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Propositions

accompanying the thesis

Algorithms for Non - Parametric Bayesian Belief Nets

Anca Hanea

1. A non-parametric continuous BBN is a way of factorising the determi-
nant of the correlation matrix and also a way of decomposing the mutual
information.

2. The population version of Spearman’s rank correlation for the case of
ordinal discrete random variables proposed in Chapter 3 of this thesis
coincides with the one derived by Neslehova (2007). In the particular case
of binary variables, the alternative form of Spearman’s rank correlation
proposed by Vandenhende et al. (2003), and the normalized correction
for the population version of Spearman’s rank correlation proposed here
are identical.

J.Neslehova, On Rank Correlation Measures for Non-Continuous Random Variables,
Journal of Multivariate Analysis, 98, 3, 544-567, 2007
F. Vandenhende, P. Lambert , Improved Rank-based Dependence Measures for
Categorical Data , Statistics and Probability Letters, 63, 157-163, 2003

3. Causal information about the data can be represented better in a non-
parametric continuous BBN than in a simple regression model. This is
particularly true in situations where the set of regressors have individually
weak correlations with the predicted variable, but they are collectively
important.

4. Non-parametric continuous BBNs typically exhibit conditional variances
that are not constant, contrary to what standard regression models as-
sume.

5. Vines provide a flexible way to model multivariate data with complex
patterns of dependence in the tails, and are often superior in this regard
to other models for capturing high dimensional dependence.

D.Berg,K.Aas, Models for construction of multivariate dependence: A comparison study,
Forthcoming in The Europen Journal of Finance, 2008
M. Fischer , C. Kck, S. Schlter, F. Weigert, Multivariate Copula Models at Work:
Outperforming the ”desert island copula”? Discussion Paper 2007.

6. Mixed discrete & non-parametric continuous BBNs can handle hundreds
of variables (Morales et al., 2007). Expert judgement is often essential in
quantifying such models. If experts are treated as statistical hypotheses
this need not damage the objectivity of the BBN model.



O. Morales-Napoles, D. Kurowicka,R.M. Cooke, D. Ababei, Continuous-Discrete
Distribution Free Bayesian Belief Nets in Aviation Safety with UniNet, Technical Report
TU Delft, 2007

7. Non-parametric continuous BBNs with other than the normal copula may
be employed in cases where the graphical structure does not contain large
undirected cycles.

8. Supporting literature on parameter assessment in classical Gaussian BBN
models is difficult to find. Direct communication with the members of
the community UAI has shed precious little light on the matter.

9. People assume that time is a strict progression of cause to effect...but
actually, from a non-linear, non-subjective viewpoint, it is more like a big
ball of wibbly-wobbly...timey-wimey...stuff.

The Doctor

10. While most of us can see only a few have the gift of sight.

The Cat Empire

These propositions are considered opposable and defendable and as
such have been approved by the supervisor, Prof. Dr. R.M.Cooke.



Stellingen

behorende bij het proefschrift

Algorithms for Non - Parametric Bayesian Belief Nets

Anca Hanea

1. Een niet-parametrische continue BBN is een manier om de determinant
van een correlatiematrix te factoriseren en geeft tevens een decompositie
van de mutual information.

2. De in Hoofdstuk 3 voorgestelde populatieversie van de Spearman rang-
correlatie voor ordinale discrete stochasten komt overeen met die door
Neslehova (2007) is afgeleid. In het speciale geval van binaire variabe-
len vallen de alternatieve vorm van de Spearman correlatie voorgesteld
door Vandenhende et al. (2003) en de genormaliseerde correctie voor de
populatie versie die in dit proefschrift is voorgesteld, samen.

J.Neslehova, On Rank Correlation Measures for Non-Continuous Random Variables,
Journal of Multivariate Analysis, 98, 3, 544-567, 2007
F. Vandenhende, P. Lambert , Improved Rank-based Dependence Measures for
Categorical Data , Statistics and Probability Letters, 63, 157-163, 2003

3. Causale informatie met betrekking tot de gegevens kan beter voorgesteld
worden in een niet-parametrische BBN dan in een eenvoudig regressiemodel.
Dit geldt met name in gevallen waarin de regressoren een sterke onder-
linge correlatie vertonen, terwijl de correlatie met de afhankelijke vari-
abele zwak is.

4. Niet-parametrische continue BBNs vertonen doorgaans een niet-constant
voorwaardelijke variantie in tegenstelling tot de gangbare veronderstellin-
gen bij regressiemodellen.

5. Vines verschaffen een flexibele manier om multivariate gegevens met com-
plexe patronen van startafhankelijkheid te modelleren, en zijn vaak supe-
rior in dit opzicht aan andere modellen voor hoog-dimensionale afhanke-
lijkheid.

D.Berg,K.Aas, Models for construction of multivariate dependence: A comparison study,
Forthcoming in The Europen Journal of Finance, 2008
M. Fischer , C. Kck, S. Schlter, F. Weigert, Multivariate Copula Models at Work:
Outperforming the ”desert island copula”? Discussion Paper 2007.

6. Gemengde discrete en niet-parametrisch continue BBNs kunnen honder-
den variabelen aan (Morales et al. 2007). Expert-mening is menigmaal
essentieel bij het quantificeren van zulke modellen. Wanneer experts als
statistische hypothesen worden behandeld, hoeft dit de objectiviteit van
de BBN niet te schaden.



O. Morales-Napoles, D. Kurowicka,R.M. Cooke, D. Ababei, Continuous-Discrete
Distribution Free Bayesian Belief Nets in Aviation Safety with UniNet, Technical Report
TU Delft, 2007

7. Niet-parametrisch continue BBNs met andere copulae dan de normale
kunnen gebruikt worden, als de grafische structuur geen grote gerichte
cycli heeft.

8. Ondersteunende literatuur voor het schatten van parameters in de klassieke
Gaussische BBNs is zeer moeilijk vindbaar. Directe communicatie met
leden van de betreffende onderzoeksgemeenschap UAI heeft opvallend
weinig aan het licht gebracht.

9. Mensen veronderstellen dat de tijd een strikte progressie is van oorzaak
naar gevolg...maar vanuit een niet-linear, niet-subjectief gezichtspunt, li-
jkt tijd meer op een grote bal van wibbly-wobbly...timey-wimey dingen.

The Doctor

10. Terwijl de meesten van ons kunnen zien, hebben slechts weinig de gave
van het zien.

The Cat Empire

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn
als zodanig goedgekeurd door de promotor, Prof. Dr. R.M.Cooke.
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Chapter 1

Introduction

High dimensional probabilistic modelling using graph theory is employed in several
scientific fields, including statistics, physics, biology and engineering. Graphical
models proved to be a flexible probabilistic framework, and their use has increased
substantially, hence the theory behind them has been constantly developed and
extended. They merge graph theory and probability theory to provide a general
setting for models in which a number of variables interact. The graphical struc-
ture is a collection of vertices (nodes) and links. The visual representation can be
very useful in clarifying previously opaque assumptions about the dependencies
between different variables. Each node in the graph represents a random vari-
able. The links represent the qualitative dependencies between variables. The
absence of a link between two nodes means that any dependence between these
two variables is mediated via some other variables. Graphical models are used for
probabilistic inference, decision making and data mining, in large-scale models in
which a multitude of random variables are linked in complex ways.

There are two main types of graphical models: directed and undirected. The
directed ones are based on directed acyclic graphs and their use can be tracked
back to the pioneering work of Wright (1921). The graphical models with undi-
rected links are generally called Markov random fields or Markov networks. Fur-
ther we shall use the term edge for an undirected link, and arc for a directed
link. Hybrid models are also available; they include both arcs and edges (Lau-
ritzen 1996). Directed graphs and undirected graphs make different statements
of conditional independence, therefore there are probability distributions that are
captured by a directed graph and are not captured by any undirected graph, and
conversely (Pearl 1988).

We restrict our attention to the directed graphical models called Bayesian be-
lief nets, also known as belief networks, Bayesian networks, probabilistic networks,
causal networks, and knowledge maps. We shall use the name Bayesian belief net
and the abbreviation BBN. Among the reasons for choosing BBNs to represent
high dimensional distributions we mention their capability of displaying relation-
ships among variables in an intuitive manner, and that of representing cause-effect

1



2 INTRODUCTION 1.1

relationships through the directionality of the arcs. Moreover, in contrast with
Markov networks, they can represent induced and non-transitive dependencies1.
A very important feature of a BBN is that it can be used for inference. One can
calculate the distributions of unobserved nodes, given the values of the observed
ones. If the reasoning is done ”bottom-up” (in terms of the directionality of arcs),
the BBN is used for diagnosis, whereas if it is done ”top-down”, the BBN serves
for prediction.

1.1 Bayesian Belief Nets - Facts and Fiction

Bayesian Belief Nets (BBNs) are directed acyclic graphs. The nodes of the graph
represent univariate random variables, which can be discrete or continuous, and
the arcs represent direct influences2.

BBNs provide a compact representation of high dimensional uncertainty dis-
tributions over a set of variables (X1, ..., Xn) ( Cowell et al. 1999; Pearl 1988) and
encode the probability density or mass function on (X1, ..., Xn) by specifying a
set of conditional independence statements in a form of an acyclic directed graph
and a set of probability functions.

From basic probability theory we know that every joint density, or mass func-
tion can be written as a product:

f (x1, x2, ..., xn) = f (x1)
n∏
i=2

f (xi|x1...xi−1) . (1.1.1)

Note that specifying this joint mass or density involves specifying values of an
n-dimensional function. The directed graph of a BBN induces a (generally non-
unique) ordering, and stipulates that each variable is conditionally independent of
all predecessors in the ordering given its direct predecessors. The direct predeces-
sors of a node i, corresponding to variable Xi are called parents and the set of all
i’s parents is denoted Pa(i). Figure 1.1 shows a very simple BBN on 4 variables:
X1, X2, X3, and X4, where X1, X2, X3 form the set Pa(4); X4 is called a child of
X1, X2, X3.

Each variable is associated with a conditional probability function of that
variable given its parents in the graph, f(Xi|XPa(i)), i = 1, . . . , n. The conditional
independence statements encoded in the graph allow us to simplify the expression
of the joint probability from (1.1.1) as follows:

f (x1, x2, . . . , xn) =
n∏
i=1

f
(
xi|xPa(i)

)
. (1.1.2)

1A node with converging arrows is a configuration that yields independence in Markov net-
works and dependence in BBNs.

2BBNs can also contain functional nodes, i.e nodes which are functions of other nodes. The
ensuing discussion refers to probabilistic nodes.
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X1 X3

X4

X2

Parents

Child

Figure 1.1: A BBN on 4 variables.

If Pa(i) = ∅, node i is called a source node and f
(
xi|xPa(i)

)
= f(xi). If k is the

maximal number of parents of any node in the graph, we now only have to specify
functions of dimension not greater than k. Hence the BBN is another concise, yet
complete representation of the joint probability distribution.

The graph itself and the (conditional) independence relations that are entailed
by it form the qualitative part of a BBN model. From a set of axioms described
in Pearl (1988) and certain assumptions discussed later in Chapter 5, one can
produce the entire set of independence relations that are implied by the BBN. An
equivalent approach to determine the independence relations from the structure of
a BBN is using the rules of d-separation. The concept of d-separation is detailed
in Section 5.4 of Chapter 5.

The quantitative part of the model consists of the conditional probability
functions associated with the variables. After these functions are quantified, the
BBN can be used for probabilistic inference. Inference algorithms are available
for BBNs with discrete and/or Gaussian nodes and they will be discussed in the
following sections. Even though, most of these algorithms are efficient for reason-
ably large structures, their effectiveness is sometimes overestimated. Statements
like (Langseth 2007):

Efficient algorithms for calculating arbitrary marginal distributions
[...], as well as conditional distributions [...], make BNs well suited for
modeling complex systems. Models containing thousands of variables
are not uncommon.

without any references to support them, can create a false image about the infer-
ence algorithms in question.

We shall further discuss the details of the different types of BBNs currently
in use, taking a close look at their properties and their, often overlooked and
underestimated, disadvantages: at the facts and at the fiction.
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1.1.1 Discrete BBNs

In discrete BBNs nodes represent discrete random variables. These models specify
marginal distributions for source nodes, and conditional probability tables (CPT)
for child nodes.

Consider the BBN from Figure 1.1 with discrete nodes, each node taking k
values, denoted xji , i = 1, . . . , 4, j = 1, . . . , k. The marginal distributions of X1,
X2 and X3, and the conditional distribution of X4 have to be specified. These
distributions can be retrieved from data, when available, or elicited from experts.
Table 1.1 shows the CPT for node 4.

X1X2X3 P (X4 = x1
4|X1, X2, X3) P (X4 = x2

4|X1, X2, X3) ... P (X4 = xk
4 |X1, X2, X3)

x1
1 x

1
2 x

1
3 ? ? ... ?

x1
1 x

1
2 x

2
3 ? ? ... ?

... ... ... ... ... ... ...

xk
1 x

k
2 x

k
3 ? ? ... ?

Table 1.1: Conditional probability table for X4

The above table contains k4 entries. In the case of binary variables, 16 values
have to be specified in a consistent manner. In absence of data, structured expert
judgment should be the choice for quantifying this input. Nevertheless there are
modellers who provide assessments of uncertainty themselves, and others who
agree with this practice (Charniak 1991).

[...] the skeptic might still wonder how the numbers that are still re-
quired are, in fact, obtained. In all the examples described previously,
they are made up. Naturally, nobody actually makes this statement.
What one really says is that they are elicited from an expert who
subjectively assesses them. This statement sounds a lot better, but
there is really nothing wrong with making up numbers. For one thing,
experts are fairly good at it.

If the variables that form the BBN from Figure 1.1 take 10 possible values each,
then the above table contains 10.000 entries, i.e. 10.000 conditional probabilities
must be acquired and maintained. This would be a tremendous burden for an
expert to subjectively assess them. A typical example of how things can go wrong
in modelling complex problems with discrete BBNs is Edwards (1998).

After quantification, BBNs are used to answer probabilistic queries about
the variables involved, i.e. for inference. The network can be used to update
the knowledge of the state of a subset of variables when other variables (the
evidence variables) are observed. There are two types of algorithms for inference:
exact algorithms and approximation algorithms. In surveys of these algorithms,
referring to the nature of variables from a BBN, one can find statements of the
following type (Guo and Hsu 2002):
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These random variables can be either continuous or discrete. For
simplicity, in this paper we shall only consider discrete ones.

This can be misleading for more than one reason. First of all the continuous
variables are restricted to the normal distribution. Moreover, most of the exact
algorithms were designed for discrete BBNs, and only some of them were extended
to BBNs with discrete and Gaussian nodes. The latter will be discussed in the
next section. The approximation algorithms are more useful for large, complex
discrete structures (when exact inference algorithms are very slow), and for Gaus-
sian structures.

Among the exact inference methods we mention variable elimination (Zhang
and Poole 1994). The idea of this method is to use the factored representation
of the joint probability distribution to do marginalisation efficiently. Irrelevant
terms will be summed out (marginalised). The elimination order of the variables
is not unique. The complexity of this algorithm can be measured by the number
of multiplications and summations it performs. Choosing an elimination order to
minimize this is NP-hard (Murphy 2002).

An alternative to variable elimination is dynamic programming, used to com-
pute several marginals at the same time without the redundant computations that
would be performed if variable elimination would be used repeatedly.

If the BBN does not have undirected cycles, a local message passing algorithm
can be used (Pearl 1988). If it has undirected cycles, the most common approach
is to convert the BBN into a tree, by clustering sets of nodes, to form a junction
tree3. Then a local message passing algorithm is used on this tree. A variant of
this method, designed for undirected models is presented in Cowell et al. (1999).
The running time of this algorithms is exponential in the size of the largest cluster
of nodes (Murphy 2002).

The alternative are approximation algorithms, like variational methods, Monte
Carlo methods, bounded cutset conditioning, or parametric approximation meth-
ods. For details about this methods we refer to Jordan et al. (1999), Jaakkola
et al. (1999), MacKay (1999), and Murphy (2002).

Except the fact that inference for large and complex discrete models can be
slow, discrete BBNs suffer other serious disadvantages4:

• Applications involving high complexity in data-sparse environments are
severely limited by the excessive assessment burden which leads to rapid,
informal and indefensible quantification. This assessment burden can only
be reduced by a drastic discretization of the nodes, or simplification of the
model.

• The marginal distributions can often be retrieved from data, but not the
3Given a graph that has no chordless cycles (i.e. a triangulated graph), a junction tree is

constructed by forming a maximal spanning tree from the cliques in the graph. A clique is a
subgraph in which every vertex is connected to every other vertex in the subgraph.

4first of which was touched upon earlier in this section.
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full interactions between children and parent nodes. These marginal distri-
butions often represent the most important information driving the model;
dependence information is often less important. Thus the construction of
conditional probability tables should not molest any available data input.
Rough discretization of course does exactly that.

• Discrete BBNs take marginal distributions only for source nodes, marginals
for other nodes are computed from the conditional probability tables. When
these marginals are available from data, this imposes difficult constraints on
the conditional probabilities. Thus in quantification with expert judgment,
it would be impractical to configure the elicitation such that the experts
would comply with the marginals.

• Whereas BBNs are very flexible with respect to recalculation and updating,
they are not flexible with respect to changes in modelling: if we add one
parent node, then we must re-do all previous quantification for the children
of this node.

Some of the drawbacks listed above are also mentioned in Cowell et al. (1999).

1.1.2 Gaussian and Discrete-Gaussian BBNs

If the nodes of a BBN correspond to variables that follow a joint normal distri-
bution, we talk of Gaussian BBNs (or normal BBNs) (Pearl 1988; Shachter and
Kenley 1989).

Continuous BBNs developed for joint normal variables interpret influence of
the parents on a child as partial regression coefficients when the child is regressed
on the parents. They require means, conditional variances and partial regres-
sion coefficients which can be specified in an algebraically independent manner
(Shachter and Kenley 1989).

Let let X = (X1, ..., Xn) have a multivariate normal distribution. For Gaus-
sian BBNs the conditional probability functions associated with the variables are
of the form:

f
(
Xi|XPa(i)

)
∼ N

µi +
∑

j∈Pa(i)

bij(Xj − µj); νi

 ,

where µ = (µ1, ..., µn) is the mean vector, ν = (ν1, ..., νn) is a vector of conditional
variances and bij are linear coefficients that can be thought of as partial regression
coefficients bij = bij;Pa(i)\j .
Continuous BBNs as above are much easier to construct than their discrete coun-
terparts if the joint distribution is indeed normal. In absence of data, for each
arc a conditional regression coefficient must be assessed. This is the answer to a
question of the following type: ”Suppose that one parent variable were moved up
by One Normal Unit, by how many Normal Units would you expect the child to
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move?”
One can also construct a discrete-continuous model (Cowell et al. 1999) in

which continuous nodes can have discrete parents but not discrete children5 and
the conditional distribution of the continuous variables given the discrete vari-
ables is multivariate normal.

As mentioned in the previous section, some exact inference algorithm for dis-
crete BBNs, were extended for BBNs with conditional normal distributions (Pearl
1988 and Cowell et al. 1999). Other algorithms were introduced in Lauritzen
(1992) and Lauritzen and Jensen (2001). The former proved numerically unsta-
ble, and the latter requires evaluations of matrix generalized inverses and recursive
combinations of potentials6, which makes it complicated (Cowell 2005). Another
algorithm is presented in Cowell (2005). The computations are performed on an
elimination tree7, rather than on a junction tree.

The price of the Gaussian and discrete-Gaussian BBNs is the restriction to the
joint normal distribution, and, in the absence of data, to experts who can asses
partial regression coefficients and (by assumption) constant conditional variances.
If the normality assumption does not hold, then:

• The individual variables must be transformed to normals (requiring of course
the marginal distributions);

• The conditional variance in Normal Units must be constant;

• The partial regression coefficients apply to the normal units of the trans-
formed variables, not to the original units. This places a heavy burden on
any expert elicitation;

• If a parent node is added or removed, after quantification, then the pre-
viously assessed partial regression coefficients must be re-assessed. This
reflects the fact that partial regression coefficients depend on the set of
regressors.

Hence, circumventing the restriction to joint normality is primarily of theoretical
interest.

1.1.3 Non-parametric BBNs

Until recently, there where two ways of dealing with continuous BBNs. One was to
discretize the continuous variables and work with the coresponding discrete model,

5Theoretically there is no need for such a restriction. However in applications, if this restric-
tion is violated, some conditional marginals become mixtures of normals and this extension is
technically demanding (Cowell et al. 1999).

6A potential is associated with each clique; it is a non-negative function on the realizations
of that clique.

7An elimination tree is similar to a junction tree, in that it is a tree structure, but with the
node set being a subset of the complete subgraphs of a chordal graph (rather than the set of
cliques).
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and the other was to assume joint normality. Both these methods have serious
drawbacks, as discussed in the previous sections. In Kurowicka and Cooke (2004)
the authors introduced an approach to continuous BBNs using vines (Cooke 1997;
Bedford and Cooke 2002) together with copulae that represent (conditional) inde-
pendence as zero (conditional) rank correlation. Copulae and vines are discussed
in the next section. Suffice to say here that a copula is a distribution on the
unit square, with uniform marginal distributions; and vines are graphical models
that represent multivariate distributions using bivariate and conditional bivariate
pieces. Moreover there is a close relationship between vines and BBNs.

In the procedure proposed in Kurowicka and Cooke (2004), nodes are associ-
ated with arbitrary continuous invertible distributions and arcs with (conditional)
rank correlations, which are realized by the chosen copula. No joint distribution
is assumed, which makes the BBN non-parametric. In order to quantify BBNs
using this approach, one needs to specify all one dimensional marginal distribu-
tions and a number of (conditional) rank correlations equal to the number of arcs
in the BBN. These assignments together with the BBN structure, the choice of
the copula, and the marginals uniquely determine the joint distribution. The
(conditional) rank correlations assigned to the edges of a BBN are algebraically
independent. The dependence structure is meaningful for any such quantification,
and need not be revised if the univariate distributions are changed. Moreover if
a parent node is added or removed, after quantification, then the previously as-
sessed (conditional) rank correlations need not be re-assessed.

One way of stipulating a joint distribution is by sampling it. The sampling
algorithm for BBNs, using vines, is fully described in Chapter 2. The sampling
procedure works with arbitrary conditional copulae. Thus it can happen that vari-
ables X, and Y are positively correlated when variable Z takes low values, but are
negatively correlated when Z is high. This behaviour indicates that it would be
appropriate to use non-constant conditional copulae (hence non-constant condi-
tional correlations), but the use of such copulae would significantly complicate the
Monte Carlo sampling and the assessment. We will therefore restrict our study
to constant conditional rank correlations.

Conditional rank correlations are not elicited directly or estimated from data
directly. Rather, given a copula, these can be obtained from conditional ex-
ceedance probabilities. Thus suppose node A has parents B and C. According
to the protocol described in Section 2.1, we need the rank correlation rAB and
the conditional rank correlation rAC|B . We extract these from answers to the
following two questions (Morales et al. 2007):

• ”Suppose that B was observed to be above its median, what is the probability
that A is also above its median?”

• ”Suppose that B and C were both observed to be above their medians, what
is the probability that A is also above its median?”
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The relationship between the conditional exceedence probabilities and the (con-
ditional) rank correlations depends on the choice of copula. Moreover, the answer
to the second question is constrained by the expert’s answers to previous question.
Hence bounds for the conditional probability of exceedance (at each step of the
elicitation) have to be computed. Other elicitation procedures are also developed.
For details we refer to Morales et al. (2007).

The conditional rank correlations, obtained in the way described above, can
be realized using any copula that represents (conditional) independence as zero
(conditional) rank correlation.

The copula-vine modelling approach is general and allows defensible quantifi-
cation methods, but it comes at the price that these BBNs must be evaluated by
Monte Carlo simulation. Updating such a BBN requires re-sampling the whole
structure every time evidence becomes available. Moreover, there are situations
in which sampling large complex structures only once can still involve very time
consuming numerical calculations.

1.2 Copulae & Vines

We introduce notations and terminology needed throughout the subsequent chap-
ters. The emphasis is on copulae and vines. Most of the concepts presented here
can be found in Kurowicka and Cooke (2006b). If not, alternative references are
given.

Definition 1.2.1. The copula of two continuous random variables X and Y is
the joint distribution of FX(X) and FY (Y ), where FX , FY are the cumulative
distribution functions of X, Y respectively. The copula of (X,Y ) is a distribution
on [0, 1]2 = I2 with uniform marginal distributions.

An overview of copulae can be found in Nelsen (1999),or Joe (1997). Here, we
only list a small number of families of copulae that will be used in this thesis.

1. Independence copula

Π(u, v) = uv, (u, v) ∈ I2.

2. Fréchet upper bound copula

M(u, v) = min(u, v), (u, v) ∈ I2.

3. Fréchet lower bound copula

W (u, v) = max(0, u+ v − 1), (u, v) ∈ I2.
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4. Normal copula

If Φρ is the bivariate normal cumulative distribution function with product
moment correlation ρ and Φ−1 the inverse of the standard univariate normal
distribution function then:

Cρ(u, v) = Φρ
(
Φ−1(u),Φ−1(v)

)
, (u, v) ∈ I2.

5. Frank’s copula(Frank 1979)

Cθ(u, v) = −1
θ

ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, (u, v) ∈ I2, θ ∈ (−∞,∞).

When θ → ∞ (θ → −∞) then Frank’s copula corresponds to M (W). The
limit θ → 0 yields the independence copula Π.

6. Mardia copula

Cθ(u, v) =
θ2(1 + θ)

2
M(u, v) + (1− θ2)Π(u, v) +

θ2(1− θ)
2

W (u, v),

where (u, v) ∈ I2, θ ∈ [−1, 1].

For every copula C and every (u, v) ∈ I2,

W (u, v) ≤ C(u, v) ≤M(u, v).

The above inequalities suggest a partial order on the set of copulae.

Definition 1.2.2. If C1 and C2 are copulae, we say that C1 is smaller than
C2 and write C1 ≺ C2 if C1(u, v) ≤ C2(u, v) for all (u, v) ∈ I2.

However, there are families of copulae which are totally ordered.

Definition 1.2.3. We call a totally ordered parametric family {Cθ} of copulae
positively ordered if Cα ≺ Cβ whenever α ≤ β.

As examples of positively ordered copulae we mention Frank’s copula, and the
normal copula. The Mardia copula on the other hand is an unordered copula
(Nelsen 1999).

A useful property of a copula is that of representing independence as zero
correlation. Such copula is said to have the zero independence property.

We shall now move on to define the graphical models called vines.
Vines were introduced in Cooke (1997) and Bedford and Cooke (2002). A vine

on n variables is a nested set of trees. The edges of the jth tree are the nodes
of the (j + 1)th tree. A regular vine on n variables is a vine in which two edges
in tree j are joined by an edge in tree j + 1 only if these edges share a common
node. More formally:
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Definition 1.2.4. V is called a regular vine on n elements if:

1. V = (T1, . . . , Tn−1);

2. T1 is a tree with nodes N1 = {1, . . . , n}, and edges E1 and for i = 2, . . . , n−1
Ti is a tree with nodes Ni = Ei−1;

3. For i = 2, . . . , n− 1, a, b ∈ Ei, #a4 b = 2, where 4 denotes the symmetric
difference. In other words if a and b are nodes of Ti connected by an edge
in Ti, where a = {a1, a2}, b = {b1, b2}, then exactly one of the ai equals one
of the bi

We will distinguish two particular regular vines. A regular vine is called a:

• D-vine if each node in T1 has the degree at most 2 (see Figure 1.2 (left));

• C-vine if each tree Ti has a unique node of degree n − i. The node with
maximal degree in T1 is called the root (see Figure 1.2 (right)).

32 41
r12

r13|2

5
r23 r34 r45

r24|3 r35|4

r14|23 r25|34

r15|234
3

2

4

1

r12 r13 r14

r23|1

r24|1

r34|12

Figure 1.2: A D-vine on 5 variables (left) and a C-vine (right) on 4 variables showing
the (conditional) rank correlations associated with the edges.

For each edge of the vine we distinguish a constraint, a conditioning, and a con-
ditioned set. Variables reachable from an edge via the membership relation, form
its constraint set. If two edges are joined by an edge in the next tree the intersec-
tion and symmetric difference of their constraint sets give the conditioning and
conditioned sets, respectively.

Each edge of a regular vine may be associated with a constant (conditional)
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rank correlation8 which can be arbitrarily chosen in the interval [−1, 1] (see Fig-
ure 1.2). Using a copula to realize these (conditional) rank correlations, a joint
distribution satisfying the copula-vine specification can be constructed and it will
always be consistent. For rigorous definitions and proofs we refer to Kurowicka
and Cooke (2006b).

Each vine9 edge may also be associated with a partial correlation. Partial
correlations can be defined in terms of partial regression coefficients. Let us con-
sider variables Xi with zero mean and standard deviations σi, i = 1, ..., n. Let
the numbers b12;3,...,n,...,b1n;2,...,n−1 minimise:

E
(

(X1 − b12;3,...,nX2 − ...− b1n;2,...,n−1Xn)2
)

.

Definition 1.2.5. The partial correlation of X1 and X2 based on X3,..., Xn is:

ρ12;3,...,n = sgn(b12;3,...,n)(b12;3,...,nb21;3,...,n)
1
2 .

Equivalently we could define the partial correlation as:

ρ12;3,...,n = − C12√
C11C22

,

where Cij denotes the (i, j)th cofactor of the correlation matrix.
The partial correlation ρ12;3,...,n can be interpreted as the correlation between
the orthogonal projections of X1 and X2 on the plane orthogonal to the space
spanned by X3,...,Xn.

Partial correlations can be computed from correlations with the following re-
cursive formula (Yule and Kendall 1965):

ρ12;3,...,n =
ρ12;4,...,n − ρ13;4,...,n · ρ23;4,...,n

((1− ρ2
13;4,...,n) · (1− ρ2

23;4,...,n))
1
2
. (1.2.1)

A complete partial correlation vine specification is a regular vine with a partial
correlation specified for each edge. A partial correlation vine specification does not
uniquely specify a joint distribution10, but there is a joint distribution satisfying
the specified information (Bedford and Cooke 2002). For example a joint normal
distribution.

A complete normal partial correlation specification is a special case of a regular
vine specification. The following theorem shows how the notion of a regular vine
can be used to construct a joint normal distribution (Bedford and Cooke 2002).

Theorem 1.2.1. Given any complete partial correlation vine specification there
is a unique joint normally distributed random vector (X1, . . . , Xn) satisfying all
partial correlation specifications.

8When we speak of rank correlation we refer to the Spearman’s rank correlation. We use r
to denote it. The letter ρ is used to represent the product moment correlation.

9Further in this thesis, whenever we speak of vines we mean regular vines.
10Moreover a given set of marginal distributions may not be consistent with a given set of

partial correlations.



1.2 COPULAE & VINES 13

The notion of normal vines arises when X1, . . . , Xn have a joint normal distri-
bution, and the edges of a regular vine on n nodes are assigned the partial cor-
relations of this distribution. Another important result from Bedford and Cooke
(2002) is that each partial correlation vine specification uniquely determines the
correlation matrix, even without the assumption of joint normality.

Theorem 1.2.2. For any regular vine on n elements there is a one to one corre-
spondence between the set of n × n positive definite correlation matrices and the
set of partial correlation specifications for the vine.

The joint normal copula has a well known property inherited from the joint nor-
mal distribution namely: the zero partial correlation is sufficient for conditional
independence11. This follows from two facts: for the joint normal variables the
partial correlation is equal to the conditional correlation and zero conditional cor-
relation means conditional independence. Moreover, the relationship between the
product moment correlation (ρ) and the rank correlation (r) for joint normal,
is given by the Pearson’s transformation, and it translates these properties to
normal copula.

Proposition 1.2.1. (Pearson 1907) Let (X,Y ) be a random vector with the joint
normal distribution, then:

ρ(X,Y ) = 2 sin(π6 · r(X,Y )).

The property of vines that plays a crucial role in model inference is given in the
next theorem(Kurowicka and Cooke 2006a).

Theorem 1.2.3. Let D be the determinant of the correlation matrix of variables
X1, · · · , Xn, with D > 0. For any partial correlation vine

D =
∏

e∈E(V)

(
1− ρ2

e1,e2;De

)
,

where E(V) is the set of edges of the vine V, De denotes the conditioning set
associated with edge e, and {e1, e2} is the conditioned set of e.

Vines are actually a way of factorising the determinant of the correlation matrix.
The key notion in deriving the equation from Theorem 1.2.3 is multiple correlation.

Definition 1.2.6. The multiple correlation R1:2,...,n of variables 1 with respect to
2, ..., n is:

1−R2
1:2,...,n =

D

C11
,

where D is the determinant, and C11 is the (1,1) cofactor of the correlation matrix
C.

11In general, conditional independence is neither necessary, nor sufficient for zero partial
correlation (Kurowicka 2001).
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The multiple correlation R1:2,...,n of variables 1 with respect to 2, ..., n is the
correlation between 1 and the best linear predictor of 1 based on 2, ..., n. It is
easy to show that (Kurowicka and Cooke 2006b):

D =
(
1−R2

1:2,...,n

) (
1−R2

2:3,...,n

)
...
(
1−R2

n−1:n

)
. (1.2.2)

In (Kendall and Stuart 1961) it is shown that R1:2,...,n is non negative and satisfies:

1−R2
1:2,...,n = (1− ρ2

1n)(1− ρ2
1n−1;n)(1− ρ2

1n−2;n−1,n)...(1− ρ2
12;3,...,n).

The concept of multiple correlation and its relationship with partial correlations
will be required later, in Chapter 5, when proving a similar property for the partial
correlation specification for BBNs.

1.3 Aim of Research & Reading Guide

The starting point of this research is the approach from Kurowicka and Cooke
(2004). This method applies to non-parametric continuous BBNs. It is a general
and flexible approach. Nevertheless there are BBN structures for which sampling
even once might be very complicated and time consuming under certain condi-
tions. The first objective of our research is to overcome this problem and develop
further an algorithm such that it is fast in any circumstances. Often, real life
problems involve a large number of variables, connected in complex ways, hence
the algorithm should cope with these situations. Another objective is to extend
the theory for non-parametric continuous BBNs to include ordinal discrete ran-
dom variables. In the last part of our research, we use BBNs as tools for mining
ordinal multivariate data. We aim to develop an algorithm for learning the struc-
ture of a BBN from an ordinal data set.

The objectives formulated above are dealt with in 5 chapters of the thesis.
Chapter 2 reviews the details of non-parametric BBNs using the copula-vine
modelling approach and introduces two new methods. The first one is a hy-
brid approach, which consists of combining the reduced assessment burden and
modelling flexibility of the continuous BBNs with the fast updating algorithms
of discrete BBNs. This is done, using vine sampling together with existing dis-
crete BBNs software. The drawbacks of this method are discussed, and a second
method is introduced. A new sampling protocol based on the normal copula is
proposed. Normal vines are used to realize the dependence structure specified via
(conditional) rank correlations on the continuous BBN.

In order to extend this approach to include ordinal discrete random variables
we need to study the concept of rank correlation between two such variables. In
contrast with the continuous case, the rank correlation of two discrete variables
and the rank correlation of their underlying uniforms are not equal. Therefore one
needs to study the relationship between these two rank correlations. Chapter 3
presents a generalisation of the population version of Spearman’s rank correlation
for the case of ordinal discrete random variables.
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Discrete univariate distributions can be obtained as monotone transforms of
uniform variables. A class of discrete bivariate distributions can be constructed
by specifying the marginal distributions and a copula. The rank correlation co-
efficient of the discrete variables depends on not only the copula, but also the
marginal distributions. An analytical description of this dependence is derived
and discussed in case of different copulae and different marginal distributions.

In Chapter 4 we present two large ongoing projects in which mixed non-
parametric continuous & discrete BBNs are the tool used in the analysis.

Chapter 5 is concerned with non-parametric BBNs from a completely different
point of view, namely as a tool for mining ordinal multivariate data. We propose
a method for learning a BBN from data. The main advantage of this method is
that it can handle a large number of continuous variables, without making any
assumption about their marginal distributions, in a very fast manner. Once we
have learned the BBN from data, we can further use it for prediction or diagnosis
by employing the methods described in the previous chapters. We illustrate the
method proposed using a database of pollutants emissions and fine particulate
concentrations.

In Chapter 6 the most important results of this work are summarised and con-
clusions are formulated. Finally, a short software description, and some technical
details are given in Chapter 7.





Chapter 2

Methods for Quantifying and Analyzing BBNs1

Since BBNs have become a popular tool for specifying high dimensional proba-
bilistic models, commercial tools with an advanced graphical user interface that
support their construction and inference are available. Thus, building and working
with BBNs is very efficient as long as one is not forced to quantify complex BBNs.
A high assessment burden of discrete BBNs is often caused by the discretization
of continuous variables. An alternative to the discretization of continuous vari-
ables or the assumption of normality is the copula-vine approach to continuous
BBNs. The details of this approach are discussed in the beginning of this chapter.
The approach is quite general and allows traceable and defensible quantification
methods, but it comes at a price: the BBNs must be evaluated by Monte Carlo
simulation. Updating such a BBN requires re-sampling the whole structure. The
advantages of fast updating algorithms for discrete BBNs are decisive. A hybrid
method advanced in Section 2.2 samples the continuous BBN once, and then dis-
cretizes this so as to enable fast updating. This combines the reduced assessment
burden and modelling flexibility of the continuous BBNs with the fast updating
algorithms of discrete BBNs.

Sampling large complex structures only once can still involve time consuming
numerical calculations. Therefore a new sampling protocol is developed (Section
2.3). Given that the conditional copulae do not depend on conditioning variables,
there are great advantages to using the joint normal copulae, hence this new pro-
tocol is based on normal vines.

The last section of this chapter describes a very important feature of the nor-
mal copula vine method, namely that conditioning can be done analytically.

1This chapter is based on the paper Hanea et al. (2006), ”Hybrid Method for Quantifying and
Analyzing Bayesian Belief Nets”, published in Quality and Reliability Engineering International,
22(6).

17
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2.1 Continuous BBNs & Vines

The nodes of a non-parametric continuous BBN represent continuous univariate
random variables. The arcs are associated with (conditional) parent-child rank
correlations. We assume throughout this chapter that all univariate distributions
have been transformed to uniform distributions on (0, 1). Any copula with in-
vertible conditional cumulative distribution function may be used as long as it
represents (conditional) independence as zero (conditional) correlation. We note
that quantifying BBNs in this way requires assessing all (continuous, invertible)
one dimensional marginal distributions. One can assign (conditional) rank cor-
relations to the arcs of a BBN according to the protocol presented in Kurowicka
and Cooke (2004). The conditional rank correlations need not be constant, al-
though they are taken to be constant in the following examples. In contrast, in
Section 2.3, where we introduce normal vines, the conditional rank correlations
must be constant. We will illustrate the protocol for assigning (conditional) rank
correlations to the arcs of a BBN with an example.

Example 2.1.1. Let us consider the undirected cycle on 4 variables from Figure
2.1.

1 3

42

Figure 2.1: BBN with 4 nodes and 4 arcs.

There are two sampling orders for this structure: 1, 2, 3, 4, or 1, 3, 2, 4. Let us
choose 1, 2, 3, 4. The factorization of the joint distribution is:

P (1)P (2|1)P (3|12)P (4|231). (2.1.1)

The underscored nodes in each conditioning set are the non-parents of the condi-
tioned variable. Thus they are not necessary in sampling the conditioned variable.
This uses some of the conditional independence relations in the belief net. If they
would be omitted from the conditioning set, the factorisation (2.1.1) would co-
incide with the factorisation (1.1.2). To each arc of the BBN we will assign a
parent-child rank correlation. The correlation between the child and its first par-
ent2 will be an unconditional rank correlation, and the correlations between the

2The parents of each variable can be ordered in a non-unique way.
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child and its next parents (in the ordering) will be conditioned on the values of
the previous parents. Hence, one set of (conditional) rank correlations that can
be assigned to the edges of the BBN from Figure 2.1 are3: {r21, r31, r42, r43|2}.
For each term i (i = 1, . . . , 4) of the factorization 2.1.1, a D-vine on i variables
is built. This D-vine is denoted by Di and it contains: the variable i, the non-
underscored variables, and the underscored ones, in this order. Figure 2.2 shows
the D-vines built for variables 2, 3, 4.

2 1 2 32 11 43
r21 r31 r42

r43|20

0

Figure 2.2: D2,D3,D4 for Example 2.1.1.

Building the D-vines is not a necessary step in specifying the rank correlations4,
but it is essential in proving the main result for continuous BBNs. In order to
formulate this result, we need a more general setting. For a BBN on n variables the
factorization of the joint distribution in the standard way (following the sampling
order 1, . . . , n) is:

P (1, . . . , n) = P (1)P (2|1)P (3|2, 1) . . . P (n|n− 1, . . . , 1). (2.1.2)

In this factorization, we will underscore the nodes from each conditioning set,
which are not parents of the conditioned variable. For each term i with par-
ents (non-underscored variables) i1...ip(i) in equation (2.1.2), we associate the arc
ip(i)−k −→ i with the conditional rank correlation:{

r(i, ip(i)), k = 0
r(i, ip(i)−k|ip(i), ..., ip(i)−k+1), 1 ≤ k ≤ p(i)− 1. (2.1.3)

The assignment is vacuous if {i1...ip(i)} = ∅. Assigning (conditional) rank cor-
relations for i = 1, ..., n, every arc in the BBN is assigned a (conditional) rank
correlation between parent and child.

The following theorem is crucial for the copula vine approach to non-parametric
continuous BBNs. It shows that these assignments uniquely determine the joint
distribution and are algebraically independent.

3One could as well specify {r21, r31, r43, r42|3} instead.
4These are assigned directly to the arcs of the BBN. Each arc is associated with a (conditional)

parent-child rank correlation.
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Theorem 2.1.1. Given:

1. a directed acyclic graph with n nodes specifying conditional independence
relationships in a BBN;

2. n variables, assigned to the nodes, with continuous invertible distribution
functions;

3. the specification (2.1.3), i = 1, ..., n of conditional rank correlations on the
arcs of the BBN;

4. a copula realizing all correlations [−1, 1] for which correlation 0 entails in-
dependence;

the joint distribution of the n variables is uniquely determined. This joint dis-
tribution satisfies the characteristic factorization (2.1.2) and the conditional rank
correlations in (2.1.3) are algebraically independent.

Proof. Given that all univariate distributions are known, continuous, invertible
functions, one can use them to transform each variable to a uniform on (0, 1).
Hence, we can assume, without any loss of generality, that all univariate distri-
butions are uniform distributions on (0, 1).

The first term in (2.1.3) is determined vacuously. We assume the joint distri-
bution for {1, ..., i − 1} has been determined. The ith term of the factorization
(2.1.2) involves i − 1 conditional variables, of which {ip(i)+1, ..., ii−1} are condi-
tionally independent of i given {i1, ..., ip(i)}. We assign:

r(i, ij |i1, ...ip(i)) = 0; ip(i) < ij ≤ i− 1. (2.1.4)

Then the conditional rank correlations (2.1.3) and (2.1.4) are exactly those on
Di involving variable i. The other conditional bivariate distributions on Di are
already determined. It follows that the distribution on {1, ..i} is uniquely deter-
mined. Since zero conditional rank correlation implies conditional independence,

P (1, ...i) = P (i|1...i− 1)P (1, ..., i− 1) = P (i|i1...ip(i))P (1, ..., i− 1).

from which it follows that the factorization (2.1.2) holds. The fact that the
(conditional) rank correlations are algebraically independent follows immediately
from the same property of the rank correlation specification on a regular vine
(Kurowicka and Cooke 2006b).

The (conditional) rank correlations and the marginal distributions needed in or-
der to specify the joint distributions represented by the BBN, can be retrieved
from data, if available or elicited from experts (Morales et al. 2007).

After specifying the joint distribution, we will now show how to sample it. In
order to sample a BBN structure we will use the procedures for vines. We can
sample Xi using the sampling procedure for the vine Di. When using vines to
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sample a continuous BBN, it is not in general possible to keep the same order
of variables in successive D-vines. In other words, we will have to re-order the
variables before constructing Di+1 and sampling Xi+1, and this will involve calcu-
lating some conditional distributions. We will present the sampling procedure for
BBNs using the structure from Example 2.1.1. In Figure 2.2, one can notice that
the D-vine for the 3rd variable is D3 = D(3, 1, 2), and the order of the variables
from D4 must be D(4, 3, 2, 1). Hence, this BBN cannot be represented as just one
D-vine. An example of a BBN structure that can be represented as one single
D-vine is given in Figure 1.1 from Chapter 1. Its equivalent D-vine is showed in
Figure 2.3.

23 14
r43

r42|3

0 0

0

r41|32

Figure 2.3: The D-vine corresponding to the BBN from Figure 1.1.

Let us return to the sampling procedure for the BBN structure from Example
2.1.1. We start with sampling four independent, uniform (0,1) variables, say
U1, . . . , U4.

x1 = u1;
x2 = F−1

r21;x1
(u2);

x3 = F−1
r31;x1

(F−1
r32|1;Fr21;x1 (x2)(u3));

x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2 (x3)(F

−1
r41|32;Fr21|3;Fr32;x3 (x2)(Fr31;x3 (x1))(u4))),

where Frij|k;Xi(Xj) denotes the cumulative distribution function of Xj , given Xi

under the conditional copula with correlation rij|k.
The BBN structure reads the conditional independence of X3 and X2 given

X1 (r32|1 = 0), and of X4 and X1 given X2, X3 (r41|32 = 0), hence:

F−1
r32|1;Fr21;x1 (x2)(u3) = u3 and F−1

r41|32;Fr21|3;Fr32;x3 (x2)(Fr31;x3 (x1))(u4) = u4.

Consequently, using these conditional independence properties, the sampling pro-
cedure can be simplified as:

x1 = u1;
x2 = F−1

r21;x1
(u2);

x3 = F−1
r31;x1

(u3);
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x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2 (x3)(u4)).

We shorten the notation by dropping the ”r”’s and write Fj|i(xj) instead of
Frij ;xi

(xj). The conditional distribution F3|2(x3) is not given explicitly, but it
can be calculated as follows:

F3|2(x3) =
∫ x3

0

∫ 1

0
c21(x2, x1)c31(v, x1)dx1dv,

where ci1 is the density of the chosen copula with correlation ri1, i ∈ {2, 3}. We
use Frank’s copula to realise the (conditional) rank correlations. The reasons for
this choice are: it has the zero independence property; it realizes a specified rank
correlation without adding too much information to the product of the margins;
its density covers the entire unit square; it has tractable functional forms for the
density; conditional distribution and inverse of the conditional distribution.

For each sample, one needs to calculate the numerical value of the double
integral5. In this case, when only one double integral needs to be evaluated, it
can be easily done without excessive computational burden.

If we observe the values of some variables, the results of sampling this model -
conditional on their values - are obtained either by sampling again the structure
(cumulative approach), or by using the density approach. We will present both
methods in short, and for details we refer to (Kurowicka and Cooke 2006b).
Let us assume we learn X2 = 0.85. In the cumulative approach the sampling
procedure becomes6:

x1 = F−1
1|2:x2

(u1);
x2 = 0.85;
x3 = F−1

3|1:x1
(u3);

x4 = F−1
4|2:x2

(F−1
4|32:F3|2(x3)(u4)).

In the density approach, the joint density can be evaluated as follows (Bedford
and Cooke 2002):

g(x1, . . . , x4) = c21(x2, x1)c31(x3, x1)c42(x4, x2)c43|2(F4|2(x4), F3|2(x3)).

The conditionalisation is made using x2 = 0.85 in the above formula and re-
sampling with weights proportional to g(x1, 0.85, x3, x4). Whichever of the two
methods is preferred, the double integral still needs to be evaluated for each
sample, and for any new conditionalisation.

If the BBN is an undirected cycle of five variables, and the same sampling
procedure is applied, a triple integral will have to be calculated. The bigger the
cycle is, the larger the number of multiple integrals that have to be numerically
evaluated. And yet, this is not the worst that can happen7; an example of such a

5All numerical results in this chapter are obtained using Matlab.
6Sometimes, the sampling order has to be changed in order to perform conditioning using

the cumulative approach.
7More examples of BBN structures in which additional numerical calculations are needed are

presented in Chapter 6 of Kurowicka and Cooke (2006b).
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situation will be presented in Section 2.3 of this chapter.
The BBNs that resemble real life problems will often be quite large, and may

well contain undirected cycles of five or more variables. Updating such a structure
is done by re-sampling the network each time new evidence is obtained. In case of
a large number of variables, one would have to be prepared to run the model for a
few days. To overcome this limitation we would like to combine the vine approach
to the continuous BBNs, with the benefits of the discrete BBNs software. This is
done in the next section.

2.2 Hybrid Method

Sampling a large BBN structure every time new evidence becomes available does
not seem a very good idea in terms of computational time. On the other hand,
sampling it just once, and employing the easiness of use, flexibility, good visuali-
sation, and fast updating of a commercial BBN tool, provides an elegant solution
to this problem. The hybrid method proposed here can be summarised as follows:

1. Quantify nodes of a BBN as continuous univariate random variables and
arcs as parent-child (conditional) rank correlations;

2. Sample this structure creating a large sample file;

3. Use this sample file (in a commercial BBN tool) to build conditional prob-
ability tables for a discretized version of the continuous BBN;

4. Use the commercial tool to visualise the network and perform fast updating
for the discretized BBN.

Most often, when continuous non-parametric BBNs have to be quantified, their
discretized version is used instead. A large number of states should be used for
each node, in order for the quantification to be useful. This leads to huge condi-
tional probability tables that must be filled in, in a consistent manner. In contrast,
the 1st step of the hybrid method can significantly reduce the assessment burden,
while preserving the interpretation of arrows as influences. Not only is the degree
of realism greater in the continuous model, but also the quantification requires
only the marginal distributions and a reduced number of algebraically indepen-
dent (conditional) rank correlations. After quantifying the continuous model, the
discretized version of the model is used. Discretizing the nodes in fairly many
states will ensure preserving the dependence structure specified via (conditional)
rank correlations. The conditional probability tables for the discretized version of
the model are immediately constructed, by simply importing the sample file in a
commercial BBN tool (3rd step of the hybrid method). The main use of the BBNs
is updating on the basis of newly available information. We have shown how this
can be done using the copula-vine method and what its disadvantages are. This
motivates the 4th step of the hybrid method which offers immediate updating.
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There is a large variety of BBN software tools. Some of them are free (e.g.
Bayda, BNT, BUGS, GeNIe) and others are commercial, although most of the
latter have free versions which are restricted in various ways (Murphy 2002) . In
our experience, the commercial tools have some advantages over the free ones,
either from the functionality point of view, or even because of the graphical user
interface which is sometimes not included in the free software. Two of the most
popular commercial tools for BBNs are Hugin8 and Netica9. They both provide
an elegant graphical user interface and their main features are very similar (at
least the features that we use in our study). We chose Netica for our further study.

In order to perform the 3rd step of the hybrid method, a network has to be
pre-prepared in Netica. This will contain the nodes of the BBN, each discretized
in a certain - not necessarily small - number of states, together with the con-
nections. The way in which variables are discretized is a choice of the analyst.
To preserve the information about the dependence structure in the sample file, a
large number of discretization intervals is preferred. On the other hand, when the
number of discretization intervals for each variable increases, the size of the con-
ditional probability tables that Netica constructs from the sample file increases
as well. There is a trade off between the number of discretization intervals and
the size of the conditional probability tables. After a few comparisons (for partic-
ular cases) between the choices of 5, 10 and 20 discretization intervals (for each
variable), one can observe that the dependence structure assigned by the experts
is maintained up to a difference of order 10−3 in the case where the variables
are discretized in 10 intervals each, and the sample file imported in Netica does
not need to be of extraordinary size. Based on this result, the variables from
the following examples will be discretized each in 10 intervals. Another choice
that one has to make also with respect to the discretization, is the size of the
discretization intervals. The variables can be discretized in equal intervals, or
according to the quantiles of their distributions, or at random. The third choice
is of course not very useful. After the sample file is imported in Netica, the
marginal distributions can be visualized (via the option Style/Belief bars). If the
variables are discretized in equal intervals, the shape representing each variable
corresponds to the shape its real distribution. If, on the other hand, the variables
are discretized according to their quantiles, Netica will show uniform marginals.
We shall illustrate the method described above by means of an extensive example.

Example 2.2.1. Flight Crew Alertness

In Figure 2.4, the flight crew alertness model is given. A discrete form of this
model was first presented in Roelen et al. (2004) and an adapted version of it was
discussed in Kurowicka and Cooke (2004). In the original model all chance nodes

8A light version of Hugin can be downloaded from www.hugin.com
9A light version of Netica can be downloaded from www.norsys.com
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were discretized to take one of two values OK or NotOK. The names of nodes
have been altered to indicate how, with greater realism, these can be modelled as
continuous variables. Alertness is measured by performance on a simple tracking
test programmed on a palmtop computer. Crew members did this test during
breaks in-flight under various conditions. The results are scored on an increasing
scale and can be modelled as a continuous variable. The alertness of the crew is
influenced by a number of factors like: how much time the crew slept before the
flight, the recent work load, the number of hours flown up until this moment in the
flight (flight duty period), pre-flight fitness, etc. Figure 2.4 resembles the latest
version of the model.

Recent

workload (1)

Hours of

sleep (2)

Nighttime

flight (7)

Pre-flight

fitness (3)

Crew 

alertness

(8)

Operational

load (6)

Fly duty

period (4)

Rest time 

on

flight (5)

r31|2 = -0.9 r32 = 0.9 r87|63 = -0.4

r83|6 = 0.85

r86 = -0.8

r64 = 0.5 r65|4 = -0.95

r54 = 0.8

Figure 2.4: Flight crew alertness model.

In order to use the hybrid method described in the beginning of this section, con-
tinuous distributions for each node and (conditional) rank correlations for each
arc must be gathered from existing data or expert judgement. The distribution
functions are used to transform the variables to uniforms on (0, 1). The (con-
ditional) rank correlations assigned to each arc of the BBN are chosen by the
authors of Kurowicka and Cooke (2004) for illustrative purposes. The marginal
distributions are chosen to be uniforms on (0, 1). For simplicity, we assign a num-
ber to each variable (see Figure 2.4). We choose the sampling order: 1, 2, 3, 4,
5, 6, 7, 8. The sampling procedure uses Frank’s copula, and does not require any
additional calculations:

x1 = u1;
x2 = u2;
x3 = F−1

3|2:x2
(F−1

3|21:x1
(u3));

x4 = u4;
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x5 = F−1
5|4:x4

(u5);
x6 = F−1

6|4:x4
(F−1

6|54:F5|4(x5)(u6));
x7 = u7;
x8 = F−1

8|6:x6
(F−1

8|63:x3
(F−1

8|763:x7
(u8))).

Figure 2.5 shows the BBN from example 2.4, modelled in Netica. The variables are
uniform on the (0, 1) interval, and each is discretized in 10 states. Each of these
states consists in an interval, rather than a single value. A case file containing
8 · 105 samples, obtained using the sampling procedure described, was imported
in Netica. This automatically creates the conditional probability tables.

Figure 2.5: Flight crew alertness model with histograms in Netica.

The quantification of the discretized BBN would require 12140 probabilities,
whereas the quantification with continuous nodes requires only 8 algebraically
independent (conditional) rank correlations and 8 marginal distributions.

The main use of BBNs in decision support is updating on the basis of possible
observations. Let us suppose that we have some information about how much the
crew slept before the flight and about the flight duty period of the crew. Figures
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2.6 and 2.7 present the distribution of the crew alertness in the situation when
the crew’s hours of sleep are between the 20th and the 30th percentiles (the crew
did not have enough sleep) and the flight duty period is between the 80th and
90th percentiles (the flight duty period is long).
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8|0.2<2<0.3,0.8<4<0.9,vines update with samples
8|0.2<2<0.3,0.8<4<0.9 netica update

Figure 2.6: Distribution of X8|X2, X4. Comparison of updating results in vines and
Netica using 104 samples.

The conditional distribution of the Flight crew alertness(8) from Figures 2.6 and
2.7 is obtained in two ways:

• using the vines-Netica updating;

• using the vines updating with the density approach.

After the sample file is imported in Netica, we condition on Hours of sleep ∈
[0.2, 0.3] and Fly duty period ∈ [0.8, 0.9]. We can use Netica to generate samples
from the conditional distribution of Crew alertness. Even though Crew alertness
appears as a discrete variable in Netica, its conditional distribution is not rep-
resented as a step function. The reason is that each of its 10 discrete ”values”
is actually an interval, therefore Netica generates samples from the entire range
[0, 1].

In the same manner, we sample from Hours of sleep ∈ [0.2, 0.3] and Fly duty
period ∈ [0.8, 0.9] and save the samples that Netica generates. In the simulation
for vines updating, we will have to re-sample the structure, in the same condi-
tions. For better results of the comparisons, we use the samples that we saved
from Netica, in the simulation for updating with vines.

In Figure 2.6, the conditional probability tables from Netica were built using
104 samples. The agreement between the two methods is very poor. For example,
one can notice from both curves that the combination of the two factors (not
enough sleep and a long flight duty period) has an alarming effect on the crew
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Figure 2.7: Distribution of X8|X2, X4. Comparison of updating results in vines and
Netica using 104 from 8 · 105 samples (left) and using 8 · 105 samples (right).

alertness. The difference is that in vines-updating, with probability 50 percent,
alertness is less than or equal to the 15th percentile of its unconditional distribu-
tion10, whereas in vines-Netica updating with probability 50 percent alertness is
less than or equal to the 35th percentile of its unconditional distribution. This
disagreement is due to the number of samples from which Netica calculates the
conditional probability tables (104). There are 103 different input vectors for
node 8, each requiring 10 probabilities for the distribution of 8 given the input.
With 104 samples, we expect each of the 103 different inputs to occur 10 times,
and we expect a distribution on 10 outcomes to be very poorly estimated with
10 samples. Moreover, updating with vines does not produce a very smooth and
accurate curve, also because the simulation was performed with 104 samples.
In Figure 2.7 (left), the sample file imported in Netica contains 8 · 105 samples
which allows a very good estimation of the conditional distribution of Crew alert-
ness. Another 104 samples for Hours of sleep ∈ [0.2, 0.3] and 104 for Fly duty period
∈ [0.8, 0.9] are saved from Netica and used in the vines updating. The curves start
to look very similar indeed, but the one corresponding to vines updating is still
not smooth because of the number of samples. If we do everything with the entire
sample file of 8 · 105 samples, the agreement between the two conditional distri-
butions is impeccable (see Figure 2.7 (right)). This motivates the use of a very
big sample file.

For a BBN with nodes that require a large number of inputs (large number
of parent nodes, discretized in fairly many states) the sample files should also be
very large. The big advantage is that this huge sample file needs to be done only
once.

Note however that in some cases it might happen that sampling the structure,

10Crew alertness is a uniform variable, therefore its unconditional distribution function is the
diagonal of the unit square.
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even just once will cause problems, as we already mentioned in Section 2.1. We
will further present a BBN structure, which at a first glance, seems very easy
to deal with, in the sense that it offers a great deal of information about the
dependence structure.

Example 2.2.2. Let us consider the BBN from Figure 2.8. If the set of (condi-

1

3

4

2

Figure 2.8: BBN with 4 nodes and 5 arcs.

tional) rank correlations that can be elicited is either {r21, r31, r42, r41|2, r43|21},
or {r21, r31, r43, r41|3, r42|31}, then the BBN can be represented as one D-vine,
and so the sampling procedure does not require any extra calculations. If, for some
reason, these rank correlations cannot be specified, and the only ones which are
available are: {r21, r31, r43, r42|3, r41|32} the situation worsens considerably.
The BBN can no longer be represented as one D-vine, since the order of the vari-
ables in D3 is 3, 1, 2, and in D4 is 4, 3, 2, 1.

To sample X4, one needs to calculate:

x4 = F−1
4|3:x3

(F−1
4|23:F2|3(x2)(F

−1
4|123:F1|23(x1)(u4))).

The conditional distribution F2|3(x2), can be found by evaluating a double inte-
gral as in Example 2.1.1. Furthermore, F1|23(x1) needs to be calculated. This is,
in fact, the conditional distribution of F1|2(x1), given F3|2(x3). Even though all
the information needed seems to be available, evaluating the joint distribution of
these two quantile functions turns out to be very difficult. Moreover at each step
of its evaluation, one should calculate the numerical value of the double integral
for F3|2(x3). This is a task that takes time and patience.

If this kind of calculation is necessary for such a small BBN, it is very likely
that more complicated ones will be involved in larger structures. The time spent
to solve this sort of problems would be, by far, much longer than one can afford.
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2.3 Normal Copula Vine Approach

All the troubles discussed until now are caused by the different sampling order of
variables from one vine to another. To avoid these problems we advance here a
new way of realizing the rank correlation specification on a regular vine using the
advantages of the joint normal distribution.

Let us start with a rank correlation vine specification on the variablesX1, . . . Xn,
with continuous, invertible distribution functions F1, . . . , Fn. We adopt the fol-
lowing protocol:

1. Transform X1, . . . Xn to the standard normal variables Y1, . . . Yn via the
transformation Yi = Φ−1(Fi(Xi)), (∀i)(i = 1, . . . , n), where Φ is the cumu-
lative distribution function of the standard normal distribution.

2. Construct the vine for the standard normal variables Y1, . . . , Yn. Since
Φ−1(Fi(Xi)) are strictly increasing transformations, the same (conditional)
rank correlations correspond to the edges of this vine.

3. To each edge of this vine assign ρi,j|D = 2 sin(π6 · ri,j|D), where {i, j} and
D are the conditioned and conditioning sets, respectively, of the edge, and
ri,j|D is the conditional correlation assigned to the corresponding edge from
the initial vine. We now have a complete partial correlation vine specifi-
cation11 for Y1, . . . , Yn. Theorem 1.2.1 ensures that there is a unique joint
normal distribution for Y1, . . . Yn satisfying all partial correlation specifica-
tions. Moreover there is a unique correlation matrix determined by this vine
(Theorem 1.2.2).

4. Compute the correlation matrix R using the recursive formula 1.2.1.

5. Sample the joint normal distribution of Y1, . . . , Yn, with correlation matrix
R (Tong 1990).

6. For each sample, calculate: (F−1
1 (Φ(yj1)), F−1

2 (Φ(yj2)), . . . , F−1
n (Φ(yjn))), where

((yj1), (yj2), . . . , (yjn)) is the jth sample from the previous step.

In this way we realize the joint distribution of the initial variables X1, . . . Xn,
together with the dependence structure specified.

The normal copula vine method might seem very similar to the joint normal
transform method presented in Ghosh and Henderson (2002); Iman and Helton
(1985), but the presence of vines is crucial in avoiding the problems encountered
in the latter method. In the joint normal transform approach, the rank correlation
matrix must be first specified and then induced by transforming distributions to

11As we mentioned in Chapter 1, Section 1.2, conditional and partial correlations are equal
for normal variables.
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standard normals and generating a dependence structure using the linear proper-
ties of the joint normal. In absence of data, specifying a rank correlation matrix
can be a very difficult task. Moreover, it is not always possible to find a product
moment correlation matrix generating a given rank correlation matrix via Pear-
son’s transformation, as showed in Chapter 4 from Kurowicka and Cooke (2006b).
Using the normal copula vine approach we avoid these problems because we do
not specify a rank correlation matrix, but rather a rank correlation vine, that is
transformed to a partial correlation vine. All assignments of numbers between
-1 and 1 to the edges of a partial correlation regular vine are consistent, in the
sense that there is a joint distribution realising these partial correlations, and all
correlation matrices can be obtained in this way (Bedford and Cooke 2002).

In case of a BBN which cannot be represented as one vine, we can make use of
the protocol described above. Everything is calculated on the joint normal vine,
hence we can reorder the variables and recompute all partial correlations needed.
We expect a dramatic decrease in the computational time using this method. We
note that the assumption of constant conditional rank correlations, previously a
matter of convenience, is now required.

Further, we will present comparisons between the normal copula vine method
and the copula-vine method together with Netica updating, using the BBN from
Example 2.1.1.

The marginal distributions of X1, X2, X3, X4 are uniform on the interval
(0, 1). We sample the structure both with the copula-vine, and the normal copula
vine approach. Hence, we produce two sample files, each containing 105 samples.
The resulting files are imported in Netica, and conditioning is performed in both
cases. Figure 2.9 presents the conditional distribution of the variable X4 given
that X1 ∈ [0.1, 0.2] and X2 ∈ [0.3, 0.4], obtained using the sample files produced
with the two methods. One can notice a small disagreement between the two
conditional distributions. If we think of the normal copula vine method in terms
of the copula-vine method, where we made use of the normal copula, we can say
that the difference between the two conditional distributions from Figure 2.9 is
due to the different choice of the copula.

Another way of comparing these methods is to calculate and compare the
two sample correlation matrices. The matrices presented below correspond to
the sample file obtained using the copula-vine approach (left) and the sample file
generated with the normal copula vine method (right):

1 0.4031 0.7028 0.3746

0.4031 1 0.2843 0.2028

0.7028 0.2843 1 0.5201

0.3746 0.2028 0.5201 1




1 0.4000 0.6974 0.3843

0.4000 1 0.2837 0.1985

0.6974 0.2837 1 0.5271

0.3843 0.1985 0.5271 1


Comparing the two matrices one can observe differences of order 10−3, which
represent a reasonable result taking into account the sampling errors.
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Figure 2.9: The distribution of X4|X1, X2. Frank’s Copula Vine vs Normal Copula
Vine (conditioning in Netica using 105 samples).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
8

F
(x

8|0
.2

<x
2<0

.3
,0

.0
.8

<x
4<0

.9
)

 

 

frank vine − netica updating
normal vine − netica updating

Figure 2.10: The distribution of X8|X2, X4. Frank’s Copula Vine vs Normal Copula
Vine (conditioning in Netica using 8 · 105 samples).
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The big advantage of the normal copula vine method is that the simulation
runs for a few seconds, whereas with the previous sampling algorithm (in which a
double integral needs to be numerically evaluated for each sample) the results were
available in hours. Both methods were implemented in Matlab for a fair compar-
ison of the computational times. The normal copula vine method is implemented
in a software application, called UniNet. UniNet allows for quantification of
non parametric continuous/discrete BBNs. The program has a friendly interface
and the simulations are very fast. For details about UniNet we refer to the Ap-
pendix 7.1.

The same kind of results we find when we examine the structure from Example
2.4 (Flight Crew Alertness). Figure 2.10 shows the conditional distribution of the
variable Crew alertness(8) given that Hour of sleep(2) is in the interval [0.2, 0.3]
and Fly duty period(4) ∈ [0.8, 0.9]. We can again notice that the choice of the
copula produces a small discrepancy between the curves.

Comparing the two sample correlation matrices for this example we find that
the maximum difference is 8 · 10−3.

2.4 Analytical updating

An advantage of the normal copula vine method is that it allows for analytical
conditioning. Since all the calculations are performed on a joint normal vine,
any conditional distribution will also be normal. We need some notation before
introducing the mean and variance of this conditional normal distribution.

Let X be a n-dimensional random vector with multivariate normal distribu-
tion. Let the vector µ be the expected value of X, and V be its covariance matrix.
For a fixed k < n consider the following partition of X, µ and V :

X =
(
Xa

Xb

)
, µ =

(
µa
µb

)
, V =

(
Vaa Vab
Vba Vbb,

)
where Xa = (X1, . . . , Xk)′, Xb = (Xk+1, . . . , Xn)′, µa = (µ1, . . . , µk)′, µb =
(µk+1, . . . , µn)′, Vii = var(Xi∈{a,b}) and Vab = cov(Xa, Xb). The conditional
variance of Xb given Xa is denoted by varb|a(Xb).

Proposition 2.4.1. (Whittaker 1990) (Marginal and conditional density func-
tion): If the partitioned random vector follows the distribution:

(Xa, Xb) ∼ N

[
(µa, µb), V =

(
Vaa Vab
Vba Vbb

)]
, then:

(i) the marginal distribution of Xa is normal with mean µa and variance Vaa;
(ii) the conditional distribution of (Xb|Xa) is normal with the mean:

Eb|a(Xb) = µb +Bb|a · (xa − µa), where Bb|a = VbaV
−1
aa ;
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and the variance:

varb|a(Xb) = Vbb|a = Vbb − VbaV −1
aa Vab.

Finding the conditional distribution of the corresponding original variable will
just be a matter of transforming it back using the inverse distribution function of
this variable and the standard normal distribution function.

Proposition 2.4.2. Let (Y1, Y2) have a bivariate normal distribution, with stan-
dard normal marginals. Let F1 and F2 be two continuous, invertible distribution
functions and Xi = F−1

i (Φ(Yi)), i = 1, 2., where Φ is the cumulative distribution
function of the standard normal distribution. Then the conditional distribution
X1|X2 can be calculated as F−1

1 (Φ(Y1|Y2)).

Proof. For i ∈ {1, 2}, Xi = F−1
i (Φ(Yi)), therefore we can write Yi = Φ−1(Fi(Xi)).

Remark: For A,B,C random variables and f a function such that A = f(B),
then A|C = f(B|C).

We will use the above remark for X1, X2, Y1, Y2, F−1
1 ◦ Φ and x2 an arbitrary

value of X2 :

X1|(X2 = x2) = F−1
1 (Φ(Y1|(X2 = x2))) = F−1

1 (Φ(Y1|(F−1
2 (Φ(Y2)) = x2)))

= F−1
1 (Φ(Y1|(Y2 = Φ−1(F2(x2))))) = F−1

1 (Φ(Y1|(Y2 = y2))),

where we denoted Φ−1(F2(x2)) = y2.

Let us illustrate this result on the BBN structure from Example 2.4 (Flight Crew
Alertness). Figure 2.11 presents a comparison between updating in the normal
copula vine method and the copula-vine method. The updating is performed both
in Netica and analytically.
As one would expect, the pairs of curves corresponding to the two methods
(copula-vine and normal copula vine) follow exactly the same patterns regard-
less of the way we perform conditioning. The distance between the pairs of curves
is caused by the different choice of the copula.

We will now consider (for the same example) the univariate distributions to be
standard normals instead of uniforms on (0, 1). The same kind of comparisons as
before are performed. In doing so, a new model should be pre-prepared in Netica.
The differences between the new model and the one presented in Figure 2.5 are
the range of the variables and the discretization intervals. We will keep the same
number of intervals for the discrete version of each variable, only they will not be
equally sized anymore. The variables are discretized with respect to the quantiles
of their distributions.

We conditionalize on Hours of sleep between its 0.2 and 0.3 quantiles and Fly
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frank vine − copula−vine updating

Figure 2.11: The distribution of X8|X2, X4. Comparison of updating results in Frank’s
Copula Vine (using Netica and the copula-vine updating) vs updating in Normal Copula
Vine (using Netica and analytically). All univariate distributions are uniforms on (0, 1).

duty period between its 0.8 and 0.9 quantiles12. The conditional distribution of
the Crew alertness, obtained with the methods previously discussed, is presented
in Figure 2.12(left).

The curves nicely agree everywhere, except for the first interval of the dis-
cretization, where the results given by Netica updating, in both methods, are
completely different from the results of the analytical updating13. As already
stated, the discretization of the variables was made according to their quantiles,
hence the first interval and the last one (for each variable) are much wider than the
rest of the intervals. This can be noticed in Figure 2.12(right), which shows the
Flight Crew Alertness structure in Netica, after we updated the model. A sample
file of 8 · 105, obtained with the normal copula vine method, was imported in
Netica in order to create the conditional probability tables. For the variable Crew
alertness, the first and the last discretization intervals are approximately 12 times
wider than the rest of the intervals from its discretization (see Figure 2.12(right)).
In order to plot the conditional distribution of Crew alertness given by Netica, one
will need to generate samples from it. Netica simply samples uniformly from each
discretization interval, taking into account its probability. The information that
most of the samples from the first interval should be concentrated in its right
hand side, is not included. Therefore, the first part of each of the curves given by
Netica does not resemble reality. The same kind of discrepancy would happen in

12In the previous comparisons(for uniform marginals) the conditioning was Hours of sleep
∈ [0.2, 0.3] and Fly duty period ∈ [0.8, 0.9].

13The word ”analytical” is appropriate only for the normal copula vine method. For the
copula-vine method, updating is performed via re-sampling the structure.
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Figure 2.12: The distribution of X8|X2, X4. Comparison of updating results in Frank’s
Copula Vine (using Netica and the copula-vine updating) vs updating in Normal Copula
Vine (using Netica and analytically)(left). The Flight Crew Alertness model in Net-
ica(right). All univariate distributions are standard normals.

the last interval if its probability were larger.
We will further consider another updating of the same model. We condition-

alize on Hours of sleep between its 0.3 and 0.4 quantiles, Operational load between
its 0.3 and 0.4, and Nighttime flight between its 0.4 and 0.5 quantiles. Figure
2.13(right) shows the structure in Netica, after updating. Looking at the con-
ditional probability of Crew alertness, one can notice that the first and the last
discretization intervals have very small probabilities. In these conditions, we ex-
pect the curves for the conditional distribution of the Crew alertness, obtained with
the four methods, to be very similar on the entire domain. As Figure 2.13(left)
shows, there is perfect agreement between the methods.

Although in most cases Netica updating has a reasonable outcome, in some
particular ones, its results are not to be trusted. Therefore the opportunity to
perform analytical updating is a big advantage of the normal copula vine method.
Moreover, if the BBN contains some nodes, each with a very large number of in-
puts, Netica will not have enough memory to store their respective CPT’s.

The analytical updating using the normal copula vine method can be also
performed in UniNet. This offers the major advantage to work with the con-
tinuous variables, rather than with their discretized version. Figure 2.14 shows
the histograms of the standard normal variables from the Flight Crew Alertness
model. The means and standard deviations are displayed under the histograms.
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Figure 2.13: The distribution of X8|X2, X6, X7. Comparison of updating results in
Frank’s Copula Vine (using Netica and the copula-vine updating) vs updating in Normal
Copula Vine (using Netica and analytically)(left). The Flight Crew Alertness model in
Netica(right). All univariate distributions are standard normals.

Figure 2.15 displays the result of the conditionalisation on single values of the
variables Hours of sleep, Operational load, and Nighttime flight. The conditionali-
sation from Figure 2.15a is similar to the one showed in Figure 2.13, whereas in
Figure 2.15b we conditionalise on more extreme values of the same variables. The
grey distributions in the background are the unconditional marginal distributions,
provided for comparison. The conditional means and standard deviations are also
displayed.

The theory presented here can be extended to include ordinal discrete random
variables; that is variables which can be written as monotone transforms of uni-
form variables, perhaps taking finitely many values. The dependence structure
must be defined with respect to the uniform variates. The case of dichotomous
variables (and generally variables with few states), and the rank correlations be-
tween two such variables is investigated in the next chapter.
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Figure 2.14: Flight crew alertness model with histograms in UniNet.

(a) X2 = −0.391, X6 = −0.39 and X7 =
−0.125.

(b) X2 = 3, X6 = −2.5 and X7 = 3.7.

Figure 2.15: The conditional distribution given different values of X2, X6 and X7.



Chapter 3

Spearman’s Rank Correlation for Ordinal Discrete

Random Variables1

In order to extend the approach to non-parametric continuous BBNs, such that it
includes ordinal discrete random variables, we need to study the concept of rank
correlation between two such variables.

A population version of Spearman’s rank correlation has been defined in the
case of continuous variables. Our interest is in the discrete case. We start this
chapter with an overview of existing rank correlation measures between two dis-
crete random variables. Section 3.2 introduces a number of definitions and pre-
liminary results necessary further in this chapter. In Section 3.3 we propose a
generalisation of the population version of Spearman’s rank for the case of ordi-
nal discrete random variables.

Discrete univariate distributions can be obtained as monotone transforms of
uniform variables. A class of discrete bivariate distributions can be constructed
by specifying the marginal distributions and a copula. In contrast with the con-
tinuous case, the rank correlation coefficient of the discrete variables depends on
not only the copula, but also the marginal distributions. In Section 3.4 we give
the analytical description of the dependence between the rank correlation of two
discrete variables (with given marginals) and the rank correlation of their under-
lying uniforms. This relation is needed in our BBN modeling approach, where
the dependence structure is defined with respect to the uniform variates. We
study this relationship for different copulae and different marginal distributions.
For certain choices of marginals, the correlation of the discrete variables does not
attain the whole range of dependence.

1This chapter is based on the paper Hanea et al. (2007), ”The Population Version of Spear-
man’s Rank Correlation Coefficient in the Case of Ordinal Discrete Random Variables”, pub-
lished in the Proceedings of the Third Brazilian Conference on Statistical Modelling in Insurance
and Finance.

39
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3.1 Context

In many practical problems one needs to quantify the dependence structure among
variables. Various dependence measures have been proposed and studied. Rank-
based dependence criteria, such as Spearman’s rank correlation r, and Kendall’s
τ , are usually used to measure dependence in bivariate responses. However, in
most cases, the variables involved in the analysis are continuous. The population
versions of the rank correlations are formulated in the continuous case only. We
are interested in the discrete case.

The matter of describing dependence between two discrete random variables
in terms of rank correlation has been receiving much attention lately, see for ex-
ample Vandenhende and Lambert (2003), Mesfioui and Tajar (2005), Denuit and
Lambert (2005), and Neslehova (2007). The approaches taken in Mesfioui and
Tajar (2005), Denuit and Lambert (2005) and Neslehova (2007) are very simi-
lar, and they are based on a continuousation principle, i.e. a transformation of
an arbitrary random variable to a continuous variable. The population version
of Spearman’s rank correlation derived in Neslehova (2007) coincides with the
one derived in this chapter. In addition Neslehova (2007) proves that the sam-
ple version of the derived formula is precisely the sample version of Spearman’s
rank correlation with the classical tie correction. Bearing in mind that Spear-
man’s rank correlation appeared as a measure for discrete random variables, we
approach the problem in a somewhat reversed way.

A correction for Kendall’s τ was introduced in Goodman and Kruskal (1954),
in order to adjust this measure for ties. This was further studied and detailed in
Vandenhende and Lambert (2000). We use similar techniques as in Vandenhende
and Lambert (2000) to study Spearman’s rank correlation coefficient for discrete
variables. We calculate a correction for the population version of Spearman’s r,
starting from its sample version, when ties are present. The resulting expression
is proportional with the difference between the probabilities of concordance and
discordance. The proportionality factor is a function of marginal distributions.
With continuous responses, this factor equals 3, and the formula reduces to the
standard definition of Spearman’s rank correlation r.

It is well known that the rank correlation in the discrete case does not nec-
essarily attain the whole range of dependence [−1, 1]. We propose a way to deal
with this problem, so that the same ±1 limits are always reached under complete
dependence. This way is similar with the approach adopted in Vandenhende and
Lambert (2003), in the sense that it uses the Fréchet bounds of a copula in order
to determine a scaling factor for the dependence measure. In the case of binary
variables, the alternative form of Spearman’s rank correlation proposed in Van-
denhende and Lambert (2003), and the normalised correction for the population
version of Spearman’s r proposed here are identical.
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3.2 Definitions & Concepts

3.2.1 The population version of Spearman’s r for continuous variables

Consider a population distributed according to two variables X and Y. Two mem-
bers (X1, Y1) and (X2, Y2) of the population will be called concordant if:

X1 < X2, Y1 < Y2 or X1 > X2, Y1 > Y2.

They will be called discordant if:

X1 < X2, Y1 > Y2 or X1 > X2, Y1 < Y2.

The probabilities of concordance and discordance are denoted with Pc and Pd,
respectively. The population version of Spearman’s r is defined as proportional
to the difference between the probability of concordance, and the probability of
discordance for two vectors (X1, Y1) and (X2, Y2), where (X1, Y1) has distribution
FXY with marginal distribution functions FX and FY and X2, Y2 are independent
with distributions FX and FY ; moreover (X1, Y1) and (X2, Y2) are independent
(e.g., Joe 1997):

r = 3 · (Pc − Pd). (3.2.1)

The above definition of Spearman’s rank correlation is appropriate only for pop-
ulations for which the probabilities of X1 = X2 or Y1 = Y2 are zero. Such
populations are mainly infinite populations with both X and Y distributed con-
tinuously (Hoffding 1947). We will further present a simple example in which
the rank correlation given by formula (3.2.1) does not describe the dependence
structure as expected.

Remark 3.2.1. Let us consider two binary variables X and Y with the following
joint distribution:

X \ Y 1 2
1 0.5 0 0.5
2 0 0.5 0.5

0.5 0.5

Table 3.1: Joint distribution of two completely plosively correlated binary variables.

The above structure suggests that X and Y are completely positively correlated,
yet calculating their rank correlation using formula (3.2.1), we obtain r = 0.75.

In order to formulate a population version of Spearman’s r for discrete variables,
one will have to correct for the probabilities of ties, since in the discrete case
P (X1 = X2) > 0 and P (Y1 = Y2) > 0. This correction is similar to the correction
for ties for the sample version of the rank correlation.
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3.2.2 The sample version of Spearman’s r in the presence of ties

The early references for Spearman’s rank correlation coefficient are Spearman
(1904) and Spearman (1906). Spearman proposed a method to determine cor-
relation, based on replacing measurements with their ranks. We will create the
necessary mathematical context to introduce this method.

Let us consider N samples of the random vector (X,Y ): (x1, y1), . . . , (xN , yN ).
Suppose the samples for both variables are ranked2. For each value xk we define
the rank sk, and for each value yk we define the rank rk. The rank correlation
coefficient proposed in (Spearman 1906) may be regarded as the product moment
correlation between the ranks of two variables. We will denote it rNs to indicate
that is a sample version for N samples. The variance of a set of values which are

the first N integers is calculated as
1
N

N∑
i=1

i2− 1
N2

(
N∑
i=1

i

)2

=
N2 − 1

12
. Therefore

rNs is given by:

rNs =
12

N3 −N

N∑
i=1

(
si −

N + 1
2

)(
ri −

N + 1
2

)
.

This formula can be reduced to a more familiar form, if we denote D2 the sum of

squared differences between the ranks of each pair, i.e. D2 =
N∑
k=1

(sk − rk)2 :

rNs = 1− 6D2

N3 −N
. (3.2.2)

Let us now assume that there are tied values in the sequences (xi)i=1,...,N and
(yi)i=1,...,N . Hence there are sets of tied ranks in the rankings of each variable.
Following the analogy with the product moment correlation, ”Student” (”Stu-
dent” 1921) showed that the effect of tied ranks is to modify the variance of the
ranking. He proposed a correction for rNs in the case of tied ranks. We shall
further present this correction, with more emphasis on the notation and its final
form, than on how it was derived.

Let us divide the sequence (xi)i=1,...,N into m < N blocks of identical values3.
Let ui denote the number of values in the ith block. In the same way we consider
n < N blocks of identical values in the sequence (yi)i=1,...,N , and we denote with
vj the number of values in the jth block. It follows that in the rankings of each

2When objects are arranged in order according to some quality which they all posses to a
varying degree, they are said to be ranked with respect to that quality (Kendall and Gibbons
1990).

3We will consider single values as blocks containing one value.
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variable there are sets of ui and vj tied ranks, respectively. We define:

U =
1
12

m∑
i=1

(u3
i − ui); V =

1
12

n∑
j=1

(v3
j − vj).

The midrank method is used for assigning ranks to tied values4. This method is to
average the ranks which they would posses if they were not tied. For example, if
the fifth and the sixth members (in an ordered sequence) are tied, each is assigned
the rank 5 1

2 . In general, if ties occur for the ith to the kth inclusive members,
the midrank is i+k

2 . There are m distinct ranks for X, and n distinct ranks for
Y . For the sake of coherence, it will be convenient to reindex the sequences of
distinct ranks in the following way: (si)i=1,...,m for X and (rj)j=1,...,n for Y . The
ranks can be calculated as follows:

si =
i−1∑
k=1

uk +
ui + 1

2
=
N + 1

2
+

1
2

i−1∑
k=1

uk −
1
2

m∑
k=i+1

uk;

rj =
l−1∑
j=1

vl +
vj + 1

2
=
N + 1

2
+

1
2

j−1∑
l=1

vl −
1
2

n∑
l=j+1

vl.

(3.2.3)

Let us denote with Sij the number of occurrences of the pair of ranks (si, rj).
Then:

D2 =
m∑
i=1

n∑
j=1

Sij(si − rj)2. (3.2.4)

The information given by the sample (x1, y1), . . . , (xN , yN ) together with its ranks
can be written in a more compact way, as shown in Table 3.2.

X \ Y r1 r2 ... rn
s1 S11 S12 ... S1n u1

s2 S21 S22 ... S2n u2

... ... ... ... ... ...
sm Sm1 Sm2 ... Smn um

v1 v2 ... vn N

Table 3.2: Sample distribution of ranks for (X, Y )

4An alternative to the midrank method is the bracket-rank method, to which ”Student”
(”Student” 1921) referred as a suggestion of Karl Pearson. In this method the tied values are
all ranked as if they were the highest member of the tie. The disadvantages of this method are
discussed in (Kendal 1945).
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Remark 3.2.2. Notice that ui =
n∑
j=1

Sij and vj =
m∑
i=1

Sij. Moreover
m∑
i=1

ui =

n∑
j=1

vj = N .

We will denote with rNst
5 the rank correlation for samples, when ties are present.

This is defined as follows (”Student” 1921):

rNst(X,Y ) =
1
6 (N3 −N)−D2 − U − V√(

1
6 (N3 −N)− 2U

)(
1
6 (N3 −N)− 2V

) . (3.2.5)

In order to formulate the population version of Spearman’s rank correlation co-
efficient of two discrete variables, we start from the sample version of the rank
correlation when ties are present, given in formula (3.2.5).

3.3 The population version of Spearman’s r for ordinal
discrete variables

Let us now consider the discrete random vectors (X1, Y1), (X2, Y2), where X2

and Y2 are independent with the same marginal distributions as X1 and Y1, re-
spectively; moreover (X1, Y1) and (X2, Y2) are independent. The states of Xi are
ranked from 1 to m; the states of Yi are ranked from 1 to n. The joint probabilities
of (X1, Y1) and (X2, Y2) are given in terms of pij and qij , i = 1, ..,m; j = 1, .., n,
respectively.

X1 \ Y1 1 2 ... n
1 p11 p12 ... p1n p1+

2 p21 p22 ... p2n p2+

... ... ... ... ... ...
m pm1 pm2 ... pmn pm+

p+1 p+2 ... p+n

X2 \ Y2 1 2 ... n
1 q11 q12 ... q1n p1+

2 q21 q22 ... q2n p2+

... ... ... ... ... ...
m qm1 qm2 ... qmn pm+

p+1 p+2 ... p+n

Table 3.3: Joint distribution of (X1, Y1) (left); Joint distribution of (X2, Y2) (right)

In Table 3.3, pi+, i = 1, ...,m represent the margins of X1 and X2, and the margins
of Y1 and Y2 are denoted p+j , j = 1, ..., n. Each qij can be rewritten as qij = pi+p+j ,
for all i = 1, ...,m and j = 1, ..., n. Using this terminology we calculate:

Pc − Pd =
m∑
i=1

n∑
j=1

pij
∑
k 6=i

∑
l 6=j

sign ((k − i)(l − j)) qkl

 . (3.3.1)

5The extra index t indicates the presence of ties.
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Spearman’s rank correlation coefficient of two discrete variables can be calculated
using the following theorem:

Theorem 3.3.1. Consider a population distributed according to two variables
X and Y. Let (X1, Y1), as above, be a member of this population. Let (X2, Y2)
satisfy the conditions described above. Then sample version of Spearman’s rank
correlation coefficient rNst(X,Y ), of X and Y , given by (3.2.5) converges to:

r̄ =
3 (Pc − Pd)√

(1−
∑m
i=1 p

3
i+) ·

(
1−

∑n
j=1 p

3
+j

) ,
when N →∞. pi+ and p+j are given by Table 3.3.

Proof: Let Pc−Pd be given by formula (3.3.1). We start from the sample version
of the rank correlation when ties are present given by formula (3.2.5). Divide
by N the entries of Table 3.2. When N → ∞ the result of this division will
approximate the joint distribution of a random vector (X,Y ), given as in Table
3.3 (left). Hence:

Sij
N
→ pij ;

ui
N
→ pi+; and

vj
N
→ p+j (∀i, j) (i = 1, . . . ,m, j = 1, . . . , n) .

(3.3.2)
Let us start by rewriting formula (3.2.5) in a more convenient way:

rNst(X,Y )=

1
6N

3 − 1
6N −D

2 − 1
12

m∑
i=1

u3
i + 1

12

m∑
i=1

ui − 1
12

n∑
j=1

v3
j + 1

12

n∑
j=1

vj√√√√( 1
6N

3 − 1
6N −

1
6

m∑
i=1

u3
i + 1

6

m∑
i=1

ui

)(
1
6N

3 − 1
6N −

1
6

n∑
j=1

v3
j + 1

6

n∑
j=1

vj

) .

Using Remark 3.2.2 and dividing by N3 we obtain:

rNst(X,Y ) =

1
6 −

1
12

m∑
i=1

(ui
N

)3

− 1
12

n∑
j=1

(vj
N

)3

− D2

N3

1
6

√√√√(1−
m∑
i=1

(ui
N

)3
)(

1−
n∑
j=1

(vj
N

)3
) . (3.3.3)

Let us denote:

Ū =
1
12

m∑
i=1

((ui
N

)3

− ui
N

)
; V̄ =

1
12

n∑
j=1

((vj
N

)3

− vj
N

)
. (3.3.4)
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Using the above notations, we can rewrite relation (3.3.3) as follows:

rNst =
−Ū − V̄ − D2

N3√
(−2Ū)(−2V̄ )

. (3.3.5)

From equation (3.2.4) we have:

D2

N3
=

m∑
i=1

n∑
j=1

Sij
N

( si
N
− rj
N

)2

. (3.3.6)

If we further use the result from (3.3.2) in formulae (3.3.4) and (3.3.6), we can
rewrite:

Ū =
1
12

m∑
i=1

(
p3
i+ − pi+

)
; V̄ =

1
12

n∑
j=1

(
p3
+j − p+j

)
; (3.3.7)

and

D2

N3
=

1
4

m∑
i,j=1

pij

(i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)
+

 n∑
l=j+1

p+l −
j−1∑
l=1

p+l

2

. (3.3.8)

Hence we can express rNst only in terms of pij , pi+ and p+j . The resultant expression
for the rank correlation will be denoted with r̄. Without loss of generality we will
further consider n = m, and proceed with the calculations:

−Ū =
1
12

(
(p1+ + p2+ + . . .+ pm+)

3 −
(
p3

1+ + p3
2+ + . . .+ p3

m+

))
(3.3.9)

=
1
4

 m∑
i=1

∑
i6=j

p2
i+pj+ + 2

∑
k>j>i

pi+pj+pk+

 .

In the same manner we obtain the following for −V̄ :

−V̄ =
1
4

 m∑
i=1

∑
i 6=j

p2
+ip+j + 2

∑
k>j>i

p+ip+jp+k

 . (3.3.10)

From formula (3.3.8) we have:

D2

N3
=

1
4

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)2

+
1
4

m∑
i,j=1

pij

 m∑
l=j+1

p+l −
j−1∑
l=1

p+l

2

+
1
2

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

) m∑
l=j+1

p+l −
j−1∑
l=1

p+l

 . (3.3.11)
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One can recalculate the first term of the above sum and, using formula (3.3.9),
show the following:

1
4

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)2

=
1
4

m∑
k=1

p2
k+ ·

m∑
i=1

∑
k 6=j

pij −
1
2

∑
k<j<l

pk+pl+pj+

+
1
2

∑
k<l<j

pk+pl+pj+ +
1
2

∑
j<l<k

pk+pl+pj+

=
1
4

 m∑
k=1

∑
k 6=j

p2
k+pj+ + 2

∑
k<l<j

pk+pl+pj+


= −Ū . (3.3.12)

Recalculating the second sum and using (3.3.10) we obtain:

1
4

m∑
i,j=1

pij

 m∑
l=j+1

p+l −
j−1∑
l=1

p+l

2

=
1
4

 m∑
l=1

∑
l 6=j

p2
+lp+j + 2

∑
l<k<j

p+kp+lp+j

 = −V̄ .

(3.3.13)
The last term of (3.3.11) can be also rewritten as:

−1
2

m∑
i,j=1

pij

∑
k 6=i

∑
l 6=j

sign ((k − i)(l − j)) qkl

. (3.3.14)

Using relations (3.3.12), (3.3.13) and (3.3.14) in equation (3.3.11) we can write:

D2

N3
= −Ū − V̄ − 1

2
(Pc − Pd).

Therefore formula (3.3.5) becomes:

r̄(X,Y ) =
1
2 (Pc − Pd)√
(−2Ū)(−2V̄ )

.

If we further use relation (3.3.7) we obtained the desired expression.

We shall call r̄ the population version of Spearman’s rank correlation coefficient
of X and Y, whose sample version is given by (3.2.5).

One can express
m∑
i=1

p3
i+ as P (X1 = X2 = X3) where X1, X2 and X3 are

independent with the same distribution. For continuous variables P (X1 = X2 =
X3) = 0 and the denominator of the formula given in Theorem 3.3.1 is 1. Hence,
in this case, r̄ is equivalent to r for continuous variables. It is worth mentioning
that the population version of Spearman’s r was initially defined using 3 pairs of
independent copies of (X,Y ).
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Remark 3.3.1. Spearman’s rank correlation of two continuous variables X and
Y , with cumulative distribution functions FX and FY , is the product moment
correlation of FX(X) and FY (Y ), i.e. ρ (FX(X), FY (Y )). If X and Y are discrete
variables, calculating the product moment correlation of FX(X) and FY (Y ) will
yield a different result than r̄. This difference comes from the different method
of dealing with tied values. In the derivation of r̄ we used the midrank method,
whereas applying the cumulative distribution function is equivalent with using the
bracket-rank method mentioned in Section 3.2.2. The disadvantages of this method
are discussed in (Kendal 1945). Nevertheless, we will present here an example in
which the dependence structure is described better by r̄ than by ρ (FX(X), FY (Y )).

Let us consider two binary variables X and Y distributed as in Table 3.4.

X \ Y 1 2 3
1 0 0 0.2 0.2
2 0.2 0.1 0 0.3
3 0.5 0 0 0.5

0.7 0.1 0.2

Table 3.4: Joint distribution of two strongly negatively correlated discrete random vari-
ables.

This structure suggests that X and Y are strongly negatively correlated. This
is confirmed when calculating r̄ = -0.813. Yet calculating ρ (FX(X), FY (Y )) we
obtain only -0.173.

3.4 Dependence models using copulae

Univariate discrete distributions can be obtained as monotone transforms of uni-
form variables. A class of bivariate discrete distributions can be constructed by
specifying the marginal distributions and a copula.

Each term pij from Table 3.3 (left) can be written in terms of the chosen
copula, as follows6:

pij = C

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
+ C

(
i−1∑
k=1

pk+,

j−1∑
l=1

p+l

)
(3.4.1)

− C

(
i−1∑
k=1

pk+,

j∑
l=1

p+l

)
− C

(
i∑

k=1

pk+,

j−1∑
l=1

p+l

)
.

6The class of discrete distributions that we obtain in this way will depend on the choice of
the copula and its properties.
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One-parameter copulae can be parameterised by their rank correlation r, so we
will use the notation Cr instead of C. Further, we will establish the relation
between the rank correlation of the discrete variables and the rank correlation of
the underlying uniforms.

Theorem 3.4.1. Let Cr be a copula and (X,Y) a random vector distributed as
in Table 3.3 (left), where each pij is given by formula (3.4.1) . Then the rank
correlation of X and Y is denoted r̄C and it can be calculated as r̄ in Theorem
3.3.1, where:

Pc − Pd =
m−1∑
i=1

n−1∑
j=1

pi+p+j

(
C̃rij − 1

)
and (3.4.2)

C̃rij = Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
+ Cr

(
i−1∑
k=1

pk+,

j∑
l=1

p+l

)

+ Cr

(
i∑

k=1

pk+,

j−1∑
l=1

p+l

)
+ Cr

(
i−1∑
k=1

pk+,

j−1∑
l=1

p+l

)
.

Moreover, if Cr is a positively ordered copula7, then r̄C is an increasing function
of the rank correlation of the underlying uniforms.

Proof: For simplicity, all calculations will be done for the case n = m. In order to
prove the expression of Pc−Pd from the theorem, we first acquire an intermediate
result:

Pc − Pd =
m−1∑
i,j=1

pij

(
pi+ + 2

m−1∑
k=i+1

pk+ + pm+

)p+j + 2
m−1∑
l=j+1

p+l + p+m


−

m−1∑
i,j=1

pi+p+j . (3.4.3)

To do so, we start from equation (3.3.1) and rewrite the double sum in terms
of pij , pi+, p+j with i, j = 1, ..,m − 1. Collecting alike terms and performing a
number of calculations we obtain equation (3.4.3). Now we can use the expression
for pij from (3.4.1) to rewrite the first part8 of equation (3.4.3). After algebraic
manipulations of the terms we obtain9:

Pc − Pd =
m−1∑
i,j=1

(
pi+ + p(i+1)+

) (
p+j + p+(j+1)

)
Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
−

m−1∑
i,j=1

pi+p+j .

(3.4.4)
7The definition of positively ordered copulae can be found in Chapter 1.
8Notice that the second part of the equation is in the proper form.
9All calculations can be found in Appendix 7.2.
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The expression in (3.4.2) is obtained by simply rearranging the terms from the
above equation.

Let Cr be a positively ordered copula. Then, from the above expression r̄C
is a linear combination, with positive coefficients, of positively ordered copulae.
Hence the rank correlation of two discrete variables is an increasing function of
the rank correlation of the underlying uniforms.

The expression of Pc−Pd given by formula (3.4.2) is also derived in Conti (1993),
Kowalczyk and Niewiadomska-Bugaj (2001), and Mesfioui and Tajar (2005), in 3
different ways. The approach used here is completely different from all of them,
and allows for the use of this formula in connecting the rank correlation of two
discrete variables with that of their underlying uniforms.

If we look at the limiting case, whenm,n→∞, and each pij → f(xi, yj)dxidyj ,
the expression for Pc − Pd given in Theorem 3.4.1 is equivalent to:∫∫

4fX(x)fY (y)Cr(FX(x), FY (y))dxdy − 1. (3.4.5)

where fX , fY are the marginal densities of X and Y, respectively, and FX and FY
are the marginal distributions of X and Y, respectively. If we denote FX(X) = U
and FY (Y ) = V , then expression (3.4.5) becomes 4

∫∫
Cr(u, v)dudv − 1, which is

equal to Pc − Pd for continuous variables (Nelsen 1999).

Remark 3.4.1. If we consider only m → ∞ and each pi+ → fX(xi)dxi, Theo-
rem 3.4.1 allows us to calculate the rank correlation between a continuous and a
discrete random variable as follows:

r̄C =
3 (Pc − Pd)√
1−

∑n
j=1 p

3
+j

,

where

Pc−Pd = 2
∫
fX(x)

n−1∑
j=1

p+j

(
Cr

(
FX(x),

j∑
l=1

p+l

)
+ Cr

(
FX(x),

j−1∑
l=1

p+l

)
− 1

)
dx.

Note that any copula can be used in expression (3.4.2) from Theorem 3.4.1. If
the independence copula is used, the equation simplifies to zero, as expected.

In contrast with the continuous case, the adjusted coefficient for the discrete
variables is a function of not only the copula, but also the marginal distributions.

We will further investigate the relationship between r̄C and the dependence
parameter r, of the copula. We choose different copulae (with more emphasis
on the Normal copula) and different marginal distributions for 2 discrete random
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variables X and Y . It is worth pointing out that the copulae used in our analysis
allow a full range of positive and negative dependence, have reflection symmetry10

(Joe 1997), and that zero correlation entails the independence copula.

If we consider 2 ordinal responses X and Y , both uniformly distributed across
a small number of states, r̄C and r tend to be very similar, for any choice of a
positively ordered copula. Moreover r̄C covers the whole range of r. Increasing
the number of states for X and Y , makes r̄C approximately equal11 to r.

When marginal distributions are not uniform, the relationship changes. Figure
3.1 presents the relationship between r and r̄C , for 2 discrete variables X and
Y , with 3 states each. Their marginal distributions are the same, namely12:
p1+ = p+1 = 0.01; p2+ = p+2 = 0.98 and p3+ = p+3 = 0.01. We use Frank’s copula
to obtain Figure 3.1a, and the Normal copula in Figure 3.1b.

As both Frank’s copula and the Normal copula are positively ordered, r̄C is
an increasing function of r. Since the marginal distributions are symmetric, the
range of rank correlations realised for the discrete variables is the entire interval
[−1, 1]. Notice that the relationship is very nonlinear. This strong nonlinearity is
caused by the choice of p2+ = p+2 = 0.98.

If we now consider variables with identical, but not symmetric marginal dis-
tributions, the relationship is not symmetric around the origin anymore. In this
case the whole range of positive dependence can be attained, but the range of
negative association is bounded below, as shown in Figure 3.2a.

We will further consider marginal distributions that are not identical, but
”complementary”, in the sense that: p1+ = p+3; p2+ = p+2 and p3+ = p+1. Then the
entire range of negative association is possible, but the range of positive associa-
tion is bounded above, as shown in Figure 3.2b.

Let us now consider the same marginal distributions as in Figures 3.2a and
3.2b, and use a copula which is not positively ordered. We choose Mardia’s cop-
ula, which is neither positively, nor negatively ordered (e.g. Nelsen 1999).

Since Mardia’s copula is not positively ordered, r̄C is not an increasing func-
tion of r anymore (see Figure 3.3).

Further, if variables X and Y have 3 states, such that p1+ = 0.01, p2+ = 0.98,
p3+ = 0.01 (for X) and p+1 = 0.19, p+2 = 0.01, p+3 = 0.80 (for Y ), we can observe
(see Figure 3.4a) that both positive and negative dependencies are bounded.

Using the Fréchet bounds for Cr in expression (3.4.4):

max

(
0,

i∑
k=1

pk+ +
j∑
l=1

p+l − 1

)
≤ Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
≤ min

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
,

10The reflection symmetry property is called radial symmetry in Nelsen (1999).
1110 states for each variable will suffice to obtain differences of order 10−3 between r̄C and r.
12We use the notation from Table 3.3 to describe the marginal distributions of X and Y .
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r̄C for Frank copula

(a) p1+ = p+1 = p3+ = p+3 = 0.01, p2+ = p+2 =
0.98. The joint distribution is constructed us-
ing Frank’s copula.
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r̄C for Normal copula

(b) p1+ = p+1 = p3+ = p+3 = 0.01, p2+ = p+2 =
0.98. The joint distribution is constructed us-
ing the Normal copula.

Figure 3.1: The relationship between the parameter r, of a chosen copula, and r̄C , for
discrete variables with equal and symmetric marginal distributions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r

r̄ C

 

 

r̄C for Normal copula

(a) p1+ = p+1 = p2+ = p+2 = 0.01, p3+ = p+3 =
0.98.
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r̄C for Normal copula

(b) p2+ = p3+ = p+1 = p+2 = 0.01, p1+ = p+3 =
0.98.

Figure 3.2: The relationship between the parameter r, of the Normal copula, and r̄C ,
for discrete variables with equal (a), and ”complementary” (b) marginal distributions.
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r̄C for Mardia copula

(a) p1+ = p+1 = p2+ = p+2 = 0.01, p3+ = p+3 =
0.98.
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r̄C for Mardia copula

(b) p2+ = p3+ = p+1 = p+2 = 0.01, p1+ = p+3 =
0.98.

Figure 3.3: The relationship between the parameter r, of Mardia’s copula, and r̄C , for
discrete variables with equal (a), and ”complementary” (b) marginal distributions.
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r̄C for Normal copula

(a) The relation between r and r̄C , for X and
Y , with not uniform, not equal, not ”comple-
mentary” marginal distributions.
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Normalised r̄C for Normal copula

(b) The relation between r and the normalised
r̄C , for X and Y , with not uniform, not equal,
not ”complementary” marginal distributions.

Figure 3.4: The relation between the parameter r, of the Normal copula, and r̄C (a);
the relation between r of the Normal copula, and the normalised adjusted rank correlation
r̄C (b).
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we can calculate bounds for r̄C :

3

m−1∑
i,j=1

(pi+ + p(i+1)+)(p+j + p+(j+1)) max

(
0,

i∑
k=1

pk+ +
j∑
l=1

p+l − 1

)
−

m−1∑
i,j=1

pi+p+j


√

(1−
∑m
i=1 p

3
i+) ·

(
1−

∑n
j=1 p

3
+j

)
≤ r̄C ≤

3

m−1∑
i,j=1

(pi+ + p(i+1)+)(p+j + p+(j+1)) min

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
−

m−1∑
i,j=1

pi+p+j


√

(1−
∑m
i=1 p

3
i+) ·

(
1−

∑n
j=1 p

3
+j

) .

(3.4.6)

These bounds are shown in Figure 3.4a. Since the bounds can be calculated,
we can normalise the rank coefficient r̄C , such that it covers the entire interval
[−1, 1], whatever the marginal distributions. The result of such a normalisation,
in a particular case, is displayed in Figure 3.4b.

There are still open issues related to this topic. One of them is to determine
how sensitive the relationship between the rank correlation of two discrete vari-
ables and the rank correlation of their underlying uniforms, is to the choice of the
copula, and to the choice of marginal distributions (when the construction from
equation (3.4.1) is used). It would also be worth describing this relation in the
case of not ordered copulae.

The class of discrete distributions that we obtain in this way will obviously
depend on the choice of the copula and its properties. It would be interesting to
study if all bivariate discrete distributions can be obtained using this construction.
If so, then we can also investigate what copula will best fit a given distribution,
and how would one chose a certain copula for a specific distribution.



Chapter 4

Mixed Non-Parametric Continuous & Discrete

Bayesian Belief Nets with Applications

The purpose of this chapter is to illustrate the use of BBNs in decision support
systems. If we enrich the technique described in Chapter 2, Section 2.3 with the
theory presented in Chapter 3, the result is an approach to mixed non-parametric
continuous & discrete BBNs.

This approach is already successfully applied in two large ongoing projects,
CATS and Beneris. Further we describe, in general terms, the two models used in
these projects. More details of the approach are discussed on a simplified version
of the latter, in Section 4.2.1.

It is worth mentioning that both projects use UniNet, the software applica-
tion where the approach to mixed non-parametric continuous & discrete BBNs has
been implemented. The main program features are presented in the Appendix 7.1.
Suffice here to say that UniNet was developed to support the CATS project. The
software will be shortly available free from http://dutiosc.twi.tudelft.nl/∼risk/,
together with supporting scientific documentation.

4.1 Ongoing Applications

CATS stands for Causal Model for Air Transport Safety. It is a large scale appli-
cation on risks in the aviation industry, currently under development. The project
is commissioned by the Netherlands Ministry of Transport and Water Manage-
ment.

Beneris is a project undertaken by the European Union. The name of the
project stands for Benefit and Risk and it focuses on the analysis of health bene-
fits and risks associated with food consumption.

1Section 4.2 is based on the article Hanea and Kurowicka (2008), ”Mixed non-parametric
continuous and discrete bayesian belief nets”, published in Advances in Mathematical Modeling
for Reliability ISBN 978-1-58603-865-6 (IOS Press).
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4.1.1 Causal Model for Air Transport Safety

The Netherlands Ministry of Transport and Water Management has commis-
sioned a project for the realization of a causal model to be used for comparing
alternatives for strengthening safety measures, for finding causes of incidents and
accidents, and for quantification of the probability of adverse events in the avi-
ation system (Ale et al. 2006; Morales-Napoles et al. 2007). The model so far
covers the flight phases take-off, en route, and approach-and-landing. It involves
probabilistic nodes whose marginal distributions are, in most cases retrieved from
field data. In a few cases structured expert judgment is applied. The influences
between probabilistic nodes are also elicited with a structured protocol described
in (Morales et al. 2007). In addition to probabilistic nodes, the model also
contains functional nodes that capture event sequence diagram2, and fault tree
modeling via Boolean functions. The current version of the model involves 644
discrete and continuous probabilistic nodes and 715 functional nodes. The model
is pictured below. Neither the graphic resolution, nor the purpose of this chapter
permits a detailed picture of the individual nodes.

Figure 4.1: BBN for CATS.

The probabilistic nodes are the ones from the bottom half (until the middle ”strip”
of nodes) of the model from Figure 4.1. Events initiating accident scenarios in the
CATS model are, to a large extent, a result of incorrect performance of humans.

2An event sequence diagram is a representation of an event tree which distinguishes different
types of events.
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The probabilistic nodes are measurable variables which influence human error
probabilities. Sub-models for the probability of human errors have been developed
for flight crew and air traffic controller. The flight crew performance model is par-
titioned over the three flight phases: take-off, en route, and approach-and-landing.
It contains variables like: first officer/captain experience, first officer/captain train-
ing , fatigue, crew unsuitability, workload, etc. The air traffic controller performance
model is also treated separately for the three flight phases. Some of the variables
taken into account for the air traffic controller model are: traffic, man-machine
interface, communication - coordination, air traffic controller experience, etc. The
variables from these two sub-models account for the probabilistic relationships of
the model. Another model for maintenance crew performance is under develop-
ment, but not yet implemented at the moment of writing this thesis.

The nodes from the upper half of the BBN are functional nodes. The mid-
dle strip of nodes contains 31 clusters3 of nodes that represent possible accident
scenarios. Among these, one may find: aircraft system failure, air traffic controller
event, aircraft handling by flight crew inappropriate, aircraft directional control related
system failure, aircraft continues take off with contaminated wing, aircraft weight and
balance outside limits during take-off, flight crew spatially disoriented, aircraft han-
dling by flight crew during landing roll inappropriate, etc. The nodes one level up
are more generic accident scenarios, acting like summary nodes. Some of these
nodes represent: loss of control in flight, fire in flight, engine failure, runway overrun,
collision with ground, in flight break up, air craft lands off runway. The topmost
node represents the probability of having an incident or accident per flight4. This
functional node is a combination of several specific accident scenarios. In princi-
ple, this node could be a combination of some generic scenarios from the upper
level. However, this is not visible in the model.

It takes 2.67 minutes to sample the CATS model in UniNet5. The time to
propagate evidence thorough the model is very close to the sampling time, e.g. it
takes 2.25 minutes to resample the joint distribution conditioned on 3 variables.

4.1.2 Benefits and Risks

Beneris focuses on the analysis of health benefits and risks associated with food
consumption6. Fish consumption is the first case study in the project (Jesionek
and Cooke 2007). Its main goal is to estimate the health effects in a specified
population as a result of exposure to various contaminants and nutrients through
ingestion of fish. The population consists of the following age sub-groups: from 0

3Each cluster corresponds to an event sequence diagram, originally present in the model (Ale
et al. 2006).

4Incidents or accidents are understood according to the International Civil Aviation Orga-
nization’s definition, i.e. as an unintended event that causes death, injury, environmental or
material damage.

5The default number of samples is 32.500. It takes 6.87 minutes to produce 100.000 samples.
6http://www.beneris.eu/
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to 2 years, from 2 to 18 years, from 18 to 55 years and older than 55 years. The
latest version of the model is presented in Figure 4.2.

Figure 4.2: BBN for Beneris.

Some of the fish constituents of interest are: dioxins and furans, polychlori-
nated biphenyls (pcb), methyl mercury (MeHg), selenium, iodine, fish oils, etc.
They are measured as yearly intake. Some of these factors (e.g. dioxins - furans,
polychlorinated biphenyls) are persistent and bio-accumulative toxins which cause
cancer in humans. Fish oil, on the other hand is derived from the tissues of oily
fish and has high levels of omega-3 fatty acids which regulate cholesterol and re-
duce inflammation throughout the human body.

Moreover, personal factors such as smoking and socioeconomic status are also
taken into account. These factors are specific for each single age group. Smok-
ing is measured as yearly intake of nicotine during smoking and passive smoking,
while the socioeconomic status is measured by the number of years of schooling
received, or to be received.

The health endpoints resulting from exposure to fish constituents are cancer,
dental aberration, learning disability, and myocardial infarction. These health ef-
fects are defined in terms of remaining lifetime risks. Learning disability, however,
is a more specific health effect. It is measured as a change in the IQ score relative
to a baseline IQ7. All health endpoints considered in the model are influenced by
(functions of) various parameters of fish constituents and personal factors.

7The model is under continuous development. The definitions of the variables can change in
further stages of the project.
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4.2 Highly Simplified Beneris

We will further discuss the approach to mixed non-parametric continuous & dis-
crete BBNs using an example that is loosely based on the Beneris model presented
in the previous section. We will only consider probabilistic nodes, since this is the
theoretical background that we have explored in this thesis.

Figure 4.3a resembles the version of the model that we are considering for
purely illustrative purposes. The variables of interest, for this version of the

(a) Simplified fish consumption BBN. (b) Simplified fish consumption BBN with his-
tograms.

Figure 4.3: Simplified Bayesian Belief Net for fish consumption risks.

model, are cancer and cardiovascular risk, defined in terms of remaining lifetime
risks.

We consider only 3 fish constituents, namely dioxins/furans, polychlorinated
biphenyls, and fish oil. Smoking, and socioeconomic status are kept in the anal-
ysis. Instead of dividing the population in age sub-groups, we introduce an extra
variable, age, as a discrete variable with 2 states, 15 to 34 years, and 35 to 59
(we are considering only a segment of the whole population). The socioeconomic
status is measured in this example by income, which is represented by a discrete
variable with 4 income classes.

The distributions of the variables that form the BBN are presented in Figure
4.3b. They are chosen by the author for illustrative purposes only. As we already
mentioned there are 2 discrete (age and socioeconomic status), and 6 continuous
random variables. Some indication of the relationships between variables is given
in their description. For example, the personal factors: smoking and age will
be positively correlated with both risks, whereas the socioeconomic status will
be negatively correlated with cancer and cardiovascular risk. The (conditional)
rank correlations assigned to the arcs of the BBN must be gathered from existing
data or expert judgement (Morales et al. 2007). In this example, the numbers
are, again, chosen by the author. Figure 4.4a presents the same BBN, only now
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(conditional) rank correlations are assigned to each arc, except one.

(a) Simplified fish consumption BBN with
(conditional) rank correlations.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

X: 0.9001
Y: 0.6345

r

�
�

���

����
	��������������������������

(b) The relation between the parameter r,
of the Normal copula, and r̄C .

Figure 4.4: Simplified Bayesian Belief Net for fish consumption risks; (conditional)
rank correlations are assigned to the arcs of the BBN.

The arc between the 2 discrete variables age and soci econ status is not assigned
any rank correlation coefficient. Let us assume that the correlation between them
can be calculated from data, and its value is 0.63. As we stressed in the previous
chapter, the dependence structure in the BBN must be defined with respect to
the underlying uniform variables. Hence, we first have to calculate the rank
correlation of the underlying uniforms, r, which corresponds to r̄C = 0.63. In
doing so, we use the normal copula. The relationship between r and r̄C is shown
in Figure 4.4b. Therefore, one must assign the rank correlation 0.9 to the arc of
the BBN, in order to realise a correlation of 0.63 between the discrete variables.
To double check this, we can sample the structure, using the protocol described
in Section 2.3, and calculate the sample rank correlation matrix (see Table4.1).

dioxins pcb fish smoking socioecon. age cancer cardiovasc.
furans oils status risk risk

dioxins/furans 1 -0.0002 -0.0021 0.0012 0.0013 0.0012 0.322 0.0014
pcb -0.0002 1 0.0033 0.0008 -0.0015 -0.0011 0.2718 -0.001

fish oils -0.0021 0.0033 1 0.0015 -0.0007 -0.0022 -0.0006 -0.1654
smoking 0.0012 0.0008 0.0015 1 0.0018 0.0005 0.2953 0.501

socioecon. status 0.0013 -0.0015 -0.0007 0.0018 1 0.6376 -0.124 -0.2684
age 0.0012 -0.0011 -0.0022 0.0005 0.6376 1 0.1348 -0.0554

cancer risk 0.322 0.2718 -0.0006 0.2953 -0.124 0.1348 1 0.5391
cardiovasc. risk 0.0014 -0.001 -0.1654 0.501 -0.2684 -0.0554 0.5391 1

Table 4.1: The sample rank correlation matrix.

Similarly, we can choose the required correlations between a uniform variable
underlying a discrete, and other continuous variables (e.g. the uniform underlying
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age, and cardiaovasc risk) using the relation from Remark 3.4.1.
We will further examine the situation in which there is a very high risk of

cancer. We conditionalise on the 0.9 value of cancer risk and study in what way
the other variables in the graph are affected by this information.

(a) Conditionalised BBN for cancer risk = 0.9. (b) Conditionalised BBN for diox-
ins furans=0.022, smoking=0.1, so-
cio econ status=4.

Figure 4.5: Diagnostic & predictive reasoning using the BBN.

Figure 4.5a summarises the combination of factors that increases the risk of can-
cer to 0.9. From the shift of the distributions, one can notice that if a person is
neither very young, nor very wealthy, smokes much, and ingests a large amount
of dioxins/furans, and polychlorinated biphenyls, is more likely get cancer. Be-
cause some of this factors influence also the cardiovascular risk, the shift in their
distributions causes an increase in the cardiovascular risk as well. In this case the
BBN is used for diagnosis.

The conditionalisation in a BBN can be also used for prediction. For example
one can be interested in the cancer risk of a person that inhales a very small
amount of nicotine, has a high socioeconomic status and ingests very little diox-
ins and furans. Figure 4.5b presents how this information propagates through
the graph. In this combination of factors, the expected value of the cancer risk
decreases from 0.4 to 0.23. A substantial decrease can be also noticed in the car-
diovascular risk. Because socioeconomic status and age are positively correlated,
a high socioeconomic status results in a reduction of the population to the seg-
ment older than 35 years.

As in the case of the rank correlation between two continuous variables, a
value for r̄C can be either obtained from data, or from experts. The technique
for eliciting (conditional) rank correlations for discrete variables is still an open
issue.





Chapter 5

Mining and Visualising Ordinal Data with

Non-Parametric Continuous BBNs1

5.1 Introduction

We shall further consider non-parametric BBNs from a completely different point
of view, namely as a tool for mining ordinal multivariate data. Data mining is
the process of extracting and analysing information from large databases. BBNs
serve as a suitable framework for this purpose. The patterns of influence among
variables can be represented as arcs in a BBN. Our aim is to learn the structure of
a BBN that captures most of the dependencies present in a database. Specifying
the structure of the model is one of the most important design choices in graphical
modelling. Notwithstanding their potential, there are only a limited number of
applications of graphical models on very complex and large databases.

An ordinal multivariate data set is one in which the numerical ordering of val-
ues for each variable is meaningful. A database of street addresses is not ordinal,
but a database of fine particulate concentrations at various measuring stations
is ordinal; higher concentrations are harmful to human health2. We describe a
method for mining ordinal multivariate data using non-parametric BBNs, and
illustrate this with ordinal data of pollutants emissions and fine particulate con-
centrations. The data are gathered from electricity generating stations and from
collection sites in the United States over the course of seven years (1999 - 2005).
The data base contains monthly emissions of SO2

3 and NOx
4 at different lo-

1This chapter is based on the paper Hanea et al. (2007), ”Ordinal Data Mining with Non-
Parametric Continuous Bayesian Belief Nets”, accepted for publication in Computational Statis-
tics and Data Analysis.

2Fine particulate concentration is measured on ”at least an ordinal scale”, i.e. the group of
invariance transformations of its scale is a subgroup of the monotone increasing transformations.

3Sulfur dioxide is the chemical compound with the formula SO2. This gas is the main product
from the combustion of sulfur compounds and is of significant environmental concern.

4NOx is a generic term for mono-nitrogen oxides (NO and NO2). These oxides are produced
during combustion, especially combustion at high temperatures.

63
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cations, and monthly means of the readings of PM2.5 concentrations at various
monitoring sites. The notation PM2.5 is used to describe particles of 2.5 microm-
eters or less in diameter. There are 786 emission stations5 and 801 collector sites.
This data set allows us to relate the emissions with the air quality and interpret
this relationship.

Let us assume that we are interested in the air quality in Washington DC and
how is this influenced by selected power plant emissions (see Figure 5.1). Addi-
tional variables that influence the PM2.5 concentration in Washington DC are the
meteorological conditions. We incorporate in our analysis the monthly average
temperature, the average wind speed and wind direction.

Figure 5.1: Selected power plant emissions.

A BBN for Washington DC ambient PM2.5 is shown in Figure 5.2. This model
is similar to the one described and analysed in Morgenstern et al. (2008). It
involves the same 14 variables as nodes, but the arcs between them are different.
There are 5 emission stations in the following locations: Richmond, Masontown,
Dumfries, Girard and Philadelphia. For each such station, there are 2 nodes in
the BBN. One corresponds to the emission of SO2, and the other to the emission
of NOx. The variable of interest is the PM2.5 concentration in Washington DC
(DC monthly concPM25). There are 3 nodes that correspond to the meteorolog-
ical conditions, namely the wind speed, wind direction and the temperature in
DC. Conditional independence relations are given by the separation properties of
the graph (see Section 5.4); thus nox Philadelphia and DC WindDir are indepen-
dent conditional on DC Temp and DC WindSpeed. The methodology is designed
specifically to handle large numbers of variables, in the order of several hundreds

5For most stations there is information on emissions of both SO2 and NOx, but for some we
only have information about one or the other.
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(see Morales-Napoles et al. (2007)), but a smaller number of variables is more
suitable for explaining the method.

Figure 5.2: BBN for Washington DC ambient PM2.5.

The most common methods to deal with continuous nodes are either to discretize
them, or to assume joint normality. Both have disadvantages, as discussed in
Chapter 1. In the former method, if all nodes are discretized to 10 possible values,
a variable like DC monthly concPM25 (see Figure 5.2) would require a conditional
probability table with 109 entries. Hence such models quickly become intractable.
In the latter, the restriction to joint normality is rather severe. Figure 5.3 shows
the same BBN as Figure 5.2, but the nodes are replaced by histograms showing
the marginal distributions at each node. They are far from normal.

Our approach discharges the assumption of joint normality and builds a joint
density for ordinal data using the joint normal copula. This means that we model
the data as if it were transformed from a joint normal distribution. Influences are
represented as conditional rank correlations according to the protocol explained in
Chapter 2, Section 2.1. Other copulas could be used, but (to our knowledge) only
the joint normal copula affords the advantages of rapid conditionalisation, while
preserving the (conditional) independence for zero (conditional) correlation6.

Rapid conditionalisation is perhaps the most important feature of a BBN
from a user’s standpoint. To illustrate, Figures 5.4 and 5.5 show the result of
conditionalising the joint distribution on cold weather (275K) in Washington and
low (Figure 5.4) and high (Figure 5.5) concentrations of PM2.5 in Washington.
The differences between the emitters’ conditional distributions (black), and the
original ones (gray), caused by changing the concentration, are striking, in spite of

6T-copula also allows for rapid conditionalisation but does not have the zero independence
property.
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Figure 5.3: Washington DC ambient PM2.5 BBN with histograms.

the relatively weak correlations with Washington’s concentrations. Of course,
rapid computations are of little value if the model itself cannot be validated.
Validation involves two steps:

1. Validating that the joint normal copula adequately represents the multivari-
ate data, and

2. Validating that the BBN with its conditional independence relations is an
adequate model of the saturated graph.

Validation requires an overall measure of multivariate dependence on which sta-
tistical tests can be based. The discussion in Section 5.2.2 leads to the choice of
the determinant of the correlation matrix as an overall dependence measure. This
determinant attains the maximal value of 1 if all variables are uncorrelated, and
attains a minimum value of 0 if there is linear dependence between the variables.
We briefly sketch the two validation steps for the present example. Since we are
dealing with copulae models, it is more natural to work with the determinant of
the rank correlation matrices.

If we convert the original data to ranks and compute the determinant of the
empirical rank correlation matrix (DER) we find the value 0.1518E-04. To rep-
resent the data with a joint normal copula, we must transform the marginals to
standard normals, compute the correlation matrix, and compute the determinant
of the normal rank correlation matrix (DNR) using the Pearson’s transformation
(see Chapter 1). This relation of correlation and rank correlation is specific to
the normal distribution and reflects the normal copula. DNR is not in general
equal to DER. In this case DNR = 0.4506E-04. Use of the normal copula typi-
cally introduces some smoothing into the empirical joint distribution, and this is
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Figure 5.4: Conditionalisation on low concentration of PM2.5 for Washington DC and
cold weather.

Figure 5.5: Conditionalisation on high concentration of PM2.5 for Washington DC
and cold weather.
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reflected in a somewhat higher value of the determinant of the rank correlation
matrix.

We can test the hypothesis whether this empirical rank distribution came from
a joint normal copula in a straight forward way. We determine the sampling dis-
tribution of the DNR by simulation. Based on 1000 simulations, we find that
the 90% central confidence interval for DNR is [0.0601E-04, 0.4792E-04]. The hy-
pothesis that the data were generated from the joint normal copula would not be
rejected at the 5% level.

DNR corresponds to the determinant of the saturated BBN, in which each
variable is connected with every other variable. With 14 variables, there are 91
arcs in the saturated graph. Many of these influences are very small and reflect
sample jitter. To build a perspicuous model we should eliminate noisy influences.

The BBN of Figure 5.2 has 26 arcs. To determine whether these 26 arcs are
sufficient to represent the saturated graph, we compute the determinant of the
rank correlation matrix based on the BBN (DBBN). This differs from DNR, as we
have changed many correlations to zero and introduced conditional independen-
cies. In this case, DBBN = 1.5092E-04. We determine the sampling distribution
of the DBBN by simulation. Based on 1000 simulations, we find that the 90%
central confidence interval for DBBN is [0.2070E-04, 1.5905E-04]. DNR is within
the above mentioned 90% central confidence band. A simpler BBN involving only
22 arcs is shown in Figure 5.6. It has a DBBN of 4.8522E-04. The 90% central
confidence interval for this DBBN is [0.7021E-04, 5.0123E-04]. This interval does
not contain DNR and would be rejected.

Figure 5.6: Simplified BBN with 22 arcs.
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In general, changing correlations disturbs the positive definiteness of the rank
correlation matrix. Moreover, the nodes connected in a BBN represent only a
portion of the correlations. We can apply simple heuristics to search for a suit-
able BBN model without becoming embroiled in matrix completion and positive
definitness preservation because of the way we represent joint distributions in a
BBN. The conditional rank correlations in a BBN are algebraically independent
and, together with the graphical structure and marginal distributions, uniquely
determine the joint distribution. These facts have been established in Chapter
2, Section 2.1. The key idea is to link a BBN with a nested sequence of regular
vines.

The joint distribution of a set of variables can be graphically represented as
a BBN or as a vine, in an equivalent way. Both in the BBN and in the vine,
one will have to specify the (conditional) rank correlations associated with the
arcs/edges. In some cases these two structures require exactly the same (condi-
tional) rank correlations. But, as we saw in Chapter 2, this is not always the case.
If a (conditional) rank correlation specification is available for the arcs of a BBN,
this can be translated to a specification for the vine7. In this process additional
computations may be required. For arbitrary choice of copula this can constitute
a big disadvantage in terms of computational complexity. However for the normal
copula this disadvantage vanishes, as we can always recalculate required correla-
tions for a given ordering of the variables.

Some important properties of vines translate almost immediately to corre-
sponding properties of non-parametric BBNs, for example the result of Theorem
1.2.3. We can formulate and prove an analog property for BBNs, which plays the
central role in model inference from Section 5.2.

Theorem 5.1.1. Let D be the determinant of an n-dimensional correlation matrix
(D > 0). For any partial correlation BBN specification

D =
∏(

1− ρ2
ij;Dij

)
,

where ρij;Dij is the partial correlation associated with the arc between node i and
node j, Dij is the conditioning set for the arc between node i and node j, and the
product is taken over all arcs in the BBN.

Proof. To prove this fact we will use the connection between BBNs and vines.
If the BBN can be represented as a vine with the same partial correlation specifi-
cation on its edges, the result follows from Theorem 1.2.3. If this is not the case,
namely if the partial correlation specification for the vine differs from the one for
the BBN, we will use the equation from Theorem 1.2.3 sequentially. Let us as-
sume that we have a sampling order for the variables. Without loss of generality
we may consider this order as being 1, 2, ...n. We will construct a vine for these

7This is true when using non-constant conditional copulae (hence non-constant conditional
correlations). In the case of normal copula, it is also true for constant conditional correlations.
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variables which contains: variable n, the parents of variable n, and the variables
independent of n given its parents in the BBN (in this order). For example, let
us consider the BBN from Figure 5.7a. A sampling order of these variables is
1,2,3,4. The D-vine corresponding to this BBN is shown in Figure 5.7b.

1 3
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ρ43;2

(a) Partial corre-
lation specification
BBN on 4 variables.

32 14

0

ρ42

ρ21;3

ρ23 ρ31
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(b) Partial correlation speci-
fication vine on 4 variables.

12 3
ρ21 ρ31

0

(c) Partial corre-
lation specification
vine on the last 3
variables.

Figure 5.7: The connection between a partial correlation BBN specification and a partial
correlation vine specification.

The BBN and the vine constructed as above will have the same correlation ma-
trix. The determinant of the correlation matrix can be calculated using Theorem
1.2.3. The construction of the vine in this specific way, ensures that the non-zero
partial correlations that have variable X4 in the conditioned set, i.e. ρ42, ρ43;2,
are the same as the ones associated to the arcs between X2 and X4, and between
X3 and X4. Using the conditional independence statements on the BBN and the
normal copula, we know ρ41;23 = 0.

In the general case, the non-zero partial correlations that have variable n in
the conditioned set correspond to partial correlations associated to the arcs of the
BBN that connect n with its parents. Therefore, the determinant of the corre-
lation matrix will be a product that contains 1 minus these partial correlations
squared. The rest of the terms in this product correspond to the determinant of
the correlation matrix of first n− 1 variables. For the particular case above:

D =
(
1− ρ2

42

) (
1− ρ2

43;2

) [(
1− ρ2

23

) (
1− ρ2

31

) (
1− ρ2

21;3

)]
.

The product of the last 3 terms corresponds to the determinant of the correlation
matrix of X1, X2, X3. We can now reorder the variables and construct the vine
from Figure 5.7c. Then:(
1− ρ2

23

) (
1− ρ2

31

) (
1− ρ2

21;3

)
=
(
1− ρ2

21

) (
1− ρ2

31

) (
1− ρ2

32;1

)
=
(
1− ρ2

21

) (
1− ρ2

31

)
.

For any regular vine on n − 1 variables, the product of 1 minus squared partial
correlations assigned to the edges of the vine is the same, hence we can reorder
the variables such that they will correspond to the ones from the edges of the
BBN. If this is not possible for the entire vine on n − 1 variables, we repeat the
previous step sequentially.
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The partial correlation BBN represents a factorisation of the determinant of the
correlation matrix. This property is crucial in our algorithm for learning the
structure of a BBN.

The rest of this chapter is organised as follows: in Section 5.2.1 we present
a short overview of the existing methods for learning BBN structures from data.
In order to introduce our approach we need to select a measure of multivariate
dependence. Section 5.2.2 contains a discussion about various such measures. In
Section 5.2.3 we introduce our learning algorithm, and in Section 5.3 we present
this approach using the database of pollutants emissions and fine particulate con-
centrations. In the last part of this chapter we discuss alternative ways to calcu-
late the correlation matrix of a BBN and illustrate how these may speed up the
updating algorithm.

5.2 Learning the Structure of a BBN

5.2.1 Overview of Existing Methods

Data mining is the process of extracting and analysing information from large
databases. For discrete data, BBNs are often used as they describe joint distribu-
tions in an intuitive way and allow rapid conditionalisation (Cowell et al. 1999).

In the process of learning a BBN from data, two aspects can be of interest:
learning the parameters of the BBN, given the structure, and learning the struc-
ture itself.

Most of the current methods to learn the structure of a BBN focus on dis-
crete or Gaussian variables (Spirtes et al. 1993). There are two main classes of
algorithms for learning the structure of a BBN. One class scores a BBN structure
based on how well it fits the data, and attempts to produce one that optimises
the score. A score function is used to choose the best model within the group of
all possible models for the network. This poses very difficult problems since the
space of all possible structures is at least exponential in the number of variables.
Therefore computing the score of every BBN structure is not possible in all but
the most trivial domains. Instead, heuristic search algorithms are used in practice
(Lam and Bacchus 1994; Heckerman 1995).

The alternative approach uses constraints such as independence relations present
in the data, to reconstruct the structure. A number of statistical conditional in-
dependence tests are conducted on the data, and their results are used to make
inferences about the structure (Cheng et al. 1997; Spirtes et al. 1993; Pearl and
Verma 1991).

Although many of these algorithms provide good results on some small data
sets, there are still several problems. One of these problems is that many algo-
rithms require additional information, for example an ordering of the nodes to
reduce the search space (see Cooper and Herskovits 1992; Heckerman et al. 1997;
Cheng et al. 1997 ). Unfortunately, this information is not always available.
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To our knowledge, the few methods that can handle non-parametric contin-
uous variables (e.g., Margaritis 2005) can hardly be applied in domains with a
large number of variables that are densely connected. Moreover the existing struc-
ture learning algorithms are slow, both in theory (Chickering et al. 1994) and in
practice e.g., most constraint-based algorithms require an exponential number of
conditional independence tests.

This motivates us to develop an algorithm for learning a BBN structure from
data, which is more suitable for real world applications. Our goal is to learn the
structure from an ordinal multivariate data set that may contain a large number
of variables. This learning algorithm will not make any assumptions about the
marginal distributions of the variables. We want to be able to learn such struc-
tures fast and use it further, for prediction purposes.

Comparisons of our method for learning the structure of a non-parametric
continuous BBN with other existing methods are difficult to conduct for several
reasons. To our knowledge, in most of the learning algorithms there are two ap-
proaches to deal with continuous variables. One is to assume that the variables
belong to a family of parametric distributions (e.g. Heckerman and Geiger 1995;
John and Langley 1995 ), and the other one is to use the discretised version of
the variables (e.g. Friedman and Goldszmidt 1996). We use neither of the two
methods.

An algorithm that deals with non-parametric continuous variables is pro-
posed in Margaritis (2005). The authors of Margaritis (2005) develop a con-
ditional independence test for continuous variables, which can be used by any
existing independence-based BBN structure learning algorithm. The method is
evaluated on two real-world data sets: BOSTON-HOUSING and ABALONE
using the PC algorithm (Spirtes et al. 1993). We investigate the structure
obtained for the BOSTON-HOUSING data set. This data set is available at
http://archive.ics.uci.edu/ml/datasets.html. The data concerns housing values
in suburbs of Boston. It contains 14 variables (13 continuous variables and a
binary one) and 506 samples. In the structure presented in Margaritis (2005), the
variable ZN is independent of all the others. If we calculate the empirical rank
correlation matrix we find that ZN is correlated with other variables with high
correlations, e.g.: 0.615, -0.643, -0.635. This result indicates that the method is
inadequate and obviates further comparison.

5.2.2 Multivariate Dependence Measures

Inferring the structure of a BBN from data requires a suitable measure of multi-
variate dependence. Multivariate dependence measures are discussed in Micheas
and Zografos (2006, Joe (1990, Schmid and Schmidt (2007). In Micheas and Zo-
grafos (2006) Renyi’s axioms (Renyi 1959) for bivariate dependence are extended
for the multivariate case and some representation results are proven.

Although multivariate dependence measures are not the focus of the present
study, it is convenient to motivate the choice of such a measure by reference to a
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set of axioms similar to that of Micheas and Zografos (2006).
We propose a set of axioms that specify properties of a multivariate depen-

dence measure. It is convenient to restrict such measures to the [0, 1] interval, with
1 corresponding to independence. D1,...,n denotes such measure. `(X1, ..., Xn) de-
notes the linear span of the variables (X1, ..., Xn). That is the set of vectors which
can be written as affine combinations of (X1, ..., Xn). n! is the set of all permuta-
tions of {1, ..., n}; π is a permutation from n!; ⊥ {1, ..., n} says that the variables
(X1, ..., Xn) are independent; f1,...,n is the density of (X1, ..., Xn) and fi is the
density of Xi.

We propose the following axioms:

AX 1 0 ≤ D1,...,n ≤ 1;
AX 2 ∀i, Di := 1;
AX 3 ∀π ∈ n!, D1,...,n = Dπ(1),...,π(n);
AX 4 K,J ⊆ {1, ..., n}, K ∩ L = ∅, XK ⊥ XJ =⇒ DK,J = DKDJ ;
AX 5.1 ⊥ {1, ..n} =⇒ D1,...,n = 1;
AX 5.2 ⊥ {1, ..n} ⇐⇒ D1,...,n = 1;
AX 6.1 X1 ∈ `(X2, ..., Xn) =⇒ D1,...,n = 0;
AX 6.2 D1,...,n = 0, D2,...,n > 0 =⇒ X1 ∈ `(X2, ..., Xn);
AX 7.1 X1 = g (X2, ..., Xn) on a set of positive measure, where g is a

measurable function =⇒ D1,...,n = 0;

AX 7.2 D1,...,n = 0, D2,...,n > 0 =⇒ X1 = g (X2, ..., Xn) on some set of
positive measure.

We define a conditional dependence measure as:

D1,...,k;k+1,...,n =
D1,...,n

Dk+1,...,n
, Dk+1,...,n > 0.

Evidently

D1,...,n = D1;2,...,nD2;3,...,n...Dn−1;n;

where Dn−1;n = Dn−1n and we can specify a dependence measure by specifying
the conditional dependence measures.

We note that AX 4 is stronger than its corresponding axiom in Micheas and
Zografos (2006), and AX 7.1 & AX 7.2 are a bit weaker than their counterpart in
Micheas and Zografos (2006). Axioms 6.1 and 6.2 explicitly capture the notion of
linear dependence.

Proposition 5.2.1. D1,...,n = Det(C), with C the correlation matrix of X1, ..., Xn

satisfies AX 1, AX 2, AX 3, AX 4, AX 5.1, AX 6.1, AX 6.2.
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Proof. Let D1,...,n = Det(C). The first three axioms and AX 5.1 are obvious. For
AX 4, suppose the correlation matrix has diagonal blocks C1,...,k and Ck+1,...,n.
Let C1,...,k ⊕ 1(k + 1, ..., n) denote the n × n matrix whose first k × k cells are
C1,...,k, whose diagonal entries k + 1, ..., n are 1’s, and whose other cells are 0’s.
Similarly, let 1(1, ..., k)⊕Ck+1,...,n denote the matrix whose first k diagonal entries
are 1’s, whose last k + 1, ..., n entries are Ck+1,...,n, and whose other cells are 0’s.
Then:

Det(C) = Det (C1,...,k ⊕ 1(k + 1, ..., n)× 1(1, ..., k)⊕ Ck+1,...,n)
= Det (C1,...,k ⊕ 1(k + 1, ..., n))×Det (1(1, ..., k)⊕ Ck+1,...,n)
= Det(C1,...,k)×Det(Ck+1,...,n) = D1,...,kDk+1,...,n.

To prove that axioms 6.1 and 6.2 hold, we use equation 1.2.2. D1,...,n is zero
if and only if at least one of the multiple correlations in equation 1.2.2 is 1. If
D2,...n > 0, then R2

1:2,...,n = 1, which means that X1 is an affine combination of
(X2, ..., Xn).

We will further discuss two other multivariate dependence measures. In order
to introduce the first one we will first define the concept of mutual information.

Definition 5.2.1. Let f and g be densities on IRn, with f absolutely continuous
with respect to g;

• the relative information of f with respect to g is:

I(f |g) =
∫

1

...

∫
n

f(x1, ..., xn)ln
(
f(x1, ..., xn)
g(x1, ..., xn)

)
dx1...dxn.

• the mutual information of f is:

MI(f) = I(f |
n∏
i=1

fi),

If f is a joint normal density, then: MI(f) = − 1
2 log(D), where D is the determi-

nant of the correlation matrix. This relation suggests that we can use e−2MI(f)

as another multivariate dependence measure. e−2MI(f) satisfies AX 5.2. In Joe
(1989) it is shown that e−2MI(f) satisfies AX 7.1 and 7.2 (AX 6.2 is not satisfied),
moreover it is invariant under measurable and bijective transformations of each
of the X

′

is. Unfortunately, efficient methods for computing the sample MI are
not available.

The multivariate Spearman’s correlation (Schmid and Schmidt 2007) is some-
times proposed as a measure of multivariate dependence. For bivariate depen-
dence, the Spearman’s rank correlation is given by (Nelsen 1999):
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r(X1, X2) = 12
∫ 1

0

∫ 1

0

C(u, v)dudv − 3 = 12
∫ 1

0

∫ 1

0

uvc(u, v)dudv − 3. (5.2.1)

where C(u, v) is the copula for X1,X2, and c(u, v) is the copula density. In higher
dimensions the appropriate generalisations of the two integrals in equation 5.2.1
are not equal and a variety of possible generalisations exist (Schmid and Schmidt
2007). In three dimensions the version based on the copula density8 reads (Schmid
and Schmidt 2007):

r(X1, X2, X3) = 8
∫ 1

0

∫ 1

0

∫ 1

0

uvwc(u, v, w)dudvdw − 1.

Using the bivariate elliptical copula (Kurowicka, Misiewicz, and Cooke 2000) with
a Markov multivariate copula that satisfies c(u, v, w) = c(u, v)c(v, w), and using
the fact that for the elliptical copula E(U |V = v) = vρ(U, V ), (Kurowicka and
Cooke 2006b), it follows that:

r(X1, X2, X3) = 2ρ(U, V )ρ(V,W )− 1.

This entails that if ρ(U, V ) = 0, then r(X1, X2, X3) = −1, which is difficult to
interpret.

On the basis of the above discussion we conclude that the determinant of the
correlation matrix is a reasonable measure of multivariate dependence. In working
with non-parametric BBNs, it is more convenient to focus on the multivariate
dependence in the copula.

5.2.3 Learning the Structure of a Non-Parametric Continuous BBN with the Normal
Copula

Suppose we have a multivariate data set. We may distinguish:

• DER = the determinant of the empirical rank correlation matrix;

• DNR = the determinant of the rank correlation matrix obtained by trans-
forming the univariate distributions to standard normals, and then trans-
forming the product moment correlations to rank correlations using Pear-
son’s transformation (see Proposition 1.2.1);

• DBBN = the determinant of the rank correlation matrix of a BBN using
the normal copula.

8The version based on the copula density is dedoted by ρ2 in Schmid and Schmidt (2007).
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DNR will generally differ from DER because DNR assumes the normal copula,
which may differ from the empirical copula. A rough statistical test for the suit-
ability of DNR for representing DER is to obtain the sampling distribution of
DNR and check whether DER is within the 90% central confidence band of DNR.
If DNR is not rejected on the basis of this test, we shall attempt to build a BBN
which represents the DNR parsimoniously. Note that the saturated BBN will in-
duce a joint distribution whose rank determinant is equal to DNR, since the BBN
uses the normal copula. However, many of the influences only reflect sample jitter
and we will eliminate them from the model.

Searching for a perspicuous model by eliminating arcs from the saturated
graph is a data compression technique, and may be compared with other com-
pression techniques. Factor analysis (Lawley and Maxwell 1963) for example seeks
to express all variables as linear combinations of a smaller number of variables.
Compression is accomplished by lowering the rank of the correlation matrix. The
method of model selection presented in (Whittaker 1990), in contrast, seeks to
eliminate influences between variables i and j when the partial correlation be-
tween them, given all other variables, is suitably small. In other words, the
method from (Whittaker 1990) compresses by setting partial correlations of max-
imal order equal to zero. However the zeroing operation may perturb the positive
definiteness of the correlation matrix. Both factor analysis and the method in
(Whittaker 1990) assume a joint normal distribution. Here, the joint normal-
ity assumption is relaxed to the assumption of a normal copula. Setting partial
correlations in a BBN equal to zero does not encounter the problem of positive
definiteness, due to the connection between BBN’s and regular vines.

If the BBN is not saturated, then DBBN > DNR. We will use the result from
Theorem 5.1.1 in building a BBN from data, in the context of the normal copula
vine approach. Having a conditional rank correlation specification for the arcs of
a BBN and using the normal copula, entails a partial correlation BBN specifica-
tion. Moreover, the zero partial correlations will correspond to the conditional
independence statements encoded in the BBN structure. We will build the BBN
by adding arcs between variables only if the rank correlation between those two
variables is among the largest. We will also remove arcs from the BBN, which
correspond to very small rank correlations. The heuristic we are using is that par-
tial correlations are approximately equal to conditional rank correlations. This
is a reasonable approximation if we consider the following: we use the normal
copula to realise the (conditional) rank correlations associated to the arcs of the
BBN; the relation between (conditional) rank correlation and conditional (prod-
uct moment) correlation is calculated using Pearson’s transformation; for joint
normal variables, the conditional (product moment) correlations and the partial
correlations are equal.

The procedure for building a BBN to represent a given data set is not fully
automated, as the directionality of (some of) the arcs will reflect causal or tem-
poral relations which can never be extracted from data. The result of introducing
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arcs to capture causal or temporal relations is called a Skeletal BBN. The general
procedure can then be represented as:

1. Verify that DER is not outside the plausible central confidence band for
DNR;

2. Construct a Skeletal BBN;

3. If DNR is within the 90% central confidence band of the determinant of the
Skeletal BBN, then stop, else continue with the following steps;

4. Find the pair of variables (Xi, Xj) such that the arc (i, j) is not in the BBN
and r2

ij is greater than the squared rank of any other pair not in the BBN.
Add an arc between nodes i and j, and recompute DBBN together with its
90% central confidence band.

5. If DNR is within the 90% central confidence band of DBBN, then stop, else
repeat step 4.

The 90% central confidence band may be replaced by the the 95% or 99% central
confidence bands.

The resultant BBN may contain nodes that have more than one parent. If the
correlations between the parents of a node are neglected in the BBN (i.e. if the
parents are considered independent), then DBBN will be different for different
orderings of the parents. These differences will be small if the neglected correla-
tions are also small.

In general, there is no ”best” model; the choice of directionality may be made
on the basis of non-statistical reasoning. Some small influences may be included
because the user wants to see these influences, even though they are small. There
may be several distinct BBNs which approximate the saturated BBN equally well.

5.3 Ordinal PM2.5 Data Mining with UniNet

We illustrate our method for learning a BBN from data using the ordinal multi-
variate data set that we briefly introduced in Section 5.1. The data are gathered
from electricity generating stations and from collection sites in the United States
over the course of seven years (1999 - 2005). The data base contains monthly
emissions of SO2 and NOx in different locations and monthly means of the read-
ings of PM2.5 concentrations at various monitoring sites. Since we have monthly
data over the course of seven years, the data set will contain 84 multivariate sam-
ples.

There are 786 emission stations and 801 collector sites. Meteorological infor-
mation on temperature wind speed and wind direction is also available at, or near,
all cites. Although the method is designed to handle large numbers of variables,
we adopt a smaller set for purposes of illustration. We consider one collector at
Washington D.C. temperature, wind speed and wind direction at Washington DC,
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and emissions from five stations which are upwind, under prevailing winds, and
emit large quantities of SO2 and NOx: Richmond, Masontown, Dumfries, Gi-
rard and Philadelphia (see Figure 5.8). The goal is to build a BBN that captures
the dependence structure between these variables, using the approach presented in
the previous section. This learning approach has been implemented into UniNet,
hence all analysis and graphs are produced using UniNet.

Figure 5.8: BBN on 14 nodes with no arcs.

The distinctive feature of this approach is that we take the one dimensional
marginal distributions directly from the data, and model the dependence with
the joint normal copula. The hypothesis that the dependence structure in the
data is that of a joint normal copula can be tested by the method described in
Section 5.1. Once we have a suitable copula, we can condition any set of variables
on values of any other set of variables.

Standard regression analysis also computes conditional distributions. For data
sets like that encountered here, however, the BBN approach with the normal cop-
ula offers several advantages:

• We obtain the full conditional distribution, not just the mean and variance.

• We do not assume that the predicted variable has constant conditional vari-
ance, indeed the conditional distributions do not have constant variance.

• The emitters tend to be strongly correlated to each other and weakly cor-
related to the collectors, hence if we marginalize over a small set of up-
wind emitters, we have many ”missing covariates” with strong correlations
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to the included covariates. This will bias the estimates of the regression
coefficients. The BBN method, in contrast, simply models a small set of
variables, where other variables have been integrated out. There is no bias;
the result of first marginalising then conditionalising is the same as first
conditionalising then marginalising.

• The set of regressors may have individually weak correlations with the pre-
dicted variable, but may be collectively important. On small data sets, the
confidence intervals for the regression coefficients may all contain zero and
their collective importance would be missed.

The discussion in the previous section led to the choice of the determinant of
the rank correlation matrix as an overall dependence measure. This determinant
attains the maximal value of 1 if all variables are independent, and attains a
minimum value of 0 if there is linear dependence between the ranked variables.
Figures 5.9 and 5.10 compare the empirical rank correlation matrix with the
normal rank correlation matrix. It can be noticed that the highest correlations
are in the same positions in both matrices. Moreover all differences are of order of
10−2. For 84 samples, the approximate upper critical values of Spearman’s rank
correlation, are given in the table below (Ramsey 1989).

Table 5.1: Critical values of Spearman’s rank correlation for 84 samples.

N α = 0.05 α = 0.025 α = 0.01 α = 0.005
84 0.181 0.215 0.254 0.280

The α values correspond to a one-tailed test of the null hypotheses that the rank
correlation is 0.

Figure 5.8 shows the 14 variables, as nodes in a BBN with no arcs. Hence,
we start by considering these variables as being independent. We obtain DBBN
= 1. In general, if the BBN is not saturated, then DBBN > DNR. Following
the general procedure presented in the previous section we start adding arcs be-
tween variables whose rank correlation (in the normal rank correlation matrix)
are among the largest. By doing so, we decrease the value of DBBN. UniNet
allows us to visualise the highest rank correlations (see Figure 5.10). We add 16
arcs to the BBN, most of which correspond to the highest rank correlations. Nev-
ertheless, our interest is to quantify the relation between Washington DC and the
rest of the variables involved, hence we also add arcs that carry information about
their direct relationship. The resultant BBN is shown in Figure 5.11. UniNet
calculates from data the (conditional) rank correlations that correspond to the
arcs of the BBN.

The determinant of the rank correlation matrix based on the new BBN differs
from DNR, as this BBN is not saturated, hence it contains conditional indepen-
dencies that are not present in the data. In this case DBBN = 3.6838E-04 and
its 90% central confidence interval is [0.5552E-04, 3.7000E-04]. We notice that
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Figure 5.9: The empirical rank correlation matrix of the 14-dimensional distribution.

Figure 5.10: The normal rank correlation matrix of the 14-dimensional distribution.
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DNR is not within this interval. In consequence, we need to add more arcs to the
BBN. Following the same idea of quantifying direct influence on the air quality in
Washington DC, we add 4 more arcs. The resultant BBN with 20 arcs is shown
in Figure 5.12.

The 90% central confidence interval for the determinant of the rank correla-
tion matrix based on the new BBN is [0.4617E-04, 2.6188E-04] and DNR is still
outside this interval.

Adding arcs that do not necessarily correspond to the highest correlations
might increase the number of iterations needed in order to obtain a valid struc-
ture. Moreover, the resultant BBN becomes more complicated. Nevertheless,
there are situations in which we are more interested to represent certain direct
influences between our variables, rather than obtaining a sparse structure.

We continue by adding arcs that correspond to the highest correlations from
the matrix. We obtain the BBN from Figure 5.13.

The value of DBBN for the last BBN is 1.4048E-04. DNR falls inside the
confidence interval for DBBN, which is [0.1720E-04, 1.6270E-04]. We conclude
that this BBN with its conditional independence relations is an adequate model
of the saturated graph.

We can continue looking for a more convenient representation (with less arcs)
by changing very small correlations to zero, while disturbing the determinant as
little as possible. We will now remove 4 arcs from the BBN (see Figure 5.14).
DBBN changes to 1.5092E-04. This change is not significant, so the new BBN
on 26 arcs is an adequate model as well. If we further reduce the number of arcs,
we obtain the structure from Figure 5.6, whose determinant is 4.8522E-04, and
would be rejected.

Another procedure for building a BBN to represent a given data set, would
be to begin with the saturated graph9, rather than with the empty one. The
saturated BBN will induce a joint distribution whose rank determinant is equal
to DNR, since the BBN uses the normal copula. Further we will remove those
arcs that are associated with very small (close to zero) correlations, such that the
value of DNR stays inside the confidence interval for DBBN.

It is worth mentioning that the BBN structure learned from the data set, using
one approach or another, will not be unique. Adding/deleting different arcs from
the BBN may provide a different suitable structure.

5.4 Alternative Ways to Calculate the Correlation Ma-
trix of a BBN

In both, learning the structure of the BBN and the conditioning step, an impor-
tant operation is calculating the correlation matrix from the partial correlations
specified. To do so, we are repetitively using equation 1.2.1. When working with

9One of the possible saturated graphs. If the sampling order of the variables is known, this
procedure might be more appropriate.
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Figure 5.11: BBN on 14 nodes with 16 arcs.

Figure 5.12: BBN on 14 nodes with 20 arcs.
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Figure 5.13: BBN on 14 nodes with 30 arcs.

Figure 5.14: BBN on 14 nodes with 26 arcs.



84 MINING AND VISUALISING ORDINAL DATA WITH NON-PARAMETRIC CONTINUOUS BBNS 5.4

very large structures, this operation can be time consuming. In order to avoid
this problem we will further present a number of results that will reduce the use
of equation 1.2.1. It is known that a BBN induces a (generally non-unique) sam-
pling order and that variable X is independent of variable Y given its parents in
the graph, Pa(Y ), if X precedes Y in the sampling order. Our aim is to obtain a
conditioning set D, which entails conditional independence, smaller than the set
of parents. In this case our algorithm to calculate the correlation matrix from
partial correlations specified on the BBN will calculate ρXY from ρXY ;D rather
than from ρXY ;Pa(Y ).

5.4.1 Notation and Definitions

We begin with the notation used in this section and assume that the reader is
familiar with basic concepts of graph theory. The definitions presented in this
subsection can be found in the literature, e.g. (Pearl 1988). Capital letters,
e.g. X, denote a single variable. Sets of variables are denoted in bold, e.g. A.
The sets of ancestors, children and descendants of X are expressed as An(X),
Ch(X) and Desc(X), respectively. We consider X an ancestor of itself, i.e.:
An(X) = X ∪

⋃
Y ∈Pa(X)

An(Y ). To describe conditional independence between

variables X and Y given Z we write X ⊥ Y |Z. X ⊥ Y if X ⊥ Y |∅. Moreover,
X 6⊥ Y |Z means that X and Y are not conditionally independent given Z. Hence
they are conditionally dependent. ℘ denotes an undirected path.

A joint distribution represented by a BBN must satisfy a set of independence
constraints imposed by the structure of the graph. A graphical criterion that
characterises all of these structural independence constraints is the d-separation
criterion.

Definition 5.4.1. If A, B and C are three disjoint subsets of nodes in a BBN,
then C is said to d-separate A from B if there is no path between a node in A
and a node in B along which the following to conditions hold:

• every node with converging arrows is in C or has a descendant in C and

• every other node is outside C.

Figure 5.15 explains the above definition graphically.
If a path satisfies the condition above, it is said to be active. Otherwise it is said
to be blocked by C. Two variables, X and Y are d-separated if no path between
them is active. X and Y are called d-connected if there is any active path between
them.

In (Spirtes, Glymour, and Scheines 1993) a node with converging arrows is
called a collider. A colliderless path is a path that does not contain any collider.

If X and Y are d-separated by Z we will write Dsep(X;Y |Z).

Remark 5.4.1. Dsep(X;Y |∅) implies the absence of a colliderless path between
X and Y .
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A BC

Z

Z

Z

Figure 5.15: D-separation of A & B by C.

5.4.2 Minimal d-separation Set

The d-separation described above provides a very useful connection between a
BBN structure and the corresponding set of distributions that can be represented
with that structure. In particular, (Pearl 1988) shows that if Dsep(X;Y |Z) in a
BBN structure, then for any distribution that can be represented by that structure
(X ⊥ Y |Z). Therefore, the absence of an arc guarantees a set of independence
facts. On the other hand, the existence of an arc between variables X and Y in the
graph, does not guarantee that the BBN will exhibit dependence between X and
Y . To ensure this dependence one will have to make the assumption of faithfulness.
A distribution is faithful to a BBN if X ⊥ Y |Z implies Dsep(X;Y |Z). This means
that there is a BBN structure, such that the independence relationships among the
variables in the distribution are exactly those represented by the BBN by means
of the d-separation criterion. We will further present a number of results that
can help us to reduce the set of conditioning variables that guarantees conditional
independence between X and Y .

Proposition 5.4.1. Let X and Y be two nodes of a BBN. Then X ⊥ Y |An(X)∩
An(Y ).

Proof. X ∈ An(Y ) ⇒ X ∈ An(X) ∩ An(Y ) ⇒ X ⊥ Y |An(X) ∩ An(Y ). The
same argument holds if Y ∈ An(X).

Let us assume that X 6∈ An(Y ) & Y 6∈ An(X). The paths between X and Y
go through:

1. An(X) ∩An(Y ), or

2. An(X) ∩Desc(Y ), or

3. Desc(X) ∩An(Y ), or

4. Desc(X) ∩Desc(Y ).
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All paths in the situations 2, 3 and 4 contain a collider. From Definition 5.4.1
it follows that An(X) ∩ An(Y ) d-separates X from Y , hence X ⊥ Y |An(X) ∩
An(Y ).

The above proposition is not always useful, as the intersection of the ancestors of
X and Y may contain more variables than Pa(Y ).

Proposition 5.4.2. Let X and Y be two nodes of a BBN. Under the faithfulness
assumption, if X ⊥ Y then An(X) ∩An(Y ) = ∅.

Proof. X ⊥ Y ⇒ Dsep(X;Y |∅). Remark 5.4.1 implies that each path between
X and Y contains a collider. Let us assume An(X) ∩ An(Y ) 6= ∅ and let Z ∈
An(X) ∩An(Y ). Then, there exist a path ℘ from X to Y , through Z such that,
℘ does not contain a collider. This contradiction concludes the proof.

From the previous two propositions we can conclude that under the faithfulness
assumption X ⊥ Y iff An(X) ∩An(Y ) = ∅.

Proposition 5.4.3. Let X be a node of a BBN and Pa(X) = A ∪B such that
A ∩B = ∅ and A ⊥ B. Under the faithfulness assumption, if Y ∈ An(A), then
X ⊥ Y |A

Proof. If Y ∈ A, then X ⊥ Y |A. Let us consider the case when Y 6∈ A, then
Y ∈ An(A) \A.
A ⊥ B ⇒ An(A) ∩ An(B) = ∅ ⇒ An(A) ⊥ An(B). Because B ⊂ An(B) we
conclude that An(A) ⊥ B. But {A, Y } ⊂ An(A). Then {A, Y } ⊥ B. Using this
and the fact that A ⊥ B, we can write:

P (Y |A,B) =
P (Y,A,B)
P (A,B)

=
P (Y,A|B)P (B)
P (A)P (B)

=
P (Y,A)
P (A)

= P (Y |A) . (5.4.1)

This means that Y ⊥ B|A. Using also Y ⊥ X| (B,A), we can conclude Y ⊥
(X,B) |A (see (Cowell, Dawid, Lauritzen, and Spiegelhalter 1999; Whittaker
1990)). This implies X ⊥ Y |A.

We will further define the boundary of the intersection of ancestors of two nodes
in a BBN with respect to one of them as follows:

bdX (An(X) ∩An(Y )) = {Z ∈ An(X) ∩An(Y ) : ∃ Ch(Z) ∈ An(X) \An(Y )}.

Similarly:

bdY (An(X) ∩An(Y )) = {Z ∈ An(X) ∩An(Y ) : ∃ Ch(Z) ∈ An(Y ) \An(X)}.

The proposition below shows that instead of taking the intersection of ancestor
sets of X and Y as in Proposition 5.4.1 it is enough to consider the boundary of
this intersection.
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Proposition 5.4.4. Let X and Y be two nodes of a BBN such that X 6∈ An(Y )
and Y 6∈ An(X). Under the faithfulness assumption:

X ⊥ Y |bdX (An(X) ∩An(Y )) and

X ⊥ Y |bdY (An(X) ∩An(Y )) .

Proof. By symmetry, it suffice to prove only one of the relations above. Let
C = An(X) ∩ An(Y ) and C∗ = bdX (An(X) ∩An(Y )). It follows that C∗ ⊆ C
and X ⊥ Y |C. Let us assume X 6⊥ Y |C∗. Then there exist an active path ℘
between X and Y . Because Dsep(X;Y |C), the path ℘ must be blocked by a node
Z ∈ C \C∗. Then Z ∈ An(X) ∩ An(Y ) such that any Ch(Z) belongs either to
An(X) ∩ An(Y ), or to An(Y ) \ An(X). Since X 6∈ (An(X) ∩An(Y )) it follows
that any path going from Z along ℘ has to go through a node from C∗ in order
to reach X which contradicts the fact that ℘ is an active path. It follows that the
assumption made is false and C∗ is a separator for X and Y .

Corollary 5.4.1. In the context of the previous proposition:

• If X ∈ An(Y ) then :

– X ⊥ Y |bdY (An(X) ∩An(Y ))

– bdX (An(X) ∩An(Y )) = ∅

• If Y ∈ An(X) then:

– X ⊥ Y |bdX (An(X) ∩An(Y ))

– bdY (An(X) ∩An(Y )) = ∅

Under the faithfulness assumption, the proof of the above corollary is trivial.
If we are in the conditions of Proposition 5.4.3 we definitely have a smaller

conditioning set then the set of parents. If, on the other hand, we want to calcu-
late the correlation of two nodes which are non ancestors of one another, we can
compare the set of parents with the boundaries of the intersection of ancestors
and decide which conditioning set will facilitate the calculation.

As an example consider the BBN from Figure 5.2. Choose the following sam-
pling order: so2 Masontown (1), so2 Girard (2), DC Temp (3), so2 Richmond (4),
nox Girard (5), DC WindDir (6), DC WindSpeed (7), nox Masontown (8), nox Philad-

elphia (9), so2 Dumfries (10), so2 Philadelphia (11), nox Richmond (12), nox Dumfri-

es (13), DC monthly concPM25 (14). Using this sampling order and referring the
variables with their indices in the sampling order we can write two relations:

• 14 ⊥ 12|Pa(14) and

• 14 ⊥ 12|bd12 (An(12) ∩An(14)).
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Figure 5.16: BBN for the CATS model showing the variables X and Y and the sets
Pa(X), Pa(Y ), and An(X) ∩An(Y ).

The set Pa(14) contains 8 variables, whereas the set bd12 (An(12) ∩An(14)) con-
tains only 3 variables.

Let us now consider the BBN from the CATS model, introduced in Chapter
4. We select two nodes from this BBN, X and Y. The nodes together with their
parents are showed in Figure 5.16. The sets of parents are marked with black
rectangles. The resolution of this picture does not permit a detailed picture of
the parents sets, hence the rectangles are just an indication. Let us assume that
Y is before X in a sampling order. X has 25 parents10. The set An(X) ∩ An(Y )
consists in only 6 nodes, enclosed in 4 ellipses in Figure 5.16. In this example
bdX (An(X) ∩An(Y )) = An(X) ∩An(Y ).

It is clear that with the above results we can dramatically reduce the use
of equation 1.2.1 in calculating the correlation matrix. However we also have to
account for the time spent to collect information about the ancestors of each node.

10We can also choose a sampling order where X is before Y. Y has 22 parents, therefore the
situations are similar.



Chapter 6

Conclusions

6.1 Retrospect

Applications in various domains often lead to high dimensional dependence mod-
elling. Decision makers and problem owners are becoming increasingly sophisti-
cated in reasoning with uncertainty. This motivates the development of generic
tools, which can deal with two problems that occur throughout applied mathe-
matics and engineering: uncertainty and complexity.

BBNs provide a general methodology for approaching these problems. The
graphical (visual) nature of BBNs facilitates the understanding of key linkages
between the variables involved in the model.

Until recently, continuous BBNs were restricted to the joint normal distribu-
tion. Often times the variables involved in a real life problem are far from normal.
Therefore we need an approach that is general, in the sense that it applies to
any continuous variables. Kurowicka and Cooke (2004) advanced the copula-vine
approach to non-parametric continuous BBNs. In a non-parametric continuous
BBN, nodes are associated with arbitrary continuous invertible distribution func-
tions and arcs with (conditional) rank correlations, which are realised by any
copula with the zero independence property. The (conditional) rank correlations
assigned to the edges are algebraically independent. Quantifying BBNs in this
way also requires assessing all (continuous, invertible) one dimensional marginal
distributions. On the other hand, the dependence structure is meaningful for any
such quantification, and needs not be revised if the univariate distributions are
changed.

This approach is general and allows traceable and defensible quantification
methods, but the BBNs must be evaluated by Monte Carlo simulation. Updating
such a BBN requires the re-sampling of the whole structure. This motivates the
introduction of a hybrid method that samples the continuous BBN once, and then
discretizes this so as to enable fast updating. In this way we combine the reduced
assessment burden and modelling flexibility of the continuous BBNs with the fast
updating algorithms of discrete BBNs. The hybrid method proposed here has
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the advantage that we only have to sample once, and any copula with the zero
independence property, that realises the entire range of dependence can be used
in the sampling procedure. However, sampling large complex structures only once
can still involve time consuming numerical calculations. Hence a new sampling
protocol based on normal vines is developed. The normal copula is used to re-
alise the dependence structure specified via (conditional) rank correlations on the
continuous BBN.

The normal copula vine method can be used to sample any non-parametric
continuous BBN and stipulate its joint distribution in a fast and flexible way. A
very attractive feature of this method is that conditioning (updating) can be done
analytically.

We have extended this approach to include ordinal discrete random variables
which can be written as monotone transforms of uniform variables. The depen-
dence structure, however, must be defined with respect to the uniforms. The rank
correlation of two discrete variables and the rank correlation of their underlying
uniforms are not equal. Therefore we first study the relationship between these
two ranks. We formulate a generalisation of the population version of Spear-
man’s rank correlation for the case of ordinal discrete random variables. A class
of bivariate discrete distributions can be constructed by specifying the marginal
distributions and a copula. One parameter copulae can be parameterised by their
rank correlation. We have established the relation between the rank correlation
of the discrete variables and the rank correlation of the chosen copula, with more
emphasis on the normal copula.

In situations when data does not exist or is very sparse we must rely on ex-
pert judgement to define the graphical structure and assess required parameters.
However, if data is available we would like to extract a good fitting model from
the data. The second part of this thesis treats BBNs as tools for mining ordinal
multivariate data. There already is a large body of scientific work available on
this subject. Nevertheless, to our knowledge, the few methods that can handle
non-parametric continuous variables (e.g., Margaritis 2005) can hardly be applied
in domains with a large number of variables that are densely connected. Moreover
the existing BBN structure learning algorithms are slow, both in theory (Chick-
ering et al. 1994) and in practice e.g., most constraint-based algorithms require
an exponential number of conditional independence tests.

We have proposed a method that overcomes these problems; it can handle
a large number of continuous variables, without making any assumption about
their marginal distributions, in a very fast manner. Once we have learned the
BBN from data, we can further use it for prediction, or diagnosis by employing
the methods described in the first part of this thesis.
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6.2 Prospect

Even though the conditional rank correlation representation of influence, with
the joint normal copula, can handle large problems without making any assump-
tions about the univariate distributions, without excessive assessment and com-
putational burden there are still many interesting open issues on non-parametric
BBNs. The requisite computational speed can only be obtained with the joint
normal copula. It is hoped that other copulae could be used in the future. If so,
it would be interesting to study how sensitive the relationship between the rank
correlation of two discrete variables and the rank correlation of their underlying
uniforms, is to the choice of the copula (or marginal distributions). What would
this relation become in case of a not ordered copula?

It is obvious that the class of bivariate discrete distributions constructed by
specifying the marginals and a copula depends on the properties of the chosen
copula. It would be valuable to determine what kind of restrictions we introduce
using this construction.

As in the case of the rank correlation between two continuous variables, a
value for the rank correlation between two discrete variables can be either ob-
tained from data, or form experts. The technique for eliciting (conditional) rank
correlations for discrete variables is still an open issue.

Another challenge is to perform conditionalisation on functional nodes. In
the current framework, such conditionalisation can only be preformed on samples
generated by the BBN. More sophisticated sampling and computational methods
might offer other possibilities.

From the inference point of view, learning the structure of a BBN from data
requires a suitable measure of multivariate dependence. Our choice is the deter-
minant of the correlation matrix. As mentioned and motivated previously, we
actually work with the determinant of the rank correlation matrix. This measure
is not such an intuitive one. Maybe a better measure of multivariate dependence
would be the mutual information, but calculating the empirical mutual informa-
tion for large dimensions is a complicated task.

Only lightly touched upon in this thesis are the statistical tests for the two
validation steps of our data mining approach. More reliable statistical tests would
be of great interest.





Chapter 7

Appendix

7.1 UniNet

UniNet is a standalone uncertainty analysis software package that was developed
to support the CATS project. The software will be shortly available free from
http://dutiosc.twi.tudelft.nl/∼ risk/, together with supporting scientific docu-
mentation. Its main focus is dependence modelling for high dimensional distri-
butions. Random variables can be coupled using a BBN. Following is a basic
walkthrough for creating and working with a small BBN.

UniNet is launched from Start/All Programs/Uninet/Uninet. There are two
main views in UniNet: the Random Variable View and the Bayesian Belief Net
View. UniNet starts up in the Random Variable View1 and it allows the user
to choose the variables needed for the model. The names of the variables are by
default Vi, but they can be changed by double-clicking the name in the list of
variables. The distribution of the variables can also be chosen, with correspond-
ing parameters (Figure 7.1).

UniNet can handle continuous distributions, discrete distributions (see Fig-
ure 7.2), and distributions imported from a sample file.

Once the random variables are created, they can be used to form a BBN. As-
sume 4 random variables are created (the last of which discrete) and the Bayesian
Belief Net View is selected from the View menu. On the right hand side of this
view there is a list containing the random variables. This list can be shown or
hidden2. The four variables can be dragged onto the blank canvas (Figure 7.3).

It can be noticed that the name of the V4 node is in italics, this is to indicate
that it is a discrete BBN node. The node name3 and/or description can be mod-
ified by the user. The PDF and CDF histograms of the node can be viewed.

When the Arc button is pressed UniNet enters the Add arc edit mode. Click-
ing on V4 and then on V2, V4 will become a parent of V2. The arc appears, and

1When loading a model it will switch to the Bayesian Belief Net View.
2It is not much use when it is empty, for instance.
3Node names must be unique and can only include letters, digits and underscore characters.
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Figure 7.1: Choosing a random variable’s distribution.

Figure 7.2: Creating a discrete random variable.

the zero displayed on it is the rank correlation coefficient associated with the arc
(see Figure 7.4).

The rank correlation coefficient associated with an arc can be set by right-
clicking on the child node and selecting Dependence Info. The rank correlation
between V4 and V2 and the rank correlation between V4 and V3 are uncondi-
tional rank correlations. In the dependence info for node V1 only the first rank
correlation is unconditional, while the following two are conditional, with the con-
ditioning set consisting of the previous parents in the parent ordering (the parent
ordering is from top to bottom in the list; this can be changed, as we will see fur-
ther). If some (non-zero) values are set for the three rank correlations and then
the order of the last 2 parents is changed, the bottom two correlation coefficients
are reset to zero, and a message is displayed in the lower part of the window
explaining why they were reset (Figure 7.5 ).

When the BBN is completely specified, the correlation matrix can be calcu-
lated via View/Compute Correlation Matrix. Figure 7.6 shows the rank correla-
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Figure 7.3: Adding nodes to the canvas.

tion matrix of the random variables corresponding to all the nodes in the BBN.
The user can reorder the rows/columns (useful when the BBN grows) and export
the matrix to a text file. Another useful feature is the possibility to highlight
parent-child correlations (cells with orange background colour) or highlight the k
highest non parent-child correlations (cells with blue background colour)4.

This correlation matrix is computed from the graph structure and (condi-
tional) rank correlations associated with the arcs using the normal copula vine
approach. The matrix is of course necessary for sampling the BBN (conditionally
or not) and, once it is calculated, UniNet re-computes it only if the BBN struc-
ture changes.

The ellipse shape is not the only one that BBN nodes can have. They can also
be viewed as histograms. Figure 7.7 shows the histogram, mean and standard
deviation of each variable (node).

From the Mode drop down combo box in the top-right of the window, one can
select Analytical Conditioning. So far, UniNet has been in the operating mode
Editing Bayesian Belief Net. In this mode, the user can create/modify the BBN
and the (conditional) correlation coefficients associated with the arcs.

When switching to Analytical Conditioning5 operating mode it can be noticed
that a quick sampling action takes place. That is because, in the Analytical Con-
ditioning operating mode, an underlying sample is always in existence. In this
operating mode, the user can set one or more of the nodes to point values within
their range, and then propagate this evidence through the graph (in the case of
discrete nodes, the node can be set to one of its states).

4Both options are available in the Correlation Matrix window in full view mode - click text
More >> if not visible.

5The conditioning is done using the normal copula vine approach, hence in a analytical way.
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Figure 7.4: BBN with arcs.

Upon right-clicking on node V1 and selecting Conditionalise, the histogram
for the PDF of this continuous node is displayed. The two values at the ends of
the horizontal axis are the lower and upper bounds for the range of this variable.
The value on which we wish to conditionalise is 9000. The node has now a con-
stant point value, and it has changed into a gray rounded rectangle displaying this
value. When the Update button is pressed, a new sample is created. The marginal
distributions of the other three nodes, V2, V3 and V4, have changed (Figure 7.8).
The gray histograms in the background describe the unconditional distributions
of each node, while the black histograms in the foreground describe the condi-
tional distributions for each node. The background, unconditional histograms are
referred to as shadow histograms in UniNet. The mean and standard deviation
of each node have changed too.

Apart from probabilistic nodes, a BBN can contain so-called functional nodes
as well. These are nodes which are functions of their parents. In order to create
a functional node, the user needs to switch the operating mode of UniNet back
to Editing Bayesian Belief Net, press Func Node button at the top of UniNet ’s
window, and click somewhere on the area of the BBN canvas. A functional node
will be created and it will be given a default name starting with FN . The input
variables for node FN 1 are declared by creating an arc originating from a node
and ending at FN 1 (see Figure 7.9). A functional node cannot be a parent of a
probabilistic node. UniNet will not allow for such a construction.

The functional relationship represented by this node can be edited in the De-
pendence Info window available for this node when right-clicked. Tab Nodes lists
all random variables available for use in the formula. Tabs Functions, Operators,
Constants contain the list of available terms for building a formula. After a for-
mula is assigned to the functional node, UniNet is ready to sample the BBN
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Figure 7.5: Dependence Information: Re-ordering parent nodes.

Figure 7.6: The rank correlation matrix for the entire joint distribution.
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Figure 7.7: Viewing nodes as histograms.

structure.
The way to data mine a sample file will be very briefly described here, since

its main features are presented in Chapter 5.
A text file with the extension *.sae should be available. This is a simple,

comma-separated sample file, with the names of the random variables on the first
row, and multidimensional samples on the following rows. Upon selecting menu
File/New/Data Mining File and choosing the *.sae file the sample file is loaded.
The current view becomes the Bayesian Belief Net view. The random variables
are imported and can be used now for creating a BBN. On the right hand side of
this view there is a list containing the random variables. This list can be shown
or hidden from the menu View/Random Variables. Drag and drop the random
variables onto the blank canvas. After arcs are also added to the BBN, UniNet
calculates the (conditional) rank correlations associated to the arcs, from the
sample file. When the BBN is completed all functionality presented earlier in this
section can be applied.

7.2 Proof of Theorem 3.4.1

Proof of Theorem 3.4.1: For simplicity, all calculations are done for the case
n=m. In order to prove the expression of Pc − Pd from the theorem, we first
acquire an intermediate result:

Pc−Pd =
m−1∑
i,j=1

pij

(
pi+ + 2

m−1∑
k=i+1

pk+ + pm+

)p+j + 2
m−1∑
l=j+1

p+l + p+m

−m−1∑
i,j=1

pi+p+j .

(7.2.1)



7.2 PROOF OF THEOREM 3.4.1 99

Figure 7.8: Conditionalising on one node.

Figure 7.9: Creating a functional node.
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Proof of equation (7.2.1): We start from equation (3.3.1) and rewrite the sums
for the indexes running from 1 to m− 1 (rather than to m):

Pc − Pd =
m∑

i,j=1

pij
(∑
k 6=i

∑
l 6=j

sign ((k − i)(l − j)) qkl
)

=
m−1∑
i,j=1

pij
(∑
k 6=i

∑
l 6=j

sign ((k − i)(l − j)) qkl
)

+
m−1∑
i=1

(
pi+ −

m−1∑
j=1

pij
)(∑

k 6=i

∑
l 6=m

sign ((k − i)(l −m)) qkl
)

+
m−1∑
j=1

(
p+j −

m−1∑
i=1

pij
)( ∑

k 6=m

∑
l 6=j

sign ((k −m)(l − j)) qkl
)

+
(
pm+ + p+m − 1 +

m−1∑
i,j=1

pij
) m−1∑
k,l=1

qkl

=
m−1∑
i,j=1

pij
(∑
k 6=i

∑
l 6=j

sign ((k − i)(l − j)) qkl
)

+
m−1∑
i=1

(
pi+ −

m−1∑
j=1

pij
)(∑

k 6=i

m−1∑
l=1

sign(i− k)qkl
)

+
m−1∑
j=1

(
p+j −

m−1∑
i=1

pij
)(m−1∑

k=1

∑
l 6=j

sign(j − l)qkl
)

+
(
pm+ + p+m − 1 +

m−1∑
i,j=1

pij
) m−1∑
k,l=1

qkl

=
m−1∑
i,j=1

pij
( i−1∑
k=1

j−1∑
l=1

qkl −
i−1∑
k=1

m∑
l=j+1

qkl −
m∑

k=i+1

j−1∑
l=1

qkl +
m∑

k=i+1

m∑
l=j+1

qkl
)

+
m−1∑
i=1

pi+
( i−1∑
k=1

m−1∑
l=1

qkl −
m∑

k=i+1

m−1∑
l=1

qkl
)
−

m−1∑
i,j=1

pij
( i−1∑
k=1

m−1∑
l=1

qkl −
m∑

k=i+1

m−1∑
l=1

qkl
)

+
m−1∑
j=1

p+j
(m−1∑
k=1

j−1∑
l=1

qkl −
m−1∑
k=1

m∑
l=j+1

qkl
)
−

m−1∑
i,j=1

pij
(m−1∑
k=1

j−1∑
l=1

qkl −
m−1∑
k=1

m∑
l=j+1

qkl
)

+ pm+

m−1∑
k,l=1

qkl + p+m

m−1∑
k,l=1

qkl −
m−1∑
k,l=1

qkl +
m−1∑
i,j=1

pij

m−1∑
k,l=1

qkl.
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We will further collect all terms which contain pij ’s, and use the relation qij=pi+p+j
to rewrite some of the terms in the expression above:

Pc − Pd =
m−1∑
i,j=1

pij
( i−1∑
k=1

j−1∑
l=1

qkl −
i−1∑
k=1

m∑
l=j+1

qkl −
m∑

k=i+1

j−1∑
l=1

qkl

+
m∑

k=i+1

m∑
l=j+1

qkl −
i−1∑
k=1

m−1∑
l=1

qkl +
m∑

k=i+1

m−1∑
l=1

qkl −
m−1∑
k=1

j−1∑
l=1

qkl

+
m−1∑
k=1

m∑
l=j+1

qkl +
m−1∑
k,l=1

qkl
)
−

m−1∑
k,l=1

qkl +
m−1∑
i=2

i−1∑
k=1

m−1∑
l=1

pi+pk+p+l

−
m−1∑
i=1

m∑
k=i+1

m−1∑
l=1

pi+pk+p+l +
m−1∑
j=2

m−1∑
k=1

j−1∑
l=1

p+jpk+p+l −
m−1∑
j=1

m−1∑
k=1

m∑
l=j+1

p+jpk+p+l

+
m−1∑
k=1

m−1∑
l=1

pm+pk+p+l +
m−1∑
k=1

m−1∑
l=1

p+mpk+p+l

=
m−1∑
i,j=1

pij
( i−1∑
k=1

j−1∑
l=1

qkl −
i−1∑
k=1

m∑
l=j+1

qkl −
m∑

k=i+1

j−1∑
l=1

qkl +
m∑

k=i+1

m∑
l=j+1

qkl

−
i−1∑
k=1

m−1∑
l=1

qkl +
m∑

k=i+1

m−1∑
l=1

qkl −
m−1∑
k=1

j−1∑
l=1

qkl +
m−1∑
k=1

m∑
l=j+1

qkl +
m−1∑
k,l=1

qkl
)

−
m−1∑
i,j=1

qij +
m−1∑
i=2

i−1∑
k=1

m−1∑
l=1

pi+pk+p+l −
m−2∑
i=1

m−1∑
k=i+1

m−1∑
l=1

pi+pk+p+l

+
m−1∑
i=1

m−1∑
j=2

j−1∑
l=1

pi+p+jp+l −
m−1∑
i=1

m−2∑
j=1

m−1∑
l=j+1

pi+p+jp+l −
m−1∑
i=1

m−1∑
l=1

pi+pm+p+l

−
m−1∑
j=1

m−1∑
k=1

p+jpk+p+m +
m−1∑
k=1

m−1∑
l=1

pk+pm+p+l +
m−1∑
k=1

m−1∑
l=1

p+lpk+p+m.

Rearranging the terms from the triple sums will result in their cancelation. We
will manipulate the terms which are multiplied by pij ’s.
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Pc − Pd =
m−1∑
i,j=1

pij
( i−1∑
k=1

j−1∑
l=1

qkl −
i−1∑
k=1

m∑
l=j+1

qkl −
m∑

k=i+1

j−1∑
l=1

qkl +
m∑

k=i+1

m∑
l=j+1

qkl

−
i−1∑
k=1

m−1∑
l=1

qkl +
m∑

k=i+1

m−1∑
l=1

qkl −
m−1∑
k=1

j−1∑
l=1

qkl +
m−1∑
k=1

m∑
l=j+1

qkl +
i−1∑
k=1

m−1∑
l=1

qkl

+
m−1∑
l=1

qil +
m∑

k=i+1

j−1∑
l=1

qkl −
j−1∑
l=1

qml +
m−1∑
k=i+1

qkj +
m−1∑
k=i+1

m−1∑
l=j+1

qkl
)
−
m−1∑
i,j=1

pi+p+j

=
m−1∑
i,j=1

pij
( i−1∑
k=1

j−1∑
l=1

qkl −
i−1∑
k=1

m∑
l=j+1

qkl + 2
m−1∑
k=i+1

m−1∑
l=j+1

qkl +
m−1∑
k=i+1

qkm

+
m−1∑
l=j+1

qml + qmm +
m−1∑
k=i+1

j−1∑
l=1

qkl +
m−1∑
k=i+1

qkj +
j−1∑
l=1

qml + qmj

+
m−1∑
k=i+1

m−1∑
l=j+1

qkl +
m−1∑
l=j+1

qml −
i−1∑
k=1

j−1∑
l=1

qkl −
m−1∑
k=i+1

j−1∑
l=1

qkl −
j−1∑
l=1

qil

+
i−1∑
k=1

m∑
l=j+1

qkl +
m−1∑
k=i+1

m−1∑
l=j+1

qkl +
m−1∑
k=i+1

qkm +
m−1∑
l=j+1

qil + qim +
j−1∑
l=1

qil + qij

+
m−1∑
l=j+1

qil −
j−1∑
l=1

qml +
m−1∑
k=i+1

qkj
)
−

m−1∑
i,j=1

pi+p+j

=
m−1∑
i,j=1

pij
(
4
m−1∑
k=i+1

m−1∑
l=j+1

pk+p+l + 2
m−1∑
k=i+1

pk+p+m + 2
m−1∑
l=j+1

pm+p+l + pm+p+m

+ 2
m−1∑
k=i+1

pk+p+j + pm+p+j + 2
m−1∑
l=j+1

pi+p+l + pi+p+m + pi+p+j
)
−

m−1∑
i,j=1

pi+p+j

=
m−1∑
i,j=1

pij(pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)−
m−1∑
i,j=1

pi+p+j .

Now we can use the expression for pij from (3.4.1) in equation (7.2.1):

Pc − Pd =
m−1∑
i,j=1

[
Cr
( i∑
k=1

pk+,

j∑
l=1

p+l
)

+ Cr
( i−1∑
k=1

pk+,

j−1∑
l=1

p+l
)
− Cr

( i−1∑
k=1

pk+,

j∑
l=1

p+l
)

− Cr
( i∑
k=1

pk+,

j−1∑
l=1

p+l
)]

(pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)
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−
m−1∑
i,j=1

pi+p+j

=
m−2∑
i,j=1

Cr
( i∑
k=1

pk+,

j∑
l=1

p+l
)[

(pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)

+ (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m)

− (pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m)

− (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)
]

+
m−2∑
i=1

Cr
( i∑
k=1

pk+,

m−1∑
l=1

p+l
)
·
[
(pi+ + 2

m−1∑
k=i+1

pk+ + pm+)(p+(m−1) + p+m)

− (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+(m−1) + p+m)
]

+
m−2∑
j=1

Cr
(m−1∑
k=1

pk+,

j∑
l=1

p+l
)
·
[
(p(m−1)+ + pm+)(p+j + 2

m−1∑
l=j+1

p+l + p+m)

− (p(m−1)+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m)
]

+ Cr
(m−1∑
k=1

pk+,
m−1∑
l=1

p+l
)
(p(m−1)+ + pm+)(p+(m−1) + p+m)−

m−1∑
i,j=1

pi+p+j .

We will use the following notations:

c1 = (pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)

+ (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m)

− (pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m)

− (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m);
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c2 = (pi+ + 2
m−1∑
k=i+1

pk+ + pm+)(p+(m−1) + p+m)

− (p(i+1)+ + 2
m−1∑
k=i+2

pk+ + pm+)(p+(m−1) + p+m);

and

c3 = (p(m−1)+ + pm+)(p+j + 2
m−1∑
l=j+1

p+l + p+m)

− (p(m−1)+ + pm+)(p+(j+1) + 2
m−1∑
l=j+2

p+l + p+m).

We will rewrite c1, c2 and c3 as follows:

c1 = qij + 2
m−1∑
k=i+1

qkj + qmj + 2
m−1∑
l=j+1

qil + 4
m−1∑
k=i+1

m−1∑
l=j+1

qkl + 2
m−1∑
l=j+1

qml + qim

+ 2
m−1∑
k=i+1

qkm + qmm + q(i+1)(j+1) + 2
m−1∑
k=i+2

qk(j+1) + qm(j+1) + 2
m−1∑
l=j+2

q(i+1)l

+ 4
m−1∑
k=i+2

m−1∑
l=j+2

qkl + 2
m−1∑
l=j+2

qml + q(i+1)m + 2
m−1∑
k=i+2

qkm + qmm − qi(j+1)

− 2
m−1∑
k=i+1

qk(j+1) − qm(j+1) − 2
m−1∑
l=j+2

qil − 4
m−1∑
k=i+1

m−1∑
l=j+2

qkj − 2
m−1∑
l=j+2

qml − qim

− 2
m−1∑
k=i+1

qkm − qmm − q(i+1)j − 2
m−1∑
k=i+2

qkj − qmj − 2
m−1∑
l=j+1

q(i+1)l

− 4
m−1∑
k=i+2

m−1∑
l=j+1

qkl − 2
m−1∑
l=j+1

qml − q(i+1)m − 2
m−1∑
k=i+2

qkm − qmm

= qij + q(i+1)(j+1) + 2q(i+1)j + 2qi(j+1) + 2qm(j+1) − 2q(i+1)(j+1) − 2q(i+1)(j+1)

− 2qm(j+1) − q(i+1)j − qi(j+1) + 4
m−1∑
k=i+1

qk(j+1) − 4
m−1∑
k=i+2

qk(j+1)

= (pi+ + p(i+1)+)(p+j + p+(j+1));

c2 = qi(m−1) + 2
m−1∑
k=i+2

qk(m−1) + 2q(i+1)(m−1) + qm(m−1) + qim + 2q(i+1)m
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+ 2
m−1∑
k=i+2

qkm + qmm − q(i+1)(m−1) − 2
m−1∑
k=i+2

qk(m−1) − qm(m−1) − q(i+1)m

− 2
m−1∑
k=i+2

qkm − qmm = (pi+ + p(i+1)+)(p+m + p+(m−1));

c3 = q(m−1)j + 2
m−1∑
l=j+2

q(m−1)l + 2q(m−1)(j+1) + q(m−1)m + qmj + 2
m−1∑
l=j+2

qml

+ 2qm(j+1) + qmm − q(m−1)(j+1) − 2
m−1∑
l=j+2

q(m−1)l − q(m−1)m − qm(j+1)

− 2
m−1∑
l=j+2

qml − qmm = q(m−1)j + q(m−1)(j+1) + qmj + qm(j+1)

= (p(m−1)+ + pm+)(p+j + p+(j+1)).

Hence:

Pc − Pd =
m−2∑
i,j=1

Cr
( i∑
k=1

pk+,

j∑
l=1

p+l
)
· (pi+ + p(i+1)+)(p+j + p+(j+1))

+
m−2∑
i=1

Cr
( i∑
k=1

pk+,

m−1∑
l=1

p+l
)
· (pi+ + p(i+1)+)(p+m + p+(m−1))

+
m−2∑
j=1

Cr
(m−1∑
k=1

pk+,

j∑
l=1

p+l
)
· (p(m−1)+ + pm+)(p+j + p+(j+1))

+ Cr
(m−1∑
k=1

pk+,

m−1∑
l=1

p+l
)
(p(m−1)+ + pm+)(p+(m−1) + p+m)−

m−1∑
i,j=1

pi+p+j

=
m−1∑
i,j=1

Cr
( i∑
k=1

pk+,

j∑
l=1

p+l
)
· (pi+ + p(i+1)+)(p+j + p+(j+1))−

m−1∑
i,j=1

pi+p+j

=
m−1∑
i=1

n−1∑
j=1

pi+p+j

(
Cr
( i∑
k=1

pk+,

j∑
l=1

p+l
)

+ Cr
( i−1∑
k=1

pk+,

j∑
l=1

p+l
)

+ Cr
( i∑
k=1

pk+,

j−1∑
l=1

p+l
)

+ Cr
( i−1∑
k=1

pk+,

j−1∑
l=1

p+l
)
− 1
)

=
m−1∑
i=1

n−1∑
j=1

pi+p+j
(
C̃rij − 1

)
.
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Summary

High dimensional probabilistic modelling using graph theory is employed in several
scientific fields. Graphical models proved to be a flexible probabilistic framework,
and their use has increased substantially. They merge graph theory and probabil-
ity theory to provide a general setting for models in which a number of variables
interact. There are two main types of graphical models: directed and undirected.

Our focus is on the directed graphical models called Bayesian Belief Nets
(BBNs). A BBN encodes the probability density or mass function of a set of vari-
ables by specifying a set of conditional independence statements in a form of an
acyclic directed graph and a set of probability functions. It provides a simple way
to visualize the structure of a probabilistic model. Until recently BBN models
were restricted to structures containing discrete and/or Gaussian variables. Un-
certainty distributions may not be assumed to conform to any parametric form.
Algorithms for specifying, sampling and analysing high dimensional distributions
should therefore be non-parametric. This thesis proposes a number of algorithms
for non-parametric BBNs.

Chapter 1 contains a short overview of the classical BBN models and discusses
their disadvantages.

Chapter 2 reviews the details of non-parametric BBNs using the copula-vine
modelling approach and introduces two new methods. The first one is a hybrid
approach, that combines the reduced assessment burden of the continuous BBNs
with the fast updating algorithms of their discrete counterparts. The drawbacks
of this method are discussed, and these provide the motivation of introducing a
second method. A new sampling protocol based on the normal copula is pro-
posed. Normal vines are used to realize the dependence structure specified via
(conditional) rank correlations on the continuous BBN.

The latter approach is extended to include ordinal discrete random variables.
In contrast with the continuous case, the rank correlation of two discrete variables
and the rank correlation of their underlying uniforms are not equal. Therefore
we first study the relationship between these two rank correlations. Chapter 3
presents a generalisation of the population version of Spearman’s rank correlation
for the case of ordinal discrete random variables.

In Chapter 4 we present two large ongoing projects in which mixed non-
parametric continuous & discrete BBNs are the tool used in the analysis.
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Chapter 5 is concerned with non-parametric BBNs from a different perspec-
tive, namely as a tool for mining ordinal multivariate data. We propose a method
for learning a BBN from data. The main advantage of this method is that it can
handle a large number of continuous variables, without making any assumption
about their marginal distributions. The learning procedure is fast and flexible.
Once we have learned the BBN from data, we can further use it for prediction
or diagnosis by employing the methods described in the previous chapters. We
illustrate the method proposed using a database of pollutants emissions and fine
particulate concentrations.

In Chapter 6 the most important results of this work are summarised and
conclusions are formulated.

Most of the methods discussed in this thesis are implemented in the software
application UniNet. A short description of UniNet is given in Chapter 7.



Samenvatting

Multi-dimensionale waarschijnlijkheidsmodellen die gebaseerd zijn op grafentheo-
rie worden in verschillende wetenschappelijke terreinen gebruikt. Deze op grafen
gebaseerde modellen hebben bewezen een flexibel denkkader te zijn binnen de
kansrekening, en hun gebruik is fors toegenomen. Ze verenigen grafentheorie
met kansrekening, en bieden daarmee een algemene basis voor modellen waarin
verschillende variabelen interacteren. Er zijn twee hoofdtypen van grafische mod-
ellen, gerichte en ongerichte.

Wij concentreren ons op de gerichte grafische modellen die bekend staan als
Bayesiaanse Belief Netwerken (BBNs). Een BBN codeert de kansdichtheid, of
de kansmassafunctie, van een verzameling variabelen door een verzameling voor-
waardelijke onafhankelijkheidsrelaties als een acyclische gerichte grafe weer te
geven, met daarbij een verzameling kansverdelingen. Het is een eenvoudige manier
om de structuur van een stochastisch model weer te geven. Tot voor kort waren
BBN modellen beperkt tot structuren met alleen discrete en/of Gaussische vari-
abelen. Onzekerheidsverdelingen mogen echter niet worden aangenomen zich aan
enige parametrische vorm te conformeren. Algoritmen die bedoeld zijn om multi-
dimensionale verdelingen te analyseren en beschrijven zouden dus parametervrij
moeten zijn. Dit proefschrift stelt een aantal algoritmen voor voor parametervrije
BBNs.

Hoofdstuk 1 bevat een overzicht van de klassieke BBN modellen en bespreekt
hun nadelen.

Hoofdstuk 2 vat de details van parametervrije BBNs samen met behulp van de
copula-vine benadering en introduceert twee nieuwe methodes. De eerste is een
hybride benadering die de kleinere assessment last van continue BBNs combineert
met de snelle updating algoritmen van de discrete BBNs. De nadelen van deze
aanpak worden besproken, en ze vormen een motivering voor het introduceren van
een tweede methode. Een nieuw simulatieprotocol wordt voorgesteld, gebaseerd
op de normale copula. Hierbij worden normale vines gebruikt om de afhankelijk-
heidsstructuur, die wordt gespecificeerd door (voorwaardelijke) rangcorrelaties op
de continue BBN, te realiseren.

De laatstgenoemde aanpak wordt uitgebreid om ook ruimte te bieden aan or-
dinale discrete stochastische variabelen. In tegenstelling tot het continue geval
zijn de rangcorrelaties van twee discrete variabelen en die van de onderliggende
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uniforme stochasten niet gelijk, daarom bestuderen we eerst de relatie tussen deze
twee rangcorrelaties. Hoofdstuk 3 stelt een generalisatie voor van de populatie-
versie van Spearman’s rangcorrelatie voor het geval van ordinale discrete stochas-
tische variabelen.

In Hoofdstuk 4 presenteren wij twee grote lopende projecten waarin gemengde
parametervrije continue en discrete BBNs worden gebruikt voor de analyse.

Hoofdstuk 5 gaat hoofdzakelijk over parametervrije BBNs vanuit een ander
perspectief, namelijk als gereedschap voor het analyseren van ordinale multivari-
ate data. Het grootste voordeel van deze methode is dat hij grote aantallen
continue variabelen kan verwerken, zonder aannamen te hoeven doen over hun
marginale verdelingen. De voorgesteld algoritme voor het leren van Bayesiaanse
netwerken uit data is snel en eenvoudig. Als we eenmaal de BBN van de data
hebben gevonden, dan kunnen we deze gebruiken voor predictie en diagnostiek
door de methoden uit de voorgaande hoofdstukken toe te passen. We illustreren
deze methode aan de hand van een database over vervuilingsuitstoot en fijnstof-
concentraties.

In Hoofdstuk 6 worden de belangrijkste bevindingen van dit werk samengevat
en geformuleerd. De meeste van de in dit proefschrift besproken methoden wor-
den toegepast in het computerprogramma UniNet. Een korte beschrijving van
UniNet word gegeven in Hoofdstuk 7.
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