in black. Conditional expectations

and standard deviations are also visible. The reader may

observe that the possible failure modes (overtopping, loss

of global stability, piping and breaching) present larger

changes than the possible consequences ( flooding and

costs). This is because the experts’ combined opinion says

that given a dam failure in the State of Mexico, the

consequences are almost the same regardless of the size of

the failure. Similar type of analysis may be used in risk and

reliability analysis. This is illustrated with the two

examples presented in Figures 10 and 11.

Maintenance decisions

To illustrate one possible use of the model in decision-

making under uncertainty, an example is given. The focus

will be on the variables maintenance, loss of global stability

and rainfall rate. It is worth to be mentioned that since no

records of maintenance activities were available for all

seven structures, it was treated as a random variable (there

are about 56 earth dams in the State of Mexico with no

maintenance records). Such a decision also helped to express

the variation across the ages of the dams. Note, however, that

maintenance could have been a decision variable rather than

a random variable or a deterministic value provided that

there were records of the conservation activities.

Conditionalisation needs not be done in the direction

of the arcs. For instance, to make inference with respect to

Table 2. EWDM dependence estimates for the dam safety
model from Figure 2.

(Un)Conditional rank
correlation

(Un)Conditional rank cor-
relation

r3,6 0.1799 r7,6 0.5025
r2,6j3 0.1067 r7,5j6 0.5793
r4,3 20.3996 r7,4j5,6 20.4647
r4,2j3 20.3164 r7,3j4,5,6 0.2212
r4,1j2,3 20.4307 r8,7 0.1135
r5,4 20.1278 r8,5j7 0.0669
r5,2j4 0.1711 r10,8 0.1384
r5,1j2,4 0.3025 r9,8 0.2281
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the amount of maintenance required to achieve a particular

loss of global stability of, say 2.3, Figure 10 would be

employed. The interest is in the conditional distribution of

maintenance. Its conditional distribution would reflect the

distribution of recommended next maintenance times for a

certain subset of dams in the population. In this case, the

expected maintenance should be every 3.3 years (with

percentiles 5th ¼ 0.7 and 95th ¼ 13 years). The decision

for future maintenance across the hypothetical subpopu-

lation included in the 90% uncertainty interval could then

be based on criteria other than loss of global stability. If the

assumption that the 95th percentile gives the required level

of confidence for the next maintenance programme for the

whole subpopulation without any additional evidence,

then the recommended time for the next intervention

would be 13 years (not shown in Figure 10). Notice that

this value is lower than the expectation of maintenance in

the unconditional case shown in Figure 8.

Suppose, additionally, that for a particular sub-region

from the ones represented in the sample, a long dry season is

expected. On the basis of a rainfall rate of maximum

0.5 mm/day for 5 days moving average, the next

maintenance would be planned. This situation is exempli-

fied in Figure 11. The conditional expected maintenance is

now 3.6 years, though in this case, the 95th percentile of the

distribution would indicate that the next maintenance may

be performed after 14.3 years. In this section, the

maintenance time is presented as a random variable, but

when specific conditions regarding particular information

for each dam under investigation are available, the

maintenance time becomes a deterministic value as

shown in the accompanying paper (Delgado-Hernandez

et al., 2012) and in the next section.

The use of decision nodes is a very common procedure

used in discrete BNs. Only a little amount of evidence has

been documented regarding the implementation of decision

Figure 8. Unconditional dam safety model.
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nodes in continuous and hybrid BNs, e.g. are some of the

works published by Cobb (2008, 2009, 2010); the decision

nodes were implemented with BNs using the mixtures of

truncated exponentials framework. Finally, the treatment of

the variable maintenance in this model is perhaps not the

most adequate. A disadvantage of the modelling shown in

this section is that the maintenance variable has not been

treated as a decision node; an alternative approach, not

shown in this article, would be to modify the BN in Figure 2

to consider node maintenance as a decision node. Decision

nodes have not yet been investigated in the NPBN

framework. The implementation of decision nodes is the

subject of future research within the NPBN community.

Design discharges

Extreme value analysis is often required in reliability

assessment for the computation of design values. Some

would say that the flood problem is the oldest problem

connected with extreme values (Gumbel, 1958, p. 4). For

example, in the probabilistic design of river dikes, the

design discharges are defined as those with an average

return period of 1250 years. It is not unusual to look at

probabilities in the order of 1026 or smaller for this kind of

return periods (van Noortwijk, 2003).

In order to compute design values for the earth dams in

the State ofMexico, one may use the model here presented.

Samples may be retrieved from either the unconditional

distribution (Figure 8) or any conditional distribution as the

one shown in Figure 9. Then, extrapolation may be useful

on the basis of these samples. Figure 12 shows this

procedure.

The case denoted Conditional in Figure 12 refers to the

conditional distribution of flooding given the following

values: seismic frequency ¼ 18, rainfall rate ¼ 16 and

maintenance ¼ 60. Note that, in this case, maintenance

Figure 9. Dam safety model given that the seismic frequency is 18 earthquakes above 5.5 Richter degrees per year, rainfall rate is
16mm/day and maintenance is 60 years between conservation activities.
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becomes a deterministic value in relation to observed

previous maintenance. Figure 12 shows the empirical

distributions of both, the baseline case and the conditional

case plus the function fitted to them for the extrapolation.

The function considered for extrapolation corresponds to a

mixture of Gaussians:

f̂ðyjÞ ¼
Xc
i¼1

p̂ifiðyj; m̂i; ŝiÞ; ð6Þ

where fi represent a normal density with mean m̂i and

standard deviation ŝi, and each p̂i is a non-negative

quantity and all sum to one. The p̂i’s are called mixing

proportions and the fi’s component densities of the

mixture. The expectation-maximisation (EM) algorithm

(McLachlan & Peel, 2000) is used in the fitting; however,

other techniques might also be used (see, e.g. van

Noortwijk, 2003).

The conditional case corresponds to the case when the

dams of interest require design values with high levels of

safety. If the design probabilities are in both cases 1028

then the design discharge values for earth dams in the State

of Mexico would correspond to 4 £ 104 and 4.5 £ 104 l/

day for the baseline and conditional cases, respectively.

Figure 10. Dam safety model given a loss of global stability ¼ 2.3.

Figure 11. Dam safety model given a loss of global stability ¼ 2.3 and rainfall rate ¼ 0.5mm/day.
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The economic impact of one or the other choice could be

evaluated by the decision-maker. A similar analysis can be

carried out with the other variables.

Conclusions and final comments

This article shows a BN for causes and possible

consequences of earth dam failure and their failure

modes. The main focus has been on the description of the

type of BN used and its quantification through both SEJ

and field data. In particular, this document introduces an

elicitation technique for conditional rank correlations on

the basis of ratios of unconditional rank correlations. In an

accompanying paper, emphasis is made on risk assessment

in dams within the State of Mexico. The combination of

BNs and expert judgement recognises that dam managers

need intuitive, useful and practical tools for carrying out

quantitative risk assessment based on a solid theoretical

foundation and often with the absence of field data.

The availability of experts was one of the main

difficulties encountered during the quantification process.

This step is critical in future refinements of the model. The

inclusion of more variables should be considered. This is

particularly relevant if some local cases have shown that

other variables are important in the risk evaluation apart

from those reported in international statistics. The equal

weight combination was proposed as the preferred choice

for the decision-maker. The training of experts in

probabilistic assessments and a representative set of seed

variables is fundamental for the classical methodology for

SEJ. These are aspects to consider when refining the

model.

In spite of these observations, it is strongly believed that

the methodology utilised to build the model can be applied

to carry out similar exercises in different locations. Overall,

this research has demonstrated that the use of NPBN in

Mexican dams’ risk assessment is not only feasible but also

beneficial. This research is the starting point of a bigger

project aimed at developing a more comprehensive model

applicable to different types of dams.
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Notes

1. We use the name non-parametric Bayesian networks in order
to be consistent with previous literature. Perhaps a more
appropriate name would be semi-parametric Bayesian
networks, since generally a parametric family of copulas
(the normal copula) is used in applications. The original
motivation to use the non-parametric qualification is to stress
that one-dimensional margins may be chosen freely.

2. When an influence is deterministic, nodes will be called
functional. The discussion presented next refers to
probabilistic influences unless otherwise specified.
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(Eds.), Proceedings of the Fifth European Workshop on
Probabilistic Graphical Models (pp. 89–96). Helsinki,
Finland: Helsinki Institute for Information Technology
Publications.

Cooke, R. (1991). Experts in uncertainty. New York: Oxford
University Press.

Cooke, R.M., Kurowicka, D., Hanea, A.M., Morales, O., Ababei,
D., Ale, B., & Roelen, A. (2007). Continuous/discrete non
parametric bayesian belief nets with unicorn and uninet. In T.

0 1 2 3 4 5

100

10–2

10–4

10–6

10–8

Flooding (l/day) x 104

C
um

ul
at

iv
e 

ex
ce

ed
en

ce
 p

ro
ba

bi
lit

y

Baseline
Baseline Extrap.
Conditional
Conditional Extrap.

Figure 12. Extrapolation of discharge values for computation of
design values for earth dams in the State of Mexico.
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