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Abstract 
 

A new oil and gas prospecting technique based on measurements of sub-part-per-billion 

ethane concentration in the atmosphere and local wind data was reported in the 

LightTouch project between Shell Global Solutions BV and the University of Glasgow.  

An ultra-sensitive gas sensor measures the atmospheric concentrations of ethane 

dispersing from the naturally occurring ethane seepages that accompany all hydrocarbon 

reservoirs.  Typical seepages are detectable from a range of several km downwind. The 

goal of this MSc project at TU Delft was to propose alternatives to the binary search 

optimisation scheme previously employed to locate and quantify the seepage sources 

from the concentration and wind data, used in conjunction with a gas dispersion model.  

Several approaches were considered and 2 Classical Probabilistic Inversion methods – 

Iterative Proportional Fitting, IPF, and Parametric Fitting for Uncertain Models, 

PARFUM – were selected for implementation, evaluation and development. 

Subsequently, a new Probabilistic Inversion method was developed, offering significant 

operational advantages: faster convergence and more efficient use of memory. The new 

method retained key attributes of the Probabilistic Inversion approach, namely: 

confidence estimates for the results and freedom from arbitrary cost functions and 

regularisation issues. 

  
 
 

 

KEYWORDS: Gaussian plume, inverse problems, gas dispersion modelling, 

Probabilistic Inversion, IPF, PARFUM. 
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Introduction 

Background  

It is recognised that oil and gas reservoirs gradually leak some of their contents to 

the surface [Horvitz, 1985; Schumacher, 1999] and for the first 100 years, much 

prospecting centred around finding surface signs of hydrocarbons.  Initially such signs 

were: pools of oil or tar, burning gas on hillsides and gas escaping through cracks in the 

ground.  As these discoveries were depleted, attention shifted towards finding the 

geological structures capable of trapping hydrocarbons rather than the hydrocarbons 

themselves.   

Several direct hydrocarbon detection methods, that exploit advances in sensor 

technologies, are in use today.  Offshore, these include searching satellite and airborne 

images for subtle signs of oil on the sea-surface [MacDonald et al., 1996] and the 

stimulation of fluorescence in these oil films by airborne lasers [Martin and Cawley, 

1991].  Onshore techniques range from the direct sampling of gases in the soil measured 

subsequently by laboratory-based gas chromatography [Jones et al., 2000] to the 

accumulation of hydrocarbons on buried adsorbent pellets [El-Bishlawy et al., 2001].  

These point sampling techniques require extensive physical coverage of the area, making 

them unsuited to large surveys.  Also, for some methods the results are not available for 

several months.  

A new tool for the measurement of hydrocarbon gases seeping from reservoirs was 

recently reported by Shell Global Solutions in cooperation with the Optics group of the 

University of Glasgow within the LightTouch project. Methane and ethane are both 

indicators of reservoirs and detecting either could be significant.  However, methane 

arises from numerous organic processes – and consequently has an atmospheric 

background concentration of ~1.7 parts per million (ppm) [Houghton et al., 1996].  

Against this relatively high concentration only very large and nearby sources would be 

discernable; furthermore, they could still correspond to bacterial action rather than an oil 

or gas reservoir.  In contrast, there are no significant biogenic sources of ethane and the 

atmospheric background concentration is approximately 1 part per billion (ppb), making 

ethane an ideal indicator of oil or gas reservoirs [Jones et al., 2000].  
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Figure 1.  Configuration of the Tuneable Diode 
Laser Spectroscopy system (TDLS), wind velocity 
data logger and inverse gas dispersion modelling.  Air 
is drawn into the multiple-pass sample cell (an 
astigmatic Herriott cell), which has an effective optical 
path length of 208 metres.  The solenoid valve selects 
between sampled air and pure nitrogen, providing 
automated zero checks.  The data logger combines 
wind data from the anemometer with the 
corresponding ethane concentrations.  The resulting 
data files are downloaded to a computer in the 
support vehicle via a wireless LAN, allowing ethane 
flux maps to be calculated  during the survey.  

 

The direct approach to prospecting by ethane detection would be to traverse the 

survey area searching for emissions.   This would be time consuming, require extensive 

access to difficult locations and would be susceptible to inconsistencies in sampling due 

to the wind as well as disturbance by the survey itself.  More attractive is to use the wind 

driven gas dispersion to gain information over an extensive upwind area.  Recording gas 

concentrations, using an extremely sensitive detector, and the corresponding wind data 

allows large areas to be rapidly screened for sources and for the surface emission flux to 

be determined by inverting the gas dispersion process.  The measurement of flux will 

contribute to ongoing research into the mechanisms responsible for seepages [Klusman 

and Saeed, 1996].  

 

 

 

Figure 2.  The laser diode spectrometer, 
control hardware, gas handling system, 
data logger and liquid nitrogen supply are 
mounted in an off-road vehicle.  Although 
the instrument is operated continuously, 
best noise performance is obtained with 
the vehicle stationary.  Typically 15 
minutes of data are recorded at each 
measurement position.  A telescopic mast 
places the sample inlet and anemometer 
5m above the ground. 
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Problem formulation 

Calculating gas dispersion requires knowledge of the entire wind field over the area 

of interest but this is impractical for our application.  Instead one can generalise the wind 

field from a single location near the gas measurement point.  An ultrasonic anemometer 

was mounted on the vehicle mast to measure both horizontal and vertical components of 

the wind speed with an accuracy of 0.1m/s.   

Many groups have considered the modelling of gas dispersion and providing the 

data is averaged over a comparable time to the time of flight from the source to the 

measurement position, a simple Gaussian plume is a good approximation [Gifford, 1976].  

The survey area is represented by an array of point sources arranged on a uniform grid.  

The predicted atmospheric concentration at any position C(x, y)  is related to the 

magnitude of the point sources Si, j , the wind speed V , the offset from the plume centre 

∆ , the width σh  and height σv  of the Gaussian plume by the equation  
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C1x,y 

si 

s1 

substantially reduced if convection is significant and hence a lower bound of 2m/s was 

set on the wind speed (i.e. data with a lower value of wind speed were not recorded).  

Equation (1) relates a single measurement of gas concentration and corresponding 

wind data to the magnitude of every potential source within the survey grid, giving an 

equation with many unknowns corresponding to each grid box.  Assuming that none of 

the sources is time varying, multiple measurements from different locations and/or under 

different wind conditions yield a set of simultaneous equations in the following way.  

 Divide the survey area into a grid of n cells, each containing an emission source at 

its centre. The concentration Y(x,y) that would result from a given source pattern S = (s1, 

…, sn) at the point (x,y), given wind characteristics would then be  

Y(x,y) = a1 s1 + … + an sn      (2) 

with ai determined by (1). 

 So, if C1, …,Cm are the actual measured concentrations (not necessarily all in 

different locations), then the system of equations becomes 

 













+++=

+++=
+++=

nmnmmm

njnjjj

nn

sasasaC

sasasaC

sasasaC

...

...

...

...

2211

2211

12121111

 

 

 

 

or, in matrix notations 

 

C = A*S      (3) 
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In general, such a system of equations is over determined (more equations than 

unknowns), sparse (only a few of the potential sources are related to each concentration 

measurement) and ill-conditioned (many of our equations have similar coefficients).  The 

problem is to find a source vector S whose resulting concentrations are in the best 

possible agreement with the concentrations C actually measured, given the Gaussian 

Plume model coefficients A. 

 

Previously developed approach 

The Optics Group of Glasgow University had developed a binary search technique 

that iteratively optimised a spatial source distribution to find one minimising a specified 

“cost function”.  The main term in this cost function corresponds to seeking the best 

agreement between the measured and predicted concentrations, usually defined by the 

total square error (often referred to as “chi-squared” by the Group).  This optimization 

approach was implemented by the Group in LabView and offers a variety of different 

cost functions. Of these, a cost function provided by the product of the total square error 

and a factor related to the total flux of the proposed source distribution, is believed to be 

robust.    

( )
estimatetotalflux

fluxtotalestimatetotalflux

  

  
cost

2 +×= χ
 

In essence this finds the optimum source distribution for the minimum total flux.  

Starting from an initial random distribution, the algorithm selects a grid position at 

random and sets its source to a random positive value. If this change reduces the value of 

the cost function, then it is kept, else it is discarded. Repeating this process leads to a 

stable distribution of sources. Despite the random nature of the initial distribution and 

each iteration, multiple executions of the programme give the same final source 

distribution. 
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While this multiplicative cost function has the advantage of avoiding the dilemma 

of how to trade off total square error against flux; it has the undesirable effect of 

introducing bias in the results.  Since it aims to minimise total flux, there is a preference 

for placing sources close to the measurement location – as smaller sources will then 

“explain” large concentrations.  This is undesirable, and a variety of different cost 

functions have – and are still being – evaluated by the Glasgow group. 

Shell Global Solutions approached the Statistics group of the Delft University of 

Technology with the following project goals: 

• A review of the mathematical and statistical approaches that might be applicable 

to the LightTouch gas dispersion inversion problem.  

• A proposal for a fundamentally different approach to the binary search technique 

already developed. 

• Suggestions of ways to adapt or improve the existing binary search 

methodology:   

o Better-suited cost functions or other regularisation approaches. 

o Ways of characterising confidence in individual sources within the 

resulting flux source distributions.  

o Different search/minimisation strategies for locating the optimum source 

distribution consistent with our data. 

o Ways of determining the optimum no of cells to divide the source field 

into from a consideration of the absolute error and number of 

measurements available.  

 

The Alternative Approaches Considered 

 

 The main goal of the MSc project was to propose a fundamentally different 

approach to the binary search technique already developed. 
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 The following approaches were considered for the project: 

• Optimisation (Interior point) methods 

• QR Factorisation 

• Kalman Filtering 

• Variational Methods. 

• Probabilistic Inversion. 

 

Of these the Probabilistic Inversion approach was considered most likely to provide a 

successful and distinctively different approach that could be implemented, tested and 

developed within the time-scale of the proposed project. 

 

The alternative approaches will be described in a later section. 

 

. 
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Probabilistic inversion 
 

The Probabilistic Inversion approach was chosen because it offered several 

advantages: 

• it does not involve ad-hoc cost functions and regularisation. 

• It offers an objective confidence measure for the sources identified. 

• It has been previously applied in several other projects and gave good results 

• A basic version of the method can be implemented within the given time frame 

 

Probabilistic inversion can be applied to inverting the gas dispersion process as follows. 

 

The survey area is divided into a grid of n cells, each containing an emission source at its 

centre.  Then, randomly generate N candidate source patterns for the disposition of the n 

sources Sj = (s1, s2 … sn)j, j = 1..N.  N should be as large a number as is practical.  The 

resulting Nxn individual source strengths must lie between 0 and a defined value 

MaxEmis.  The distribution of the number of sources versus source strength is governed 

by a Beta distribution – described below.   The sources are assumed to be independent of 

each other and time invariant. 

 

A forward gas dispersion model is then applied to each of these N candidate 

source patterns, resulting in M (the number of actual gas concentration measurements) 

values of predicted gas concentration for each of the N patterns.  This can be presented as 

an MxN matrix of predicted gas concentrations Y, which is defined in general case as: 

 

Yij = Fi (S j) = Fi ((s1, s2 … sn)j), i = 1..M, j = 1..N    (4) 

 

where Fi(x1,…,xn) – is the result of applying the forward model for the i-th 

measurement.  In the current stage of the project the forward model is a simple Gaussian 

Plume model, defined by (1) – (3), which incorporates the combined effects of 

measurement location, windspeed and direction, standard deviations of vertical and 



 - 12 - 

horizontal wind components and gas density. This Gaussian Plume model is linear with 

respect to the source vector. As in (3), let us denote the Mxn Gaussian Plume coefficient 

matrix as A, its j-th row relates a source vector with the concentrations resulting for j-th 

measurement. The concentrations by volume C lie between 0 and 1. 

The following data are available a priori: 

A – Mxn matrix of the Gaussian Plume coefficients, computed with the LabView 

programme, written by the Optics Group; this incorporates the effects of area sources, 

measurement and source heights, different averaging times, background concentration 

offsets, and other physically significant factors. 

C – Mx1 vector of the actual concentrations (by volume) measured. 

MaxEmis – the maximum source strength, in [kg/(s)]. 

Sigma –Mx1 vector of standard deviations of each concentration measurement 

(assessed by experts as a combination of measurement sensitivity and the statistics of the 

measured concentrations at each location). 

 

Probabilistic Inversion Algorithm 

 

The probabilistic inversion method comprises the following steps: 

1. Generate N candidate source patterns Sj = (s1, s2 … sn)j, j = 1..N. This will result 

in an Nxn matrix S. 

2. Compute the predicted concentrations Y = A*ST 

3. Based on the values Y, each of the N source patterns S are then weighted such 

that the resulting modified distribution of Y’s agrees with a specified distribution. 

 

For the LightTouch application the following considerations are sensible: 

• It’s reasonable to use Sigma, the standard deviation of concentration 

measurements given by experts, to specify the following distribution of the N 

predicted concentrations Yi, i=1 to N, in relation to the actual concentration 

measurement C(j).  
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• The quantiles q1, q2, q3 and q4 are specified in advance (all between 0 and 1, 

summing to 1; where these quantiles are the relative frequencies of predicted 

concentrations lying in the specified interval).  In other words, we require that the 

relative frequency of the reweighted predicted concentrations falling into the j-th 

interval should be equal to q(j). That is, the number of reweighted predicted 

concentrations which are smaller than Cj – Sig(j), divided by N, should be close to 

q1; for those between Cj – Sig(j) and Cj – close to q2; etc. The algorithm reweights 

the N initial source patterns such that the predicted concentrations correspond to the 

distribution defined above for all M concentration measurements.  

For example, if 10 patterns (initially having equal weights) are distributed around the 

first measured concentration in the following way: 

 

 

 

 

σ(j) σ(j) C(j) 

q1 

 

P(A1) 

P(A2) 

 

P(A3) 

 

 

P(A4) 

σ(j) σ(j) 

C(j) 
q1 q2 q3 q4 

C=1 C=0 
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After re-weighting it will look like: 

 

 

 

 

 

 

 

 

 

 

Now let’s plot the predicted concentrations of those same 10 patterns for the second 

measurement with the weights determined above: 

 

So, the distribution for the second measurement becomes: 

σ(j) σ(j) C(j) 

q1 

q2 q3 

q4 
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And after re-weighting gives required distribution for the second measurement. 

 

Of course, taking those weights for the first measurement again will disfigure the 

required distribution. One can immediately suggest two iterative approaches:  

consecutive fitting through all the measurements (Iterative Proportional Fitting, IPF) 
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or averaging weights obtained from all the measurements (Parametric Fitting for 

Uncertain Models, PARFUM). These two methods will be formally described later. 

 

• The individual source strengths should be generated on [0..MaxEmis] according 

to some distribution, such that:  

o There is at least one predicted concentration within each interval 

(corresponding to q1, …, q4) for each actual concentration measurement. 

Let A(i,j) stand for the sub-set of N source patterns for which Yi falls into 

inter-quantile interval j.  (This A(i,j) is not to be confused with the 

Gaussian Plume matrix which will not be referred to further.) 

o The N candidate source patterns can be generated in numerous ways. 

Better sampling procedures will be those resulting in more values of 

predicted concentrations within inter-quantile intervals 2 and 3 around 

C(j) (corresponding to q2 and q3) for each concentration measurement. 

IPF and PARFUM 

 

Two approaches to implementing step 3 of the Algorithm are: 

• Iterative Proportional Fitting (IPF)  

• Parameter Fitting for Uncertain Models (PARFUM). 

 

The IPF algorithm adapts an initially uniform probability vector p to all partitions 

iteratively.  The iterative update of current vector p is 

p’ = (…(p
A1

)
A2

…)
A(M)

,  
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is the adaptation of p to the partition {Aj}, j=1..4; qj(i) is defined by context. 

 

The PARFUM algorithm, on the contrary, adapts a starting measure to each partition and 

then averages these adaptations to obtain the next iterate: 
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It can be shown (see [1]) that the solution (a stable point) P* that PARFUM converges 

upon for the measurement constraints given, is also the solution for the minimum 

information problem, given those same constraints. More precisely, P* minimizes the 

relative information:  

∑
=

N

i

i PPI
1

),(  where: 

∑=
X

i

ii
XP

XP
XPPPI

)(

)(
ln)(),( , 

Subject to additional constraints imposed by measurements.  

 

A stable point for the IPF approach is related to a modified minimum information 

problem. While it is known that the PARFUM algorithm always converges, IPF may not 

(for example when the corresponding minimum information problem is non-feasible).  

Computer experiments show that if IPF does not converge, it oscillates. For more links on 

theoretical results refer to [1]. 

 

After the algorithm has stabilized its evaluation of p=(p1, p2,…pN) to within a 

given tolerance limit (the Tolerance), one has the probabilistic distribution for each 

source. With this distribution one can compute the corresponding final Source pattern Sf 

as the weighted average of Sj’s: 

∑
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Std Sf  = √(Var Sf) 
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along with 5%- and 95%- percentiles, which can serve as confidence bounds for each of 

the n individual sources that comprise the answer Sf.  

 

 

Implementation. 

 

Both algorithms were implemented in Matlab and tested for a Cylinder release dataset in 

which we have M = 80 measurements, n = 256 (16*16) grid cells and the value of 

MaxEmis = 5 kg/hr. The quantiles were chosen to be q = [0.05 0.45 0.45 0.05]. The 

sources were assumed to be independent. First, they were generated uniformly  between 0 

and MaxEmis, but this did not give a good result: for some measurements there were 

quantile intervals without any predicted concentrations. Much better results were 

obtained using a Beta distribution. In general the probability density of a Beta distribution 

with parameters (α, β) is given by:  

 

Here is a typical shape of the Beta distribution:  

 

 

Experiments revealed that a suitable Beta distribution was given by α = 0.05 and β = 0.9; 

this yields the probability distribution shown below: 
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As the significant emission sources occur with relatively low probability densities, it is 

more informative to examine a plot of LogN(X) versus Log(X). 

 

 

We then examined the results from several real surveys, analysed using AvRecon, to see 

how the source distributions compared to our empirically chosen Beta distribution –

which had been selected as appropriate for the cylinder release data: 
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The same data sets plotted in log-log scale: 

 

 

As the source strengths are directly dependent on migration pathways determined 

by fracturing of rock, one might suspect that the sources would have a distribution 



 - 21 - 

comparable to that characterising the fracture network.  These are often described using 

the concepts of fractals and power laws; the most famous of which is the Gutenberg-

Richter Law. This states that the frequency of earthquakes of magnitude M or greater, 

N(M) is given by  

log N(M) = a – bM 

for some constants a, b. 

In Matlab the sampler of Beta-distributed random variables is determined through 

the uniform and normal generators. In particular, if we fix the initial random seed for 

those two generators, the generated Beta-paths will be uniquely determined. For that 

reason, the initial random state is fixed in the program by two integers representing 

uniform and normal random states. Thus by changing the seed values we are just taking a 

different random sequence, there is no other significance to the actual seed numbers used. 
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Testing 

 

The IPF and PARFUM algorithms were implemented in Matlab and tested on the 

cylinder release dataset with 9 min. averaging (thus, M = 40 measurements), when they 

both converge. The PARFUM method resulted in the following stable fir for N = 50000 

samples (the reconstruction below was performed on 16x16 grid at 8x8 km area of Bahja 

west survey): 

 

With the following distribution for each measurement: 

  

Meas-t    P(q1)      P(q2)        P(q3)       P(q4) 
   1    0.04504  0.35166  0.51210  0.09120 
   2    0.05509  0.44051  0.42708  0.07733 
   3    0.05370  0.42407  0.44615  0.07608 
   4    0.06254  0.39175  0.45837  0.08734 
   5    0.05516  0.42845  0.45547  0.06092 
   6    0.05446  0.48303  0.40905  0.05346 
   7    0.07427  0.49715  0.37666  0.05191 
   8    0.05276  0.45757  0.43681  0.05286 
   9    0.30221  0.46983  0.19712  0.03083 
  10    0.18875  0.56505  0.22290  0.02330 
  11    0.11151  0.61166  0.25192  0.02491 
  12    0.05203  0.41064  0.48255  0.05478 
  13    0.04749  0.37973  0.49783  0.07495 
  14    0.03954  0.37177  0.51155  0.07713 
  15    0.04047  0.46847  0.44135  0.04971 
  16    0.04294  0.48636  0.42106  0.04964 
  17    0.03752  0.68863  0.24014  0.03371 
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  18    0.03610  0.52808  0.38748  0.04834 
  19    0.04061  0.30030  0.37760  0.28150 
  20    0.04234  0.45016  0.41340  0.09411 
  21    0.04935  0.44136  0.39714  0.11214 
  22    0.05933  0.48680  0.36285  0.09102 
  23    0.07543  0.37622  0.44881  0.09954 
  24    0.03934  0.28783  0.44205  0.23078 
  25    0.24859  0.45802  0.26159  0.03180 
  26    0.39553  0.39510  0.18725  0.02212 
  27    0.19424  0.41785  0.34611  0.04180 
  28    0.18939  0.40141  0.27628  0.13292 
  29    0.08582  0.40548  0.37574  0.13296 
  30    0.03928  0.34780  0.38800  0.22492 
  31    0.02398  0.20892  0.42031  0.34680 
  32    0.01899  0.16713  0.36584  0.44804 
  33    0.02692  0.29354  0.60093  0.07861 
  34    0.03867  0.46414  0.44077  0.05642 
  35    0.05829  0.39361  0.39981  0.14828 
  36    0.07296  0.39928  0.38649  0.14128 
  37    0.07775  0.50597  0.36932  0.04696 
  38    0.06080  0.44319  0.46243  0.03358 
  39    0.07765  0.48274  0.38870  0.05090 
  40    0.08904  0.51154  0.35274  0.04667 
 
 

The IPF results in a similar fit with the same parameters: 

 

 
Meas-t    P(q1)      P(q2)       P(q3)       P(q4) 
   1    0.07400  0.42982  0.42581  0.07037 
   2    0.08709  0.30425  0.50712  0.10155 
   3    0.10013  0.29247  0.50585  0.10155 
   4    0.10634  0.25712  0.50188  0.13466 
   5    0.10607  0.34342  0.44897  0.10155 
   6    0.10198  0.35196  0.46350  0.08257 
   7    0.12876  0.49229  0.31596  0.06299 
   8    0.10019  0.51515  0.32167  0.06299 
   9    0.32362  0.55712  0.11210  0.00716 
  10    0.24573  0.68626  0.06085  0.00716 
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  11    0.23801  0.69398  0.06085  0.00716 
  12    0.15639  0.73528  0.10115  0.00718 
  13    0.13722  0.76698  0.08745  0.00835 
  14    0.13039  0.69929  0.16197  0.00835 
  15    0.12332  0.78531  0.08421  0.00716 
  16    0.13039  0.78083  0.08161  0.00716 
  17    0.10637  0.82336  0.06053  0.00975 
  18    0.09713  0.77724  0.11588  0.00975 
  19    0.10637  0.50371  0.31965  0.07027 
  20    0.08141  0.55038  0.29445  0.07375 
  21    0.09031  0.52046  0.31496  0.07427 
  22    0.09581  0.51496  0.31496  0.07427 
  23    0.07727  0.49261  0.32953  0.10060 
  24    0.08141  0.45263  0.38638  0.07957 
  25    0.62132  0.34857  0.02982  0.00029 
  26    0.66095  0.32556  0.01323  0.00026 
  27    0.67680  0.29748  0.02543  0.00029 
  28    0.66866  0.30490  0.02565  0.00080 
  29    0.36324  0.57697  0.05729  0.00250 
  30    0.14197  0.51960  0.32373  0.01470 
  31    0.05916  0.59394  0.31679  0.03011 
  32    0.05916  0.55147  0.32885  0.06052 
  33    0.03057  0.28767  0.65206  0.02970 
  34    0.04202  0.30610  0.62218  0.02970 
  35    0.03841  0.28263  0.62176  0.05720 
  36    0.03841  0.31710  0.60723  0.03725 
  37    0.04600  0.38493  0.53937  0.02970 
  38    0.04030  0.37819  0.55181  0.02970 
  39    0.05348  0.48393  0.43290  0.02970 
  40    0.05000  0.45000  0.45000  0.05000 

 

Modified methods 

Genetic approach: 

 

The 2 Probabilistic Inversion methods described above have been studied 

theoretically extensively and applied in several projects. The advantage of the PARFUM 

algorithm is that it always converges, whereas IPF may not. In any case, both of them 

require a large number of patterns, which is not always feasible within given memory 

constraints. The following idea was employed in order to reduce the number of samples 

needed for a reasonable fit.  

After we run PARFUM with a relatively small number of patterns, we can take 

the most significant patterns and, based on them, generate other patterns and make 

another run. Implementing this idea, after each run the most significant patterns, whose 

total weight exceeded 0.9, remained, the others were discarded. Quite a few techniques 

were used for generating new patterns out of those remaining. The best performing 

approach proved to be a cell-wise random selection among the remaining patterns, that is 

when each cell of a new pattern is a (uniform) random selection of the same cell among 
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remaining patterns. To illustrate the improvement, here is the successive reconstruction 

maps for N = 2000. Note, that the first run does not give a reasonable reconstruction. 

However after a few runs the method converges to a stable answer. 

 

 

 

Modified distribution - ALPINE 

 

 The previous modification permits computation with fewer patterns (and therefore 

reduces memory requirements – or increases range of patterns that can be employed for a 

fixed memory specification). Nevertheless it still requires multiple runs of the whole 

algorithm until a stable answer is obtained. For that reason the following modification 

was developed. Instead of running the whole algorithm until the probability vector 

stabilizes, we can just perform the first iteration and retain the most significant patterns 
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only.  Further, for each iteration there is no need to discretize the distribution function. 

Instead, we can assign weights to each pattern based of the difference between the 

predicted and measured concentrations. The best result was achieved using weights 

proportional to the inverse square distance (using notations (2)-(3)): 

( )
jjij

i
CY

p
2

1

−
∝  

i = 1 … N, j = 1 … m. 

 

Here is the iterative reconstruction map for the method with N = 50000 patterns: 

 

 with the following concentration residuals structure: 
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Note, that one step of the modified algorithm corresponds to just one iteration of 

PARFUM (not the whole run!) which reduces the computational effort drastically. This 

modified method, combining genetic approach, modified distribution and relaxation of 

the classical (PARFUM) scheme, will further be referred to as ALPINE. The 

modifications mentioned provide the following advantages: 

• Faster convergence (performing 1 iteration instead of the whole run) 
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• With the modified distribution the need to avoid “empty inter-quantile 

intervals” is removed. Therefore, a broader range of source strength 

distributions can be tested. 

• More efficient use of memory. In particular, a reasonable reconstruction 

with ALPINE requires fewer patterns than a similar one with PARFUM. 

Results 

IPF vs PARFUM 

 

If we take all available measurements (80 one-minute measurements) of the cylinder 

release dataset, the IPF algorithm does not converge (it oscillates). Whereas PARFUM 

results in the following reconstruction: 

 

Meas-t  P(q1)    P(q2)    P(q3)    P(q4) 
   1    0.31573  0.04728  0.04769  0.58930 
   2    0.23900  0.05988  0.06572  0.63541 
   3    0.51561  0.04466  0.04573  0.39400 
   4    0.60457  0.05379  0.04881  0.29284 
   5    0.48417  0.05779  0.06148  0.39656 
 

… 
    
  75    0.11416  0.04794  0.04623  0.79167 
  76    0.26517  0.04828  0.04578  0.64077 
  77    0.18759  0.04831  0.04703  0.71707 
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  78    0.09459  0.04774  0.04631  0.81136 
  79    0.25618  0.04777  0.04574  0.65031 
  80    0.31548  0.04855  0.04647  0.58950 

 

But if we change the initial random state to 0-1, we get the following reconstruction: 

 

 
 

 

The difference in results obtained with differing seed values indicates the result has not 

yet fully converged. 

 

However, clearly what is of more interest is to examine the results obtained using all the 

measurement data available.  It is likely that IPF was prevented from converging when 

used with all 80 of the 1-minute measurements, by the degree of conflict within the data.  

Consequently we used the front-end averaging facility within AvRecon to provide data 

averaged over longer times: hoping to reduce the degree of data conflict.  Averaging over 

9 minutes provided 5 measurement positions with a total of 40 concentration 

measurements, and for these data IPF did converge to provide the following fit. (Note; N 

here is 100,000 and the Tolerance 1E-07) 

 

(Here we see the value of a fully objective measure of confidence – the degree of 

improvement delivered by eradicating systematic errors or shortcomings in the forward 
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modelling can be assessed.  Other suspected shortcomings in the forward model can 

similarly be tested and improved on the basis of the algorithms confidence measure. ) 

 

 
The above is a perfect result – to within the limitations inherent in the experiment 

(presence of atmospheric background concentration, and possible minor additional real 

emission sources as seen in the full survey of this area.)  

 

The AvRecon result with the same data and the same parameters: 
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Bahja South Survey: real survey full data  

 

As seen above, the modified algorithm (ALPINE) gives a very good result for the 

cylinder release data set. The methods were then tested on the real survey data set of 

Bahja South with 1440 1-minute measurements averaged over 5 minutes and 1600 

(40x40) grid cells. 

The IPF and PARFUM could not cope with high dimensionality of the full data 

set from Bahja South. Because of a large number of measurements, and fine grid size, 

the two methods could not find a stable fit within given memory constraints. However 

the modified method, ALPINE, combining the genetic approach with the modified re-

weighting distribution, does give a stable result for the whole data set.  
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Below are shown three reconstructions with different initial random seeds for the 

same data set. 
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The results are clearly correlated, and exhibit features present in the result obtained by 

SearchRecon with the same parameters: 
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Unfortunately we do not know the “true answer” to the full data set problem, and 

can only try to compare the results of running different methods.  Although Shell will be 

evaluating this new method against data sets for which a degree of “ground-truthing” is 

available via a separate geochemical method run in tandem with LightTouch in blind 

trials.  For now, we have an option to run ALPINE with different random seeds and see 

how correlated the results are. A close correlation between the results for different 

random seeds would be an indicator of a stable result, due to the data rather than being 

constrained by the particular set of patterns generated for that run.  Similarly the absence 

of any structure within the residuals would suggest full convergence. 

Another feature of probabilistic inversion methods worth mentioning is that they 

do not seek to minimize the total square error. Any specified distribution for penalizing 

residuals always permits some deviations from the concentrations measured. Therefore 

the total square error can increase at a later iteration, and can only serve as a secondary 

“goodness of fit” measure. In particular, the probabilistic inversion methods did not 

reconstruct a “self-fulfilling” data set (a data set resulting from a known source pattern, 
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via the given forward model), the solution of which would be the “perfect” least squares 

fit.  

The residuals behaviour resulted from ALPINE algorithm for the Bahja South 

data set has the following structure:  

 

 

 

 

 One can see that the ALPINE smoothes the overall residuals picture (reducing 

“outliers”) which can introduce a bias into residuals. 
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Other methods considered 

Optimizational methods 

QR factorization 

 

Currently the forward model used in the project is the Gaussian Plume model (2), which 

leads to a linear inverse problem (3). There exist some well-known matrix factorization 

techniques to solve the system (3). One of these is the QR-decomposition. Orthogonal 

matrix triangularization (QR decomposition) reduces a real (m,n) matrix A with m≥n and 

full rank to a much simpler form. It guarantees numerical stability by minimizing errors 

influenced by machine roundoffs. A suitably chosen orthogonal matrix Q will 

triangularize the given matrix:  

 

with the (n,n) upper triangular matrix R. One only has then to solve the triangular system 

Rx = Pb, where P consists of the first n rows of Q.  

The least squares problem Ax ≈  b is easy to solve with A = QR and Q
T
Q = I. The solution  

 

becomes  

 

This is a matrix-vector multiplication Q
T
b, followed by the solution of the triangular 

system Rx = QTb  by back-substitution.  

This method was applied to solve the system (3):  

Ax ≈  C  

and gave the following answer: 
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which has  447 negative components out of 1110. Therefore, this method gives an 

unphysical solution, which has to be iteratively modified in order for it to satisfy lower 

and upper boundary constraints, which will imply using one of the quadratic optimization 

methods. 

 

Interior point method 

 

To impose nonnegativity and an upper boundary to the solution, one has to 

formulate the problem explicitly: 

 

Minimize (Ax – C)2 subject to 

x ≥ 0 

x ≤ MaxEmis, where MaxEmis – is a defined maximal possible level of emission 

rate. 
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This is a convex quadratic programming problem. There exist several methods for 

solving it, one of the most effective group of methods is Interior Point methods. The 

Logarithmic Barrier Interior Point method can be summarized as follows. 

 

maximize f(y), subject to  

fi(y) ≤ 0 (i=1..n),  

y € R
m

,  

where: -f(y), fi(y) are convex, twice cont. differentiable 

 

 

where ( )∑
=

−−−=
n
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µ

µφ  

is the logarithmic barrier function. 

This algorithm, along with other optimization methods, finds the solution of the 

quadratic programming problem satisfying boundary constraints relatively fast. However, 

all of them depend on the cost function f(y), that is, as soon as one has to change the cost 

function, the whole algorithm has to be re-programmed. The obvious cost function (total 
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square error) does not always give a physical solution. For example, the following 

solution was obtained by built-in Matlab quadratic solver for weighted least squares cost 

function: f(y) = (Ay – C)
2
/Sigma: 

 

The solution above was obtained for the cylinder release dataset with 9 minutes 

averaging time. 

The same solver gives the following “pure” least square fit  

(where f(y) = (Ay – C)
2
): 
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If we take 1 min averaging, the quadratic programming gives the following 

solution: 
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Kalman filtering 

 

In 1960, R.E. Kalman published his famous paper describing a recursive solution 

to the discrete data linear filtering problem [Kalman60]. Since that time, due in large part 

to advances in digital computing, the Kalman filter has been the subject of extensive 

research and application.  

The Kalman filter addresses the general problem of trying to estimate the state 

of a discrete-time controlled process that is governed by the linear stochastic 

difference equation 

111 −−− ++= kkkkkk wuBxFx  

with a measurement  that is 

kkkk vxAz +=  

The random variables wk and vk represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions 
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In practice, the process noise covariance Q and measurement noise covariance R matrices 

might change with each time step or measurement, however here we assume they are 

constant. The Kalman filtering assumes the following iterative update of the system state: 

 

 
 

 

The idea of the algorithm is to find an equation that computes an a posteriori state 

estimate as a linear combination of an a priori estimate and a weighted difference 

between an actual measurement and a measurement prediction. 

In terms of the LightTouch project, the system state xk will stand for the vector of 

source strengths, estimated for time k; Fk would be the transition matrix from state xk-1 to 

xk, given wind characteristics and the time interval between states k and k-1 (a gas 

dispersion model). Bk is an optional parameter, that can serve to tune the dispersion 

model in use, or be set to zero. Ak will be the Gaussian plume matrix defined in (3), that 

relates predicted measurements with the sources.  

The scheme above is meant for a prediction of the system state at the next time 

frame. However, we can also reconstruct the initial system state x0 by modifying the 

system equation: 
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Then, applying the same scheme to the new state (x x0)k will improve the estimate of x0 at 

each iteration. 

 The Kalman filtering approach was initially considered as the way to continue the 

project. It has a clear advantage over other methods: its iterative predictive-corrective 

structure allows “on-line” updates of the system state as new measurements become 

available. One of the major drawbacks of the method (with respect to the LightTouch 

project) would be the requirement of specifying the gas dynamics matrix F k at each time 

frame k and therefore implementing the forward model anew. Another minuspoint is that 

the system state doubles for the modified problem – if we use 40x40 grid size, the 

problem dimension would be 3200, instead of 1600. After much thinking and assessment 

the priority was given to probabilistic methods, thereby rejecting the Kalman filtering 

approach. 

Variational methods 

 

 Variational methods can also be applied to reconstruction of gas or water 

dynamics in the following way. Suppose we need to find the function u(x,t) (which can 

represent, for example, the gas concentration at the point x at time t) that satisfies the 

Euler-Lagrange equation 

 

Suppose also that we have measurements d1, …, dm such that 

  

 

where u(x,t) is the real concentration at point x at 

time t, and ε  is the measurement error.  
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Then, if we introduce the representers functions for the Euler-Lagrange equation, as it 

shown in [6], this will lead to the following forward (Fm) and backward (Bm) systems 

 

If we now look for the approximation of u(x,t) in the form  

 

This will lead (see [6]) to the following solution 

 

This method can be interesting for reconstruction of a gas profile in time. However, its 

major drawback is that the time dependence is involved. Therefore, one needs to have 

enough measurement data to cope with the time dimension.  
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Conclusions, Recommendations 
 

 

 As we see from the cylinder release data set (for which we know the correct 

result), the modified method ALPINE gives a very good result. As the next steps for 

improving the method, the author would recommend the following: 

• Try to use different genetic combinations of the sources left after the 90% - 

selection. For the moment, a cell-wise uniform selection among all those sources 

performs best. However, one may find better ways of combining the significant 

patterns to generate new ones in place of those discarded 

• An objective way of convergence assessment for the modified algorithm is 

crucial. Since the modified algorithm performs only one PARFUM iteration 

instead of the whole run, it does not use the value of Tolerance. Therefore, there’s 

a need for an objective “goodness of fit”, based on which we could decide 

whether to stop the algorithm or continue running. Consider a residuals measure 

or progressive modification of the parameters defining the Beta distribution. 

• A different distribution for generating the source strengths may help. Up until 

now, the Beta distribution gives reasonable results and performs a lot better than 

uniform or cut normal model. In addition, some dependence among neighbouring 

cells might be included. This will introduce a bias into the size and strength of 

reconstructed sources, which might be motivated by some physical statements, 

such as the Gutenberg-Richter law. 

• The forward model has only an a priori effect on the methods. So, improvements 

to the forward model would be another area to investigate, as a better forward 

model will lead to a better input data for the probabilistic inversion methods, 

which in its turn will give more accurate and stable reconstruction.   

• Some new ideas, not yet incorporated into the probabilistic inversion directly, 

may help. For example, one may try an iterative grid refinement. That is, starting 

from a coarser grid, perform a (fast) reconstruction on it and then, according to 

some criteria, decide whether to refine the grid further. For that, a penalizing 

function on the number of cells should be introduced. There is no common 
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consideration for taking such a function, so the problem is to choose the one that 

gives the best possible result.  Such an approach might be amenable to the 

concepts of simulated annealing and should allow more extensive searches of the 

full parameter space. 
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Appendix 
 

All programs enclosed here were written and tested in Matlab 7.0 and additionally require 

the Statistics toolbox. 

 

ALPINE.M – Modified algorithm  - genetic approach + modified distribution 

clear all 
 
N = 25000;              % number of samples 
MaxEmis = 5;             % Max. emission [kg/s] 
format short g 
rus = 6; rns = 2;        % Initial random state 
avtime = 9;              % Averaging time, minutes 
rand('state',rus); 
randn('state',rns); 
GS = 16;                 % grid size 
 
% ind = [1:1014];        % optional - indices of measurements to be used 
% mind = [136 1:16];     % optional - cell indices required to have zero source strength 
mind = [];               % optional: measurement locations, as above 
A = single(load('A_pr9.txt')');         % A matrix gives dispersion coefficients 
% A = A(ind,:);          % active if <ind = [1:1014];> is active 
ns = size(A,2); 
ind = 1:size(A,1);       % should not be active if <ind = [1:1014];> is active 
eff = setdiff(find(sum(A)>0),mind); 
A = A(:,eff); 
C = load('C_pr9.txt')'*3600;            % C - file of measured conc-s [kg/m3] - confusion with 
ChoiceRecon units 
C = C(ind); 
sig = load('sig_pr9.txt')*3600;         % sigma concentrations [kg/m3] 
sig = sig(ind); 
[m n] = size(A);                          % m - # measurements, n - # effective sources 
 
S = single((betarnd(0.01,0.9,N,n))*MaxEmis);     % S -the generated N random source patterns 
 
format short e; 
 
p = ones(N,1)/N;         % vector of weights for the N patterns 
 
for NIter = 1:20         % number of iterations to be performed before stopping 
     
    [i j] = sort(p,'descend'); 
    pind = find(cumsum(p(j))<=0.9,1,'last')      % chooses those patterns that comprise 90% of 
weight 
                                                   % from the previous iteration 
    OS = [S(j(1:pind),:); p'*S; betarnd(0.02,0.9,50,n)]; 
    for j = 1:n        % generating new patterns to replace those abandoned 
        S(:,j) = OS(round(rand(N,1)*(pind+50))+1,j); 
    end; 
     
    Y = single(S*A');    % Nxm matrix of predicted concentrations 
 
    Prime = single(zeros(N,m)); 
    for meas = 1:m       % computing weights for each measurement 
        



 - 49 - 

       eq = find(abs(Y(:,meas)-C(meas))<sig(1)/1000);  % zero-threshhold is sig(1)/1000: eq 
stores indices of those predicted concentration close to actual concentration (can be empty) 
       if length(eq)>0  
           Prime(eq,meas)=0.9/length(eq); 
           Prime(setdiff(1:N,eq),meas)=0.1/(N-length(eq)); 
       else 
           p = 1./(abs(Y(:,meas)-C(meas))).^2;        % weights are set to be ~ 1/d^2 where d 
is the residual concentration 
           Prime(:,meas) = p/sum(p);  
       end; 
          
    end; 
     
    p = mean(Prime,2); 
    clear Prime; 
 
    WLSE = sum(((A*S'*p-C)./sig').^2)/m              
                        % weighted least square error, same as 'Chi^2' in 
                        % AvRecon 
 
    % transferring to AvRecon representation so as to generate compatible output files: 
    clear Y; 
    SS = single(zeros(N, ns)); 
    SS(:,eff) = 4*S; 
 
    Es = SS'*p;          % calculate mean source values 
    % Vs = S'.^2*p - Es.^2;  
                         % calculate variance of each source 
 
    % saving as same Excel spreadsheet format as used by AvRecon: 
    sources = zeros(GS,GS); 
    for i=1:GS  
        sources(GS+1-i,:)=Es(i*GS-GS+1:i*GS); 
    end; 
    XLSWRITE('sources.xls',sources);        % saving in XLS format 
 
     
    % plotting residuals results: 
    hf = figure(1); 
    set(1,'visible','off'); 
    plot(1:m,(A*Es(eff)-C)/3600,'.'); 
    if NIter == 1 
        ax = axis; 
    else axis(ax); 
    end; 
    grid on; 
    xlabel('measurement number'); 
    title(['Residual plot - Run ' num2str(NIter) '; WLSE = ' num2str(WLSE)]); 
    fname = ['pr9_resid_' num2str(rus) num2str(rns)  '_run' num2str(NIter)]; 
            % filename, will be 'SC40_resid_03_run7.jpg' if 
            % rus = 0; rns = 3; NIter = 7 
    saveas(hf,fname,'jpg'); 
 
    % graphical output map showing source strengths: 
    hf = figure(4); 
    set(4,'visible','off'); 
    clf; 
    im = imread('mapbw.jpg','jpg');     % write the map file (jpg) 
    image(im); 
    hold on; 
    Min = min(Es); 
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    Max = max(Es); 
    L = length(im); 
    dh = L/GS; 
    colorbar('YTickLabel',num2str([(Max-Min)/7:(Max-Min)/7:Max]')); 
    J = jet(80); 
    colormap(J(5:75,:)); 
    contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[250 300 350],'linewidth',1); 
    contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[400 430 460 490],'linewidth',2); 
    contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 150 200],'linewidth',1,'linestyle','-'); 
 
    title(['BAHJA SOUTH Reconstruction map in [kg/(hr*km^2)] - ALPINE (sqr): Iteration ' 
num2str(NIter)]); 
    t = annotation('textbox',[.02,.22,0.21,0.68]); 
    set(t,'string',strvcat(' ','Data Set: BJS 1min def.(-early-late).txt',' ',['Arraysize: ' num2str(GS) 'x' 
num2str(GS) '; Averaging ' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on',' 
','Source projection: 250 m',' ','Added noise: 0 ppb;  AvPos: On',' ',... 
     ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = ' 
num2str(m)],' ',... 
        ['WLSE = ' num2str(WLSE)],' ',... 
         ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-' 
num2str(rns)],' ',' ',date)); 
                                     % write out all the parameters: 
                                     % includes those used to generate A 
                                     % matrix and this model's paramaters               
set(t,'string',strvcat(' ','Data Set: Cylinder release',' ',['Arraysize: ' num2str(GS) 'x' num2str(GS) '; 
Averaging ' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on',' ','Source projection: 
250 m',' ','Added noise: 0 ppb;  AvPos: On',' ',... 
        ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = ' 
num2str(m)],' ',... 
        ['WLSE = ' num2str(WLSE)],' ',... 
        ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-' 
num2str(rns)],' ',' ',date)); 
                                    % write out all the parameters: 
                                    % includes those used to generate A 
                                    % matrix and this model's paramaters  
    axis square; 
    axis off; 
    fname = ['pr9_' num2str(rus) num2str(rns)  '_run' num2str(NIter)]; 
%     saveas(hf,fname);                 % uncomment if you want to save as Matlab figure 
    saveas(hf,fname,'jpg'); 
end; 



 - 51 - 

PARFUM 
 
clear all 
 
N = 10000; % number of samples 
MaxEmis = 5; % Max. emission [kg/hr*m3] 
format short g 
rus = 0; rns = 0; 
avtime = 9; % Averaging time, minutes 
rand('state',rus); 
randn('state',rns); 
 
% ind = [1:40]; 
mind = []; 
% mind = []; 
A = load('A_pr.txt')'; 
% A = A(ind,:); 
ns = size(A,2); 
ind = 1:size(A,1); 
eff = setdiff(find(sum(A)>0),mind); 
A = A(:,eff); 
C = load('C_pr.txt')'*3600; % measured conc-s [kg/hr*m3] 
C = C(ind); 
sig = load('sig_pr0.txt')*3600; % sigma concentrations [kg/hr*m3] 
sig = sig(ind); 
[m n] = size(A); % m - # measurements, n - # effective sources 
 
S = betarnd(0.05,0.9,N,n)*MaxEmis; 
Y = S*A'; % input data for the PI 
save samples S; 
clear S; 
 
C(find(C<0)) = sig(find(C<0)); % in case some conc-s are negative 
 
rs = repmat(sig,N,1); 
rc = repmat(C',N,1); 
W = [sum(Y<rc-rs)' sum(Y<rc)' sum(Y<rc+rs)' N*ones(m,1)]; 
[W(:,1) diff(W,1,2)]/N 
min([W(:,1) diff(W,1,2)]/N) 
 
% prior probability 
p = ones(N,1)/N; 
 
% PARFUM iteration 
q = [0.05 0.45 0.45 0.05]; 
x = 1; 
eps = 1e-6; 
format short e; 
 
[i1 j1] = find(Y<rc-rs); 
[i2 j2] = find((Y>=rc-rs)&(Y<rc)); 
[i3 j3] = find((Y>=rc)&(Y<rc+rs)); 
[i4 j4] = find(Y>=rc+rs); 
fprintf('Iterative change   |    min(p)     |   max(p)\n'); 
 
while (x>eps) 
x = p; 
Prime = zeros(N,m); 
 
    for meas = 1:m 
       p = x; 
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       %if q(1)>0 
       % update  for the 1st quantile 
       Aij = sum(p(i1(find(j1==meas)))); % P(A_ij) 
       if Aij > 0 
       p(i1(find(j1==meas))) = p(i1(find(j1==meas)))*q(1)/Aij;  
       end; 
        
       % update  for the 2nd quantile 
       Aij = sum(p(i2(find(j2==meas)))); % P(A_ij) 
       p(i2(find(j2==meas))) = p(i2(find(j2==meas)))*q(2)/Aij;  
        
       % update  for the 3rd quantile 
       Aij = sum(p(i3(find(j3==meas)))); % P(A_ij) 
       p(i3(find(j3==meas))) = p(i3(find(j3==meas)))*q(3)/Aij;  
        
       % if q(4)>0 
       % update  for the 4th quantile 
       Aij = sum(p(i4(find(j4==meas)))); % P(A_ij) 
       if Aij >0 
       p(i4(find(j4==meas))) = p(i4(find(j4==meas)))*q(4)/Aij;  
       end; 
        
       Prime(:,meas) = p/sum(p); 
         
   end; 
    
p = mean(Prime,2); 
 
x = sum((x-p).^2); 
% fprintf('%14.2e     |%12.2e   |%12.2e\n',[x min(p) max(p)]); 
 
fprintf('%14.2e     |%12.2e   |%12.2e\n',[x min(p) max(p)]); 
% for k = 1:m  
%     fprintf('  %2.0f    %1.5f  %1.5f  %1.5f  %1.5f\n', ind(k), sum(p(i1(find(j1==k)))), 
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k))))); 
% end;    
 
end; 
 
load samples; 
 
WLSE = sum(((A*S'*p-C)./sig').^2)/m % Forward model, WLSE 
 
fprintf('Meas-t  P(q1)    P(q2)    P(q3)    P(q4)\n'); 
for k = 1:m  
    fprintf('  %2.0f    %1.5f  %1.5f  %1.5f  %1.5f\n', ind(k), sum(p(i1(find(j1==k)))), 
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k))))); 
end; 
 
% back to initial representation 
 
SS = zeros(N, ns); 
SS(:,eff) = S; 
S = 4*SS; 
clear SS; 
 
Es = S'*p; % mean source values 
% Vs = S'.^2*p - Es.^2; % source variance 
 
% saving as Excel spreadsheet: 
sources = zeros(16,16); 
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for i=1:16  
    sources(17-i,:)=Es(i*16-15:i*16); 
end; 
% XLSWRITE('sources.xls',sources); 
 
% plotting results 
 
figure(4); 
clf; 
im = imread('mapbw.jpg','jpg'); 
image(im); 
hold on; 
Min = min(Es); 
Max = max(Es); 
L = length(im); 
dh = L/16; 
% contour([25:dh:800],[25:dh:800],sources*500/Max,[150 200 300 400 470],'linewidth',2); 
% contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[200 300 400],'linewidth',2); 
% contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 425 450 475],'linewidth',1); 
colorbar('YTickLabel',num2str([(Max-Min)/7:(Max-Min)/7:Max]')); 
J = jet(80); 
colormap(J(5:75,:)); 
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[250 300 350],'linewidth',1); 
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[400 430 460 490],'linewidth',2); 
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 150 200],'linewidth',1,'linestyle','-'); 
 
title('BJW: cylinder release - Reconstruction map in [kg/(hr*km^2)] - PARFUM'); 
t = annotation('textbox',[.02,.22,0.21,0.68]); 
set(t,'string',strvcat(' ','Data Set: BJW cylinder (83,84,85,86,87).txt',' ',['Arraysize: 16*16; Averaging 
' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on',' ','Source projection: 250 m',' 
','Added noise: 0 ppb;  AvPos: On',' ',... 
    ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = ' 
num2str(m)],' ',... 
    ['Tolerance = ' num2str(eps)],' ',['WLSE = ' num2str(WLSE)],' ',... 
    ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-' num2str(rns)],' 
',' ',date)); 
axis square; 
axis off; 
 
figure(5); 
plot(1:N,p,'.'); 
title('Final weights of samples'); 
xlabel('Sample number'); 
ylabel('weight'); 
 
 
% conf = 0.9; 
% [p j] = sort(p); 
% qc = find(cumsum(p)>conf,1); 
%  
% Y(j(qc:N),:) 
% [S(j(qc:N),:); mean(S(j(qc:N),:))]*A' 
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IPF  
 
N = 50000; % number of samples 
MaxEmis = 4; % Max. emission [kg/hr*m3] 
format short g 
 
A = load('A_pr.txt')'; 
ns = size(A,2); 
eff = find(sum(A)>0); 
A = A(:,eff); 
C = load('C_pr.txt')'*3600; % measured conc-s [kg/hr*m3] 
sig = load('sig_pr0.txt')*3600; % sigma concentrations [kg/hr*m3] 
[m n] = size(A); % m - # measurements, n - # effective sources 
 
S = betarnd(0.03,0.9,N,n)*MaxEmis; 
Y = S*A'; % input data for the PI 
 
C(find(C<0)) = sig(find(C<0)); % in case some conc-s are negative 
 
rs = repmat(sig,N,1); 
rc = repmat(C',N,1); 
W = [sum(Y<rc-rs)' sum(Y<rc)' sum(Y<rc+rs)' N*ones(m,1)]; 
[W(:,1) diff(W,1,2)]/N 
min([W(:,1) diff(W,1,2)]/N) % Possible Exception: empty set A_ij 
 
% prior measure 
p = ones(N,1)/N; 
 
% IPF iteration 
q = [0.05 0.45 0.45 0.05]; 
x = 1; 
eps = 1e-6; 
format short e; 
 
[i1 j1] = find(Y<rc-rs); 
[i2 j2] = find((Y>=rc-rs)&(Y<rc)); 
[i3 j3] = find((Y>=rc)&(Y<rc+rs)); 
[i4 j4] = find(Y>=rc+rs); 
 
while (x>eps) 
 
   x = p; 
    
   for meas = 1:m 
        
       %if q(1)>0 
       % update  for the 1st quantile 
       Aij = sum(p(i1(find(j1==meas)))); % P(A_ij) 
       if Aij > 0 
       p(i1(find(j1==meas))) = p(i1(find(j1==meas)))*q(1)/Aij;  
       end; 
        
       % update  for the 2nd quantile 
       Aij = sum(p(i2(find(j2==meas)))); % P(A_ij) 
       p(i2(find(j2==meas))) = p(i2(find(j2==meas)))*q(2)/Aij;  
        
       % update  for the 3rd quantile 
       Aij = sum(p(i3(find(j3==meas)))); % P(A_ij) 
       p(i3(find(j3==meas))) = p(i3(find(j3==meas)))*q(3)/Aij;  
        
       % if q(4)>0 
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       % update  for the 4th quantile 
       Aij = sum(p(i4(find(j4==meas)))); % P(A_ij) 
       if Aij >0 
       p(i4(find(j4==meas))) = p(i4(find(j4==meas)))*q(4)/Aij;  
       end; 
        
       p = p/sum(p); 
        
   end; 
     
   x = sum((x-p).^2); 
    
   [x min(p) max(p)] 
    
end; 
 
fprintf('Meas-t  P(q1)    P(q2)    P(q3)    P(q4)\n'); 
for k = 1:m  
    fprintf('  %2.0f    %1.5f  %1.5f  %1.5f  %1.5f\n', ind(k), sum(p(i1(find(j1==k)))), 
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k))))); 
end; 
 
WLSE = sum(((A*S'*p-C)./sig').^2)/m % Forward model, WLSE 
 
% back to initial representation 
 
SS = zeros(N, ns); 
SS(:,eff) = S; 
S = SS; 
clear SS; 
 
Es = S'*p; % mean source values 
Vs = S'.^2*p - Es.^2; % source variance 
 
% saving as Excel spreadsheet: 
sources = zeros(16,16); 
for i=1:16  
    sources(17-i,:)=Es(i*16-15:i*16); 
end; 
XLSWRITE('sources.xls',sources); 
 
% plotting results 
 
figure(4); 
clf; 
im = imread('mapbw.jpg','jpg'); 
image(im); 
hold on; 
Min = min(Es); 
Max = max(Es); 
L = length(im); 
dh = L/16; 
% contour([25:dh:800],[25:dh:800],sources*500/Max,[150 200 300 400 470],'linewidth',2); 
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[200 300 400],'linewidth',2); 
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 425 450 475],'linewidth',1); 
colorbar('YTickLabel',num2str([Min:(Max-Min)/5:Max]')); 
title('BJW: cylinder release - Reconstruction map in [kg/(hr*km^2)]'); 
t = annotation('textbox',[.02,.3,0.21,0.6]); 
set(t,'string',strvcat(' ','Data Set: BJW cylinder (83,84,85,86,87).txt',' ','Arraysize: 16*16',' ','Plume 
blur: 0.2 gb, finite height on',' ','Source projection: 250 m',' ','Added noise: 0 ppb',' ',... 
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    ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = ' 
num2str(m)],' ',... 
    ['Tolerance = ' num2str(eps)],' ',['WLSE = ' num2str(WLSE)],' ',' ',date)); 
axis square; 
axis off; 
 

 

 


