
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

PROBABILISTIC INVERSION METHODS

IN AN INVERSE GAS DISPERSION PROBLEM

FOR LOCATING HYDROCARBON RESERVOIRS

Master’s thesis

Lizyayev, Andrey M.

Delft, the Netherlands

2005

 - 2 -

Table of contents

ABSTRACT.. - 3 -

INTRODUCTION.. - 4 -

Background... - 4 -
Problem formulation... - 6 -
Previously developed approach.. - 8 -
The Alternative Approaches Considered .. - 9 -

PROBABILISTIC INVERSION... - 11 -

PROBABILISTIC INVERSION ALGORITHM ...- 12 -
IPF AND PARFUM ...- 16 -

Implementation. .. - 18 -
Testing .. - 22 -

MODIFIED METHODS ...- 24 -
Genetic approach: .. - 24 -
Modified distribution - ALPINE ... - 25 -

RESULTS ... - 28 -

IPF VS PARFUM ..- 28 -
BAHJA SOUTH SURVEY: REAL SURVEY FULL DATA ...- 31 -

OTHER METHODS CONSIDERED... - 36 -

OPTIMIZATIONAL METHODS ..- 36 -
QR factorization ... - 36 -
Interior point method.. - 37 -

KALMAN FILTERING ..- 41 -
VARIATIONAL METHODS ...- 43 -

CONCLUSIONS, RECOMMENDATIONS.. - 45 -

REFERENCES... - 47 -

APPENDIX ... - 48 -

 - 3 -

Abstract

A new oil and gas prospecting technique based on measurements of sub-part-per-billion

ethane concentration in the atmosphere and local wind data was reported in the

LightTouch project between Shell Global Solutions BV and the University of Glasgow.

An ultra-sensitive gas sensor measures the atmospheric concentrations of ethane

dispersing from the naturally occurring ethane seepages that accompany all hydrocarbon

reservoirs. Typical seepages are detectable from a range of several km downwind. The

goal of this MSc project at TU Delft was to propose alternatives to the binary search

optimisation scheme previously employed to locate and quantify the seepage sources

from the concentration and wind data, used in conjunction with a gas dispersion model.

Several approaches were considered and 2 Classical Probabilistic Inversion methods –

Iterative Proportional Fitting, IPF, and Parametric Fitting for Uncertain Models,

PARFUM – were selected for implementation, evaluation and development.

Subsequently, a new Probabilistic Inversion method was developed, offering significant

operational advantages: faster convergence and more efficient use of memory. The new

method retained key attributes of the Probabilistic Inversion approach, namely:

confidence estimates for the results and freedom from arbitrary cost functions and

regularisation issues.

KEYWORDS: Gaussian plume, inverse problems, gas dispersion modelling,

Probabilistic Inversion, IPF, PARFUM.

 - 4 -

Introduction

Background

It is recognised that oil and gas reservoirs gradually leak some of their contents to

the surface [Horvitz, 1985; Schumacher, 1999] and for the first 100 years, much

prospecting centred around finding surface signs of hydrocarbons. Initially such signs

were: pools of oil or tar, burning gas on hillsides and gas escaping through cracks in the

ground. As these discoveries were depleted, attention shifted towards finding the

geological structures capable of trapping hydrocarbons rather than the hydrocarbons

themselves.

Several direct hydrocarbon detection methods, that exploit advances in sensor

technologies, are in use today. Offshore, these include searching satellite and airborne

images for subtle signs of oil on the sea-surface [MacDonald et al., 1996] and the

stimulation of fluorescence in these oil films by airborne lasers [Martin and Cawley,

1991]. Onshore techniques range from the direct sampling of gases in the soil measured

subsequently by laboratory-based gas chromatography [Jones et al., 2000] to the

accumulation of hydrocarbons on buried adsorbent pellets [El-Bishlawy et al., 2001].

These point sampling techniques require extensive physical coverage of the area, making

them unsuited to large surveys. Also, for some methods the results are not available for

several months.

A new tool for the measurement of hydrocarbon gases seeping from reservoirs was

recently reported by Shell Global Solutions in cooperation with the Optics group of the

University of Glasgow within the LightTouch project. Methane and ethane are both

indicators of reservoirs and detecting either could be significant. However, methane

arises from numerous organic processes – and consequently has an atmospheric

background concentration of ~1.7 parts per million (ppm) [Houghton et al., 1996].

Against this relatively high concentration only very large and nearby sources would be

discernable; furthermore, they could still correspond to bacterial action rather than an oil

or gas reservoir. In contrast, there are no significant biogenic sources of ethane and the

atmospheric background concentration is approximately 1 part per billion (ppb), making

ethane an ideal indicator of oil or gas reservoirs [Jones et al., 2000].

 - 5 -

Figure 1. Configuration of the Tuneable Diode
Laser Spectroscopy system (TDLS), wind velocity
data logger and inverse gas dispersion modelling. Air
is drawn into the multiple-pass sample cell (an
astigmatic Herriott cell), which has an effective optical
path length of 208 metres. The solenoid valve selects
between sampled air and pure nitrogen, providing
automated zero checks. The data logger combines
wind data from the anemometer with the
corresponding ethane concentrations. The resulting
data files are downloaded to a computer in the
support vehicle via a wireless LAN, allowing ethane
flux maps to be calculated during the survey.

The direct approach to prospecting by ethane detection would be to traverse the

survey area searching for emissions. This would be time consuming, require extensive

access to difficult locations and would be susceptible to inconsistencies in sampling due

to the wind as well as disturbance by the survey itself. More attractive is to use the wind

driven gas dispersion to gain information over an extensive upwind area. Recording gas

concentrations, using an extremely sensitive detector, and the corresponding wind data

allows large areas to be rapidly screened for sources and for the surface emission flux to

be determined by inverting the gas dispersion process. The measurement of flux will

contribute to ongoing research into the mechanisms responsible for seepages [Klusman

and Saeed, 1996].

Figure 2. The laser diode spectrometer,
control hardware, gas handling system,
data logger and liquid nitrogen supply are
mounted in an off-road vehicle. Although
the instrument is operated continuously,
best noise performance is obtained with
the vehicle stationary. Typically 15
minutes of data are recorded at each
measurement position. A telescopic mast
places the sample inlet and anemometer
5m above the ground.

 - 6 -

Problem formulation

Calculating gas dispersion requires knowledge of the entire wind field over the area

of interest but this is impractical for our application. Instead one can generalise the wind

field from a single location near the gas measurement point. An ultrasonic anemometer

was mounted on the vehicle mast to measure both horizontal and vertical components of

the wind speed with an accuracy of 0.1m/s.

Many groups have considered the modelling of gas dispersion and providing the

data is averaged over a comparable time to the time of flight from the source to the

measurement position, a simple Gaussian plume is a good approximation [Gifford, 1976].

The survey area is represented by an array of point sources arranged on a uniform grid.

The predicted atmospheric concentration at any position C(x, y) is related to the

magnitude of the point sources Si, j , the wind speed V , the offset from the plume centre

∆ , the width σh and height σv of the Gaussian plume by the equation

()

 ∆−= 2,

2

1
exp),(h

vh

ji

V

S
yxC σ

σσπ
 (1)

The concentration given by (1) is a mass concentration. To get the concentration by

volume divide (1) by the gas density. Further in the text the term “concentration” will

refer to the mass concentration, unless otherwise specified.

The width and height of the Gaussian plume are determined from the variability in

wind direction over the averaging time. The validity of this gas plume model is

SSii,,jj

<<wwiinndd>>

CCxx,,yy σσ
hh

σσ
vv

∆h

vveell==VV

2
1
2
1

 - 7 -

C1x,y

si

s1

substantially reduced if convection is significant and hence a lower bound of 2m/s was

set on the wind speed (i.e. data with a lower value of wind speed were not recorded).

Equation (1) relates a single measurement of gas concentration and corresponding

wind data to the magnitude of every potential source within the survey grid, giving an

equation with many unknowns corresponding to each grid box. Assuming that none of

the sources is time varying, multiple measurements from different locations and/or under

different wind conditions yield a set of simultaneous equations in the following way.

 Divide the survey area into a grid of n cells, each containing an emission source at

its centre. The concentration Y(x,y) that would result from a given source pattern S = (s1,

…, sn) at the point (x,y), given wind characteristics would then be

Y(x,y) = a1 s1 + … + an sn (2)

with ai determined by (1).

 So, if C1, …,Cm are the actual measured concentrations (not necessarily all in

different locations), then the system of equations becomes

+++=

+++=
+++=

nmnmmm

njnjjj

nn

sasasaC

sasasaC

sasasaC

...

...

...

...

2211

2211

12121111

or, in matrix notations

C = A*S (3)

 - 8 -

In general, such a system of equations is over determined (more equations than

unknowns), sparse (only a few of the potential sources are related to each concentration

measurement) and ill-conditioned (many of our equations have similar coefficients). The

problem is to find a source vector S whose resulting concentrations are in the best

possible agreement with the concentrations C actually measured, given the Gaussian

Plume model coefficients A.

Previously developed approach

The Optics Group of Glasgow University had developed a binary search technique

that iteratively optimised a spatial source distribution to find one minimising a specified

“cost function”. The main term in this cost function corresponds to seeking the best

agreement between the measured and predicted concentrations, usually defined by the

total square error (often referred to as “chi-squared” by the Group). This optimization

approach was implemented by the Group in LabView and offers a variety of different

cost functions. Of these, a cost function provided by the product of the total square error

and a factor related to the total flux of the proposed source distribution, is believed to be

robust.

()
estimatetotalflux

fluxtotalestimatetotalflux

cost

2 +×= χ

In essence this finds the optimum source distribution for the minimum total flux.

Starting from an initial random distribution, the algorithm selects a grid position at

random and sets its source to a random positive value. If this change reduces the value of

the cost function, then it is kept, else it is discarded. Repeating this process leads to a

stable distribution of sources. Despite the random nature of the initial distribution and

each iteration, multiple executions of the programme give the same final source

distribution.

 - 9 -

While this multiplicative cost function has the advantage of avoiding the dilemma

of how to trade off total square error against flux; it has the undesirable effect of

introducing bias in the results. Since it aims to minimise total flux, there is a preference

for placing sources close to the measurement location – as smaller sources will then

“explain” large concentrations. This is undesirable, and a variety of different cost

functions have – and are still being – evaluated by the Glasgow group.

Shell Global Solutions approached the Statistics group of the Delft University of

Technology with the following project goals:

• A review of the mathematical and statistical approaches that might be applicable

to the LightTouch gas dispersion inversion problem.

• A proposal for a fundamentally different approach to the binary search technique

already developed.

• Suggestions of ways to adapt or improve the existing binary search

methodology:

o Better-suited cost functions or other regularisation approaches.

o Ways of characterising confidence in individual sources within the

resulting flux source distributions.

o Different search/minimisation strategies for locating the optimum source

distribution consistent with our data.

o Ways of determining the optimum no of cells to divide the source field

into from a consideration of the absolute error and number of

measurements available.

The Alternative Approaches Considered

 The main goal of the MSc project was to propose a fundamentally different

approach to the binary search technique already developed.

 - 10 -

 The following approaches were considered for the project:

• Optimisation (Interior point) methods

• QR Factorisation

• Kalman Filtering

• Variational Methods.

• Probabilistic Inversion.

Of these the Probabilistic Inversion approach was considered most likely to provide a

successful and distinctively different approach that could be implemented, tested and

developed within the time-scale of the proposed project.

The alternative approaches will be described in a later section.

.

 - 11 -

Probabilistic inversion

The Probabilistic Inversion approach was chosen because it offered several

advantages:

• it does not involve ad-hoc cost functions and regularisation.

• It offers an objective confidence measure for the sources identified.

• It has been previously applied in several other projects and gave good results

• A basic version of the method can be implemented within the given time frame

Probabilistic inversion can be applied to inverting the gas dispersion process as follows.

The survey area is divided into a grid of n cells, each containing an emission source at its

centre. Then, randomly generate N candidate source patterns for the disposition of the n

sources Sj = (s1, s2 … sn)j, j = 1..N. N should be as large a number as is practical. The

resulting Nxn individual source strengths must lie between 0 and a defined value

MaxEmis. The distribution of the number of sources versus source strength is governed

by a Beta distribution – described below. The sources are assumed to be independent of

each other and time invariant.

A forward gas dispersion model is then applied to each of these N candidate

source patterns, resulting in M (the number of actual gas concentration measurements)

values of predicted gas concentration for each of the N patterns. This can be presented as

an MxN matrix of predicted gas concentrations Y, which is defined in general case as:

Yij = Fi (S j) = Fi ((s1, s2 … sn)j), i = 1..M, j = 1..N (4)

where Fi(x1,…,xn) – is the result of applying the forward model for the i-th

measurement. In the current stage of the project the forward model is a simple Gaussian

Plume model, defined by (1) – (3), which incorporates the combined effects of

measurement location, windspeed and direction, standard deviations of vertical and

 - 12 -

horizontal wind components and gas density. This Gaussian Plume model is linear with

respect to the source vector. As in (3), let us denote the Mxn Gaussian Plume coefficient

matrix as A, its j-th row relates a source vector with the concentrations resulting for j-th

measurement. The concentrations by volume C lie between 0 and 1.

The following data are available a priori:

A – Mxn matrix of the Gaussian Plume coefficients, computed with the LabView

programme, written by the Optics Group; this incorporates the effects of area sources,

measurement and source heights, different averaging times, background concentration

offsets, and other physically significant factors.

C – Mx1 vector of the actual concentrations (by volume) measured.

MaxEmis – the maximum source strength, in [kg/(s)].

Sigma –Mx1 vector of standard deviations of each concentration measurement

(assessed by experts as a combination of measurement sensitivity and the statistics of the

measured concentrations at each location).

Probabilistic Inversion Algorithm

The probabilistic inversion method comprises the following steps:

1. Generate N candidate source patterns Sj = (s1, s2 … sn)j, j = 1..N. This will result

in an Nxn matrix S.

2. Compute the predicted concentrations Y = A*ST

3. Based on the values Y, each of the N source patterns S are then weighted such

that the resulting modified distribution of Y’s agrees with a specified distribution.

For the LightTouch application the following considerations are sensible:

• It’s reasonable to use Sigma, the standard deviation of concentration

measurements given by experts, to specify the following distribution of the N

predicted concentrations Yi, i=1 to N, in relation to the actual concentration

measurement C(j).

 - 13 -

• The quantiles q1, q2, q3 and q4 are specified in advance (all between 0 and 1,

summing to 1; where these quantiles are the relative frequencies of predicted

concentrations lying in the specified interval). In other words, we require that the

relative frequency of the reweighted predicted concentrations falling into the j-th

interval should be equal to q(j). That is, the number of reweighted predicted

concentrations which are smaller than Cj – Sig(j), divided by N, should be close to

q1; for those between Cj – Sig(j) and Cj – close to q2; etc. The algorithm reweights

the N initial source patterns such that the predicted concentrations correspond to the

distribution defined above for all M concentration measurements.

For example, if 10 patterns (initially having equal weights) are distributed around the

first measured concentration in the following way:

σ(j) σ(j) C(j)

q1

P(A1)

P(A2)

P(A3)

P(A4)

σ(j) σ(j)

C(j)
q1 q2 q3 q4

C=1 C=0

 - 14 -

After re-weighting it will look like:

Now let’s plot the predicted concentrations of those same 10 patterns for the second

measurement with the weights determined above:

So, the distribution for the second measurement becomes:

σ(j) σ(j) C(j)

q1

q2 q3

q4

 - 15 -

And after re-weighting gives required distribution for the second measurement.

Of course, taking those weights for the first measurement again will disfigure the

required distribution. One can immediately suggest two iterative approaches:

consecutive fitting through all the measurements (Iterative Proportional Fitting, IPF)

 - 16 -

or averaging weights obtained from all the measurements (Parametric Fitting for

Uncertain Models, PARFUM). These two methods will be formally described later.

• The individual source strengths should be generated on [0..MaxEmis] according

to some distribution, such that:

o There is at least one predicted concentration within each interval

(corresponding to q1, …, q4) for each actual concentration measurement.

Let A(i,j) stand for the sub-set of N source patterns for which Yi falls into

inter-quantile interval j. (This A(i,j) is not to be confused with the

Gaussian Plume matrix which will not be referred to further.)

o The N candidate source patterns can be generated in numerous ways.

Better sampling procedures will be those resulting in more values of

predicted concentrations within inter-quantile intervals 2 and 3 around

C(j) (corresponding to q2 and q3) for each concentration measurement.

IPF and PARFUM

Two approaches to implementing step 3 of the Algorithm are:

• Iterative Proportional Fitting (IPF)

• Parameter Fitting for Uncertain Models (PARFUM).

The IPF algorithm adapts an initially uniform probability vector p to all partitions

iteratively. The iterative update of current vector p is

p’ = (…(p
A1

)
A2

…)
A(M)

,

where
)()()(

)(
4

1

}{

ij

iji

j

ji

j

Ai

A

i
Ap

qp

Ap

qp
Ip

j
==∑

=
∈

is the adaptation of p to the partition {Aj}, j=1..4; qj(i) is defined by context.

The PARFUM algorithm, on the contrary, adapts a starting measure to each partition and

then averages these adaptations to obtain the next iterate:

 - 17 -

∑

∑

=

=

=

=

M

m
m

ik

ik

ii

M

m

Am

Ap

q

M
pp

p
M

p

1)(

)(

1

)(

1
'

1
'

It can be shown (see [1]) that the solution (a stable point) P* that PARFUM converges

upon for the measurement constraints given, is also the solution for the minimum

information problem, given those same constraints. More precisely, P* minimizes the

relative information:

∑
=

N

i

i PPI
1

),(where:

∑=
X

i

ii
XP

XP
XPPPI

)(

)(
ln)(),(,

Subject to additional constraints imposed by measurements.

A stable point for the IPF approach is related to a modified minimum information

problem. While it is known that the PARFUM algorithm always converges, IPF may not

(for example when the corresponding minimum information problem is non-feasible).

Computer experiments show that if IPF does not converge, it oscillates. For more links on

theoretical results refer to [1].

After the algorithm has stabilized its evaluation of p=(p1, p2,…pN) to within a

given tolerance limit (the Tolerance), one has the probabilistic distribution for each

source. With this distribution one can compute the corresponding final Source pattern Sf

as the weighted average of Sj’s:

∑
=

=
N

i

iif SpS
1

,

the variance and the standard deviation of each of the n individual sources that comprise

Sf

() () 2

1

222 f

N

i

iif SSpESSESVar −

=−= ∑
=

Std Sf = √(Var Sf)

 - 18 -

along with 5%- and 95%- percentiles, which can serve as confidence bounds for each of

the n individual sources that comprise the answer Sf.

Implementation.

Both algorithms were implemented in Matlab and tested for a Cylinder release dataset in

which we have M = 80 measurements, n = 256 (16*16) grid cells and the value of

MaxEmis = 5 kg/hr. The quantiles were chosen to be q = [0.05 0.45 0.45 0.05]. The

sources were assumed to be independent. First, they were generated uniformly between 0

and MaxEmis, but this did not give a good result: for some measurements there were

quantile intervals without any predicted concentrations. Much better results were

obtained using a Beta distribution. In general the probability density of a Beta distribution

with parameters (α, β) is given by:

Here is a typical shape of the Beta distribution:

Experiments revealed that a suitable Beta distribution was given by α = 0.05 and β = 0.9;

this yields the probability distribution shown below:

 - 19 -

As the significant emission sources occur with relatively low probability densities, it is

more informative to examine a plot of LogN(X) versus Log(X).

We then examined the results from several real surveys, analysed using AvRecon, to see

how the source distributions compared to our empirically chosen Beta distribution –

which had been selected as appropriate for the cylinder release data:

 - 20 -

The same data sets plotted in log-log scale:

As the source strengths are directly dependent on migration pathways determined

by fracturing of rock, one might suspect that the sources would have a distribution

 - 21 -

comparable to that characterising the fracture network. These are often described using

the concepts of fractals and power laws; the most famous of which is the Gutenberg-

Richter Law. This states that the frequency of earthquakes of magnitude M or greater,

N(M) is given by

log N(M) = a – bM

for some constants a, b.

In Matlab the sampler of Beta-distributed random variables is determined through

the uniform and normal generators. In particular, if we fix the initial random seed for

those two generators, the generated Beta-paths will be uniquely determined. For that

reason, the initial random state is fixed in the program by two integers representing

uniform and normal random states. Thus by changing the seed values we are just taking a

different random sequence, there is no other significance to the actual seed numbers used.

 - 22 -

Testing

The IPF and PARFUM algorithms were implemented in Matlab and tested on the

cylinder release dataset with 9 min. averaging (thus, M = 40 measurements), when they

both converge. The PARFUM method resulted in the following stable fir for N = 50000

samples (the reconstruction below was performed on 16x16 grid at 8x8 km area of Bahja

west survey):

With the following distribution for each measurement:

Meas-t P(q1) P(q2) P(q3) P(q4)
 1 0.04504 0.35166 0.51210 0.09120
 2 0.05509 0.44051 0.42708 0.07733
 3 0.05370 0.42407 0.44615 0.07608
 4 0.06254 0.39175 0.45837 0.08734
 5 0.05516 0.42845 0.45547 0.06092
 6 0.05446 0.48303 0.40905 0.05346
 7 0.07427 0.49715 0.37666 0.05191
 8 0.05276 0.45757 0.43681 0.05286
 9 0.30221 0.46983 0.19712 0.03083
 10 0.18875 0.56505 0.22290 0.02330
 11 0.11151 0.61166 0.25192 0.02491
 12 0.05203 0.41064 0.48255 0.05478
 13 0.04749 0.37973 0.49783 0.07495
 14 0.03954 0.37177 0.51155 0.07713
 15 0.04047 0.46847 0.44135 0.04971
 16 0.04294 0.48636 0.42106 0.04964
 17 0.03752 0.68863 0.24014 0.03371

 - 23 -

 18 0.03610 0.52808 0.38748 0.04834
 19 0.04061 0.30030 0.37760 0.28150
 20 0.04234 0.45016 0.41340 0.09411
 21 0.04935 0.44136 0.39714 0.11214
 22 0.05933 0.48680 0.36285 0.09102
 23 0.07543 0.37622 0.44881 0.09954
 24 0.03934 0.28783 0.44205 0.23078
 25 0.24859 0.45802 0.26159 0.03180
 26 0.39553 0.39510 0.18725 0.02212
 27 0.19424 0.41785 0.34611 0.04180
 28 0.18939 0.40141 0.27628 0.13292
 29 0.08582 0.40548 0.37574 0.13296
 30 0.03928 0.34780 0.38800 0.22492
 31 0.02398 0.20892 0.42031 0.34680
 32 0.01899 0.16713 0.36584 0.44804
 33 0.02692 0.29354 0.60093 0.07861
 34 0.03867 0.46414 0.44077 0.05642
 35 0.05829 0.39361 0.39981 0.14828
 36 0.07296 0.39928 0.38649 0.14128
 37 0.07775 0.50597 0.36932 0.04696
 38 0.06080 0.44319 0.46243 0.03358
 39 0.07765 0.48274 0.38870 0.05090
 40 0.08904 0.51154 0.35274 0.04667

The IPF results in a similar fit with the same parameters:

Meas-t P(q1) P(q2) P(q3) P(q4)
 1 0.07400 0.42982 0.42581 0.07037
 2 0.08709 0.30425 0.50712 0.10155
 3 0.10013 0.29247 0.50585 0.10155
 4 0.10634 0.25712 0.50188 0.13466
 5 0.10607 0.34342 0.44897 0.10155
 6 0.10198 0.35196 0.46350 0.08257
 7 0.12876 0.49229 0.31596 0.06299
 8 0.10019 0.51515 0.32167 0.06299
 9 0.32362 0.55712 0.11210 0.00716
 10 0.24573 0.68626 0.06085 0.00716

 - 24 -

 11 0.23801 0.69398 0.06085 0.00716
 12 0.15639 0.73528 0.10115 0.00718
 13 0.13722 0.76698 0.08745 0.00835
 14 0.13039 0.69929 0.16197 0.00835
 15 0.12332 0.78531 0.08421 0.00716
 16 0.13039 0.78083 0.08161 0.00716
 17 0.10637 0.82336 0.06053 0.00975
 18 0.09713 0.77724 0.11588 0.00975
 19 0.10637 0.50371 0.31965 0.07027
 20 0.08141 0.55038 0.29445 0.07375
 21 0.09031 0.52046 0.31496 0.07427
 22 0.09581 0.51496 0.31496 0.07427
 23 0.07727 0.49261 0.32953 0.10060
 24 0.08141 0.45263 0.38638 0.07957
 25 0.62132 0.34857 0.02982 0.00029
 26 0.66095 0.32556 0.01323 0.00026
 27 0.67680 0.29748 0.02543 0.00029
 28 0.66866 0.30490 0.02565 0.00080
 29 0.36324 0.57697 0.05729 0.00250
 30 0.14197 0.51960 0.32373 0.01470
 31 0.05916 0.59394 0.31679 0.03011
 32 0.05916 0.55147 0.32885 0.06052
 33 0.03057 0.28767 0.65206 0.02970
 34 0.04202 0.30610 0.62218 0.02970
 35 0.03841 0.28263 0.62176 0.05720
 36 0.03841 0.31710 0.60723 0.03725
 37 0.04600 0.38493 0.53937 0.02970
 38 0.04030 0.37819 0.55181 0.02970
 39 0.05348 0.48393 0.43290 0.02970
 40 0.05000 0.45000 0.45000 0.05000

Modified methods

Genetic approach:

The 2 Probabilistic Inversion methods described above have been studied

theoretically extensively and applied in several projects. The advantage of the PARFUM

algorithm is that it always converges, whereas IPF may not. In any case, both of them

require a large number of patterns, which is not always feasible within given memory

constraints. The following idea was employed in order to reduce the number of samples

needed for a reasonable fit.

After we run PARFUM with a relatively small number of patterns, we can take

the most significant patterns and, based on them, generate other patterns and make

another run. Implementing this idea, after each run the most significant patterns, whose

total weight exceeded 0.9, remained, the others were discarded. Quite a few techniques

were used for generating new patterns out of those remaining. The best performing

approach proved to be a cell-wise random selection among the remaining patterns, that is

when each cell of a new pattern is a (uniform) random selection of the same cell among

 - 25 -

remaining patterns. To illustrate the improvement, here is the successive reconstruction

maps for N = 2000. Note, that the first run does not give a reasonable reconstruction.

However after a few runs the method converges to a stable answer.

Modified distribution - ALPINE

 The previous modification permits computation with fewer patterns (and therefore

reduces memory requirements – or increases range of patterns that can be employed for a

fixed memory specification). Nevertheless it still requires multiple runs of the whole

algorithm until a stable answer is obtained. For that reason the following modification

was developed. Instead of running the whole algorithm until the probability vector

stabilizes, we can just perform the first iteration and retain the most significant patterns

 - 26 -

only. Further, for each iteration there is no need to discretize the distribution function.

Instead, we can assign weights to each pattern based of the difference between the

predicted and measured concentrations. The best result was achieved using weights

proportional to the inverse square distance (using notations (2)-(3)):

()
jjij

i
CY

p
2

1

−
∝

i = 1 … N, j = 1 … m.

Here is the iterative reconstruction map for the method with N = 50000 patterns:

 with the following concentration residuals structure:

 - 27 -

Note, that one step of the modified algorithm corresponds to just one iteration of

PARFUM (not the whole run!) which reduces the computational effort drastically. This

modified method, combining genetic approach, modified distribution and relaxation of

the classical (PARFUM) scheme, will further be referred to as ALPINE. The

modifications mentioned provide the following advantages:

• Faster convergence (performing 1 iteration instead of the whole run)

 - 28 -

• With the modified distribution the need to avoid “empty inter-quantile

intervals” is removed. Therefore, a broader range of source strength

distributions can be tested.

• More efficient use of memory. In particular, a reasonable reconstruction

with ALPINE requires fewer patterns than a similar one with PARFUM.

Results

IPF vs PARFUM

If we take all available measurements (80 one-minute measurements) of the cylinder

release dataset, the IPF algorithm does not converge (it oscillates). Whereas PARFUM

results in the following reconstruction:

Meas-t P(q1) P(q2) P(q3) P(q4)
 1 0.31573 0.04728 0.04769 0.58930
 2 0.23900 0.05988 0.06572 0.63541
 3 0.51561 0.04466 0.04573 0.39400
 4 0.60457 0.05379 0.04881 0.29284
 5 0.48417 0.05779 0.06148 0.39656

…

 75 0.11416 0.04794 0.04623 0.79167
 76 0.26517 0.04828 0.04578 0.64077
 77 0.18759 0.04831 0.04703 0.71707

 - 29 -

 78 0.09459 0.04774 0.04631 0.81136
 79 0.25618 0.04777 0.04574 0.65031
 80 0.31548 0.04855 0.04647 0.58950

But if we change the initial random state to 0-1, we get the following reconstruction:

The difference in results obtained with differing seed values indicates the result has not

yet fully converged.

However, clearly what is of more interest is to examine the results obtained using all the

measurement data available. It is likely that IPF was prevented from converging when

used with all 80 of the 1-minute measurements, by the degree of conflict within the data.

Consequently we used the front-end averaging facility within AvRecon to provide data

averaged over longer times: hoping to reduce the degree of data conflict. Averaging over

9 minutes provided 5 measurement positions with a total of 40 concentration

measurements, and for these data IPF did converge to provide the following fit. (Note; N

here is 100,000 and the Tolerance 1E-07)

(Here we see the value of a fully objective measure of confidence – the degree of

improvement delivered by eradicating systematic errors or shortcomings in the forward

 - 30 -

modelling can be assessed. Other suspected shortcomings in the forward model can

similarly be tested and improved on the basis of the algorithms confidence measure.)

The above is a perfect result – to within the limitations inherent in the experiment

(presence of atmospheric background concentration, and possible minor additional real

emission sources as seen in the full survey of this area.)

The AvRecon result with the same data and the same parameters:

 - 31 -

Bahja South Survey: real survey full data

As seen above, the modified algorithm (ALPINE) gives a very good result for the

cylinder release data set. The methods were then tested on the real survey data set of

Bahja South with 1440 1-minute measurements averaged over 5 minutes and 1600

(40x40) grid cells.

The IPF and PARFUM could not cope with high dimensionality of the full data

set from Bahja South. Because of a large number of measurements, and fine grid size,

the two methods could not find a stable fit within given memory constraints. However

the modified method, ALPINE, combining the genetic approach with the modified re-

weighting distribution, does give a stable result for the whole data set.

 - 32 -

Below are shown three reconstructions with different initial random seeds for the

same data set.

 - 33 -

The results are clearly correlated, and exhibit features present in the result obtained by

SearchRecon with the same parameters:

 - 34 -

Unfortunately we do not know the “true answer” to the full data set problem, and

can only try to compare the results of running different methods. Although Shell will be

evaluating this new method against data sets for which a degree of “ground-truthing” is

available via a separate geochemical method run in tandem with LightTouch in blind

trials. For now, we have an option to run ALPINE with different random seeds and see

how correlated the results are. A close correlation between the results for different

random seeds would be an indicator of a stable result, due to the data rather than being

constrained by the particular set of patterns generated for that run. Similarly the absence

of any structure within the residuals would suggest full convergence.

Another feature of probabilistic inversion methods worth mentioning is that they

do not seek to minimize the total square error. Any specified distribution for penalizing

residuals always permits some deviations from the concentrations measured. Therefore

the total square error can increase at a later iteration, and can only serve as a secondary

“goodness of fit” measure. In particular, the probabilistic inversion methods did not

reconstruct a “self-fulfilling” data set (a data set resulting from a known source pattern,

 - 35 -

via the given forward model), the solution of which would be the “perfect” least squares

fit.

The residuals behaviour resulted from ALPINE algorithm for the Bahja South

data set has the following structure:

 One can see that the ALPINE smoothes the overall residuals picture (reducing

“outliers”) which can introduce a bias into residuals.

 - 36 -

Other methods considered

Optimizational methods

QR factorization

Currently the forward model used in the project is the Gaussian Plume model (2), which

leads to a linear inverse problem (3). There exist some well-known matrix factorization

techniques to solve the system (3). One of these is the QR-decomposition. Orthogonal

matrix triangularization (QR decomposition) reduces a real (m,n) matrix A with m≥n and

full rank to a much simpler form. It guarantees numerical stability by minimizing errors

influenced by machine roundoffs. A suitably chosen orthogonal matrix Q will

triangularize the given matrix:

with the (n,n) upper triangular matrix R. One only has then to solve the triangular system

Rx = Pb, where P consists of the first n rows of Q.

The least squares problem Ax ≈ b is easy to solve with A = QR and Q
T
Q = I. The solution

becomes

This is a matrix-vector multiplication Q
T
b, followed by the solution of the triangular

system Rx = QTb by back-substitution.

This method was applied to solve the system (3):

Ax ≈ C

and gave the following answer:

 - 37 -

which has 447 negative components out of 1110. Therefore, this method gives an

unphysical solution, which has to be iteratively modified in order for it to satisfy lower

and upper boundary constraints, which will imply using one of the quadratic optimization

methods.

Interior point method

To impose nonnegativity and an upper boundary to the solution, one has to

formulate the problem explicitly:

Minimize (Ax – C)2 subject to

x ≥ 0

x ≤ MaxEmis, where MaxEmis – is a defined maximal possible level of emission

rate.

 - 38 -

This is a convex quadratic programming problem. There exist several methods for

solving it, one of the most effective group of methods is Interior Point methods. The

Logarithmic Barrier Interior Point method can be summarized as follows.

maximize f(y), subject to

fi(y) ≤ 0 (i=1..n),

y € R
m

,

where: -f(y), fi(y) are convex, twice cont. differentiable

where ()∑
=

−−−=
n

i

iB yf
yf

y
1

)(ln
)(

),(
µ

µφ

is the logarithmic barrier function.

This algorithm, along with other optimization methods, finds the solution of the

quadratic programming problem satisfying boundary constraints relatively fast. However,

all of them depend on the cost function f(y), that is, as soon as one has to change the cost

function, the whole algorithm has to be re-programmed. The obvious cost function (total

 - 39 -

square error) does not always give a physical solution. For example, the following

solution was obtained by built-in Matlab quadratic solver for weighted least squares cost

function: f(y) = (Ay – C)
2
/Sigma:

The solution above was obtained for the cylinder release dataset with 9 minutes

averaging time.

The same solver gives the following “pure” least square fit

(where f(y) = (Ay – C)
2
):

 - 40 -

If we take 1 min averaging, the quadratic programming gives the following

solution:

 - 41 -

Kalman filtering

In 1960, R.E. Kalman published his famous paper describing a recursive solution

to the discrete data linear filtering problem [Kalman60]. Since that time, due in large part

to advances in digital computing, the Kalman filter has been the subject of extensive

research and application.

The Kalman filter addresses the general problem of trying to estimate the state

of a discrete-time controlled process that is governed by the linear stochastic

difference equation

111 −−− ++= kkkkkk wuBxFx

with a measurement that is

kkkk vxAz +=

The random variables wk and vk represent the process and measurement noise

(respectively). They are assumed to be independent (of each other), white, and with

normal probability distributions

 - 42 -

In practice, the process noise covariance Q and measurement noise covariance R matrices

might change with each time step or measurement, however here we assume they are

constant. The Kalman filtering assumes the following iterative update of the system state:

The idea of the algorithm is to find an equation that computes an a posteriori state

estimate as a linear combination of an a priori estimate and a weighted difference

between an actual measurement and a measurement prediction.

In terms of the LightTouch project, the system state xk will stand for the vector of

source strengths, estimated for time k; Fk would be the transition matrix from state xk-1 to

xk, given wind characteristics and the time interval between states k and k-1 (a gas

dispersion model). Bk is an optional parameter, that can serve to tune the dispersion

model in use, or be set to zero. Ak will be the Gaussian plume matrix defined in (3), that

relates predicted measurements with the sources.

The scheme above is meant for a prediction of the system state at the next time

frame. However, we can also reconstruct the initial system state x0 by modifying the

system equation:

 - 43 -

+=

+

+

=

−−

−

kkkk

kk

k

kk

k

k

vxAz

w
I

u
B

x

x

I

F

x

x
11

100 000

0

Then, applying the same scheme to the new state (x x0)k will improve the estimate of x0 at

each iteration.

 The Kalman filtering approach was initially considered as the way to continue the

project. It has a clear advantage over other methods: its iterative predictive-corrective

structure allows “on-line” updates of the system state as new measurements become

available. One of the major drawbacks of the method (with respect to the LightTouch

project) would be the requirement of specifying the gas dynamics matrix F k at each time

frame k and therefore implementing the forward model anew. Another minuspoint is that

the system state doubles for the modified problem – if we use 40x40 grid size, the

problem dimension would be 3200, instead of 1600. After much thinking and assessment

the priority was given to probabilistic methods, thereby rejecting the Kalman filtering

approach.

Variational methods

 Variational methods can also be applied to reconstruction of gas or water

dynamics in the following way. Suppose we need to find the function u(x,t) (which can

represent, for example, the gas concentration at the point x at time t) that satisfies the

Euler-Lagrange equation

Suppose also that we have measurements d1, …, dm such that

where u(x,t) is the real concentration at point x at

time t, and ε is the measurement error.

 - 44 -

Then, if we introduce the representers functions for the Euler-Lagrange equation, as it

shown in [6], this will lead to the following forward (Fm) and backward (Bm) systems

If we now look for the approximation of u(x,t) in the form

This will lead (see [6]) to the following solution

This method can be interesting for reconstruction of a gas profile in time. However, its

major drawback is that the time dependence is involved. Therefore, one needs to have

enough measurement data to cope with the time dimension.

 - 45 -

Conclusions, Recommendations

 As we see from the cylinder release data set (for which we know the correct

result), the modified method ALPINE gives a very good result. As the next steps for

improving the method, the author would recommend the following:

• Try to use different genetic combinations of the sources left after the 90% -

selection. For the moment, a cell-wise uniform selection among all those sources

performs best. However, one may find better ways of combining the significant

patterns to generate new ones in place of those discarded

• An objective way of convergence assessment for the modified algorithm is

crucial. Since the modified algorithm performs only one PARFUM iteration

instead of the whole run, it does not use the value of Tolerance. Therefore, there’s

a need for an objective “goodness of fit”, based on which we could decide

whether to stop the algorithm or continue running. Consider a residuals measure

or progressive modification of the parameters defining the Beta distribution.

• A different distribution for generating the source strengths may help. Up until

now, the Beta distribution gives reasonable results and performs a lot better than

uniform or cut normal model. In addition, some dependence among neighbouring

cells might be included. This will introduce a bias into the size and strength of

reconstructed sources, which might be motivated by some physical statements,

such as the Gutenberg-Richter law.

• The forward model has only an a priori effect on the methods. So, improvements

to the forward model would be another area to investigate, as a better forward

model will lead to a better input data for the probabilistic inversion methods,

which in its turn will give more accurate and stable reconstruction.

• Some new ideas, not yet incorporated into the probabilistic inversion directly,

may help. For example, one may try an iterative grid refinement. That is, starting

from a coarser grid, perform a (fast) reconstruction on it and then, according to

some criteria, decide whether to refine the grid further. For that, a penalizing

function on the number of cells should be introduced. There is no common

 - 46 -

consideration for taking such a function, so the problem is to choose the one that

gives the best possible result. Such an approach might be amenable to the

concepts of simulated annealing and should allow more extensive searches of the

full parameter space.

 - 47 -

References

1. Kurowicka D, Cooke R., Uncertainty Analysis: mathematical foundations and

applications, DIAM, TU Delft, 2004

2. Bill Hirst, Steve Gillespie, Ian Archibald, Olaf Podlah, Graham Gibson,

Ken Skeldon, Johannes Courtial, Steve Monk & Miles Padgett “Oil and gas

prospecting by ultra-sensitive optical gas detection with inverse gas dispersion

modelling” Geophysical Research Letters: Vol 31, L2115, 2004, The Background

section presented in this thesis is take from this paper with the permission of the

authors.

3. The Optics group website: http://www.physics.gla.ac.uk/Optics/

4. Welch G., Bishop G., “An Introduction to the Kalman Filter”. University of North

Carolina, Department of Computer Science, TR 95-041, 1995.

5. Hertog, Dick den “Interior Point Approach to Linear, Quadratic and Convex

Programming” PhD dissertation, TU Delft, 1992.

6. Bennett, Andrew F., “Inverse modelling the ocean and atmosphere” Cambridge,

UK : Cambridge University Press, 2002

 - 48 -

Appendix

All programs enclosed here were written and tested in Matlab 7.0 and additionally require

the Statistics toolbox.

ALPINE.M – Modified algorithm - genetic approach + modified distribution

clear all

N = 25000; % number of samples
MaxEmis = 5; % Max. emission [kg/s]
format short g
rus = 6; rns = 2; % Initial random state
avtime = 9; % Averaging time, minutes
rand('state',rus);
randn('state',rns);
GS = 16; % grid size

% ind = [1:1014]; % optional - indices of measurements to be used
% mind = [136 1:16]; % optional - cell indices required to have zero source strength
mind = []; % optional: measurement locations, as above
A = single(load('A_pr9.txt')'); % A matrix gives dispersion coefficients
% A = A(ind,:); % active if <ind = [1:1014];> is active
ns = size(A,2);
ind = 1:size(A,1); % should not be active if <ind = [1:1014];> is active
eff = setdiff(find(sum(A)>0),mind);
A = A(:,eff);
C = load('C_pr9.txt')'*3600; % C - file of measured conc-s [kg/m3] - confusion with
ChoiceRecon units
C = C(ind);
sig = load('sig_pr9.txt')*3600; % sigma concentrations [kg/m3]
sig = sig(ind);
[m n] = size(A); % m - # measurements, n - # effective sources

S = single((betarnd(0.01,0.9,N,n))*MaxEmis); % S -the generated N random source patterns

format short e;

p = ones(N,1)/N; % vector of weights for the N patterns

for NIter = 1:20 % number of iterations to be performed before stopping

 [i j] = sort(p,'descend');
 pind = find(cumsum(p(j))<=0.9,1,'last') % chooses those patterns that comprise 90% of
weight
 % from the previous iteration
 OS = [S(j(1:pind),:); p'*S; betarnd(0.02,0.9,50,n)];
 for j = 1:n % generating new patterns to replace those abandoned
 S(:,j) = OS(round(rand(N,1)*(pind+50))+1,j);
 end;

 Y = single(S*A'); % Nxm matrix of predicted concentrations

 Prime = single(zeros(N,m));
 for meas = 1:m % computing weights for each measurement

 - 49 -

 eq = find(abs(Y(:,meas)-C(meas))<sig(1)/1000); % zero-threshhold is sig(1)/1000: eq
stores indices of those predicted concentration close to actual concentration (can be empty)
 if length(eq)>0
 Prime(eq,meas)=0.9/length(eq);
 Prime(setdiff(1:N,eq),meas)=0.1/(N-length(eq));
 else
 p = 1./(abs(Y(:,meas)-C(meas))).^2; % weights are set to be ~ 1/d^2 where d
is the residual concentration
 Prime(:,meas) = p/sum(p);
 end;

 end;

 p = mean(Prime,2);
 clear Prime;

 WLSE = sum(((A*S'*p-C)./sig').^2)/m
 % weighted least square error, same as 'Chi^2' in
 % AvRecon

 % transferring to AvRecon representation so as to generate compatible output files:
 clear Y;
 SS = single(zeros(N, ns));
 SS(:,eff) = 4*S;

 Es = SS'*p; % calculate mean source values
 % Vs = S'.^2*p - Es.^2;
 % calculate variance of each source

 % saving as same Excel spreadsheet format as used by AvRecon:
 sources = zeros(GS,GS);
 for i=1:GS
 sources(GS+1-i,:)=Es(i*GS-GS+1:i*GS);
 end;
 XLSWRITE('sources.xls',sources); % saving in XLS format

 % plotting residuals results:
 hf = figure(1);
 set(1,'visible','off');
 plot(1:m,(A*Es(eff)-C)/3600,'.');
 if NIter == 1
 ax = axis;
 else axis(ax);
 end;
 grid on;
 xlabel('measurement number');
 title(['Residual plot - Run ' num2str(NIter) '; WLSE = ' num2str(WLSE)]);
 fname = ['pr9_resid_' num2str(rus) num2str(rns) '_run' num2str(NIter)];
 % filename, will be 'SC40_resid_03_run7.jpg' if
 % rus = 0; rns = 3; NIter = 7
 saveas(hf,fname,'jpg');

 % graphical output map showing source strengths:
 hf = figure(4);
 set(4,'visible','off');
 clf;
 im = imread('mapbw.jpg','jpg'); % write the map file (jpg)
 image(im);
 hold on;
 Min = min(Es);

 - 50 -

 Max = max(Es);
 L = length(im);
 dh = L/GS;
 colorbar('YTickLabel',num2str([(Max-Min)/7:(Max-Min)/7:Max]'));
 J = jet(80);
 colormap(J(5:75,:));
 contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[250 300 350],'linewidth',1);
 contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[400 430 460 490],'linewidth',2);
 contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 150 200],'linewidth',1,'linestyle','-');

 title(['BAHJA SOUTH Reconstruction map in [kg/(hr*km^2)] - ALPINE (sqr): Iteration '
num2str(NIter)]);
 t = annotation('textbox',[.02,.22,0.21,0.68]);
 set(t,'string',strvcat(' ','Data Set: BJS 1min def.(-early-late).txt',' ',['Arraysize: ' num2str(GS) 'x'
num2str(GS) '; Averaging ' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on','
','Source projection: 250 m',' ','Added noise: 0 ppb; AvPos: On',' ',...
 ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = '
num2str(m)],' ',...
 ['WLSE = ' num2str(WLSE)],' ',...
 ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-'
num2str(rns)],' ',' ',date));
 % write out all the parameters:
 % includes those used to generate A
 % matrix and this model's paramaters
set(t,'string',strvcat(' ','Data Set: Cylinder release',' ',['Arraysize: ' num2str(GS) 'x' num2str(GS) ';
Averaging ' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on',' ','Source projection:
250 m',' ','Added noise: 0 ppb; AvPos: On',' ',...
 ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = '
num2str(m)],' ',...
 ['WLSE = ' num2str(WLSE)],' ',...
 ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-'
num2str(rns)],' ',' ',date));
 % write out all the parameters:
 % includes those used to generate A
 % matrix and this model's paramaters
 axis square;
 axis off;
 fname = ['pr9_' num2str(rus) num2str(rns) '_run' num2str(NIter)];
% saveas(hf,fname); % uncomment if you want to save as Matlab figure
 saveas(hf,fname,'jpg');
end;

 - 51 -

PARFUM

clear all

N = 10000; % number of samples
MaxEmis = 5; % Max. emission [kg/hr*m3]
format short g
rus = 0; rns = 0;
avtime = 9; % Averaging time, minutes
rand('state',rus);
randn('state',rns);

% ind = [1:40];
mind = [];
% mind = [];
A = load('A_pr.txt')';
% A = A(ind,:);
ns = size(A,2);
ind = 1:size(A,1);
eff = setdiff(find(sum(A)>0),mind);
A = A(:,eff);
C = load('C_pr.txt')'*3600; % measured conc-s [kg/hr*m3]
C = C(ind);
sig = load('sig_pr0.txt')*3600; % sigma concentrations [kg/hr*m3]
sig = sig(ind);
[m n] = size(A); % m - # measurements, n - # effective sources

S = betarnd(0.05,0.9,N,n)*MaxEmis;
Y = S*A'; % input data for the PI
save samples S;
clear S;

C(find(C<0)) = sig(find(C<0)); % in case some conc-s are negative

rs = repmat(sig,N,1);
rc = repmat(C',N,1);
W = [sum(Y<rc-rs)' sum(Y<rc)' sum(Y<rc+rs)' N*ones(m,1)];
[W(:,1) diff(W,1,2)]/N
min([W(:,1) diff(W,1,2)]/N)

% prior probability
p = ones(N,1)/N;

% PARFUM iteration
q = [0.05 0.45 0.45 0.05];
x = 1;
eps = 1e-6;
format short e;

[i1 j1] = find(Y<rc-rs);
[i2 j2] = find((Y>=rc-rs)&(Y<rc));
[i3 j3] = find((Y>=rc)&(Y<rc+rs));
[i4 j4] = find(Y>=rc+rs);
fprintf('Iterative change | min(p) | max(p)\n');

while (x>eps)
x = p;
Prime = zeros(N,m);

 for meas = 1:m
 p = x;

 - 52 -

 %if q(1)>0
 % update for the 1st quantile
 Aij = sum(p(i1(find(j1==meas)))); % P(A_ij)
 if Aij > 0
 p(i1(find(j1==meas))) = p(i1(find(j1==meas)))*q(1)/Aij;
 end;

 % update for the 2nd quantile
 Aij = sum(p(i2(find(j2==meas)))); % P(A_ij)
 p(i2(find(j2==meas))) = p(i2(find(j2==meas)))*q(2)/Aij;

 % update for the 3rd quantile
 Aij = sum(p(i3(find(j3==meas)))); % P(A_ij)
 p(i3(find(j3==meas))) = p(i3(find(j3==meas)))*q(3)/Aij;

 % if q(4)>0
 % update for the 4th quantile
 Aij = sum(p(i4(find(j4==meas)))); % P(A_ij)
 if Aij >0
 p(i4(find(j4==meas))) = p(i4(find(j4==meas)))*q(4)/Aij;
 end;

 Prime(:,meas) = p/sum(p);

 end;

p = mean(Prime,2);

x = sum((x-p).^2);
% fprintf('%14.2e |%12.2e |%12.2e\n',[x min(p) max(p)]);

fprintf('%14.2e |%12.2e |%12.2e\n',[x min(p) max(p)]);
% for k = 1:m
% fprintf(' %2.0f %1.5f %1.5f %1.5f %1.5f\n', ind(k), sum(p(i1(find(j1==k)))),
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k)))));
% end;

end;

load samples;

WLSE = sum(((A*S'*p-C)./sig').^2)/m % Forward model, WLSE

fprintf('Meas-t P(q1) P(q2) P(q3) P(q4)\n');
for k = 1:m
 fprintf(' %2.0f %1.5f %1.5f %1.5f %1.5f\n', ind(k), sum(p(i1(find(j1==k)))),
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k)))));
end;

% back to initial representation

SS = zeros(N, ns);
SS(:,eff) = S;
S = 4*SS;
clear SS;

Es = S'*p; % mean source values
% Vs = S'.^2*p - Es.^2; % source variance

% saving as Excel spreadsheet:
sources = zeros(16,16);

 - 53 -

for i=1:16
 sources(17-i,:)=Es(i*16-15:i*16);
end;
% XLSWRITE('sources.xls',sources);

% plotting results

figure(4);
clf;
im = imread('mapbw.jpg','jpg');
image(im);
hold on;
Min = min(Es);
Max = max(Es);
L = length(im);
dh = L/16;
% contour([25:dh:800],[25:dh:800],sources*500/Max,[150 200 300 400 470],'linewidth',2);
% contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[200 300 400],'linewidth',2);
% contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 425 450 475],'linewidth',1);
colorbar('YTickLabel',num2str([(Max-Min)/7:(Max-Min)/7:Max]'));
J = jet(80);
colormap(J(5:75,:));
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[250 300 350],'linewidth',1);
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[400 430 460 490],'linewidth',2);
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 150 200],'linewidth',1,'linestyle','-');

title('BJW: cylinder release - Reconstruction map in [kg/(hr*km^2)] - PARFUM');
t = annotation('textbox',[.02,.22,0.21,0.68]);
set(t,'string',strvcat(' ','Data Set: BJW cylinder (83,84,85,86,87).txt',' ',['Arraysize: 16*16; Averaging
' num2str(avtime) ' min'],' ','Plume blur: 0.2 gb, finite height on',' ','Source projection: 250 m','
','Added noise: 0 ppb; AvPos: On',' ',...
 ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = '
num2str(m)],' ',...
 ['Tolerance = ' num2str(eps)],' ',['WLSE = ' num2str(WLSE)],' ',...
 ['Total flux = ' num2str(sum(Es/4)) ' kg/hr'],' ',['Random State: ' num2str(rus) '-' num2str(rns)],'
',' ',date));
axis square;
axis off;

figure(5);
plot(1:N,p,'.');
title('Final weights of samples');
xlabel('Sample number');
ylabel('weight');

% conf = 0.9;
% [p j] = sort(p);
% qc = find(cumsum(p)>conf,1);
%
% Y(j(qc:N),:)
% [S(j(qc:N),:); mean(S(j(qc:N),:))]*A'

 - 54 -

IPF

N = 50000; % number of samples
MaxEmis = 4; % Max. emission [kg/hr*m3]
format short g

A = load('A_pr.txt')';
ns = size(A,2);
eff = find(sum(A)>0);
A = A(:,eff);
C = load('C_pr.txt')'*3600; % measured conc-s [kg/hr*m3]
sig = load('sig_pr0.txt')*3600; % sigma concentrations [kg/hr*m3]
[m n] = size(A); % m - # measurements, n - # effective sources

S = betarnd(0.03,0.9,N,n)*MaxEmis;
Y = S*A'; % input data for the PI

C(find(C<0)) = sig(find(C<0)); % in case some conc-s are negative

rs = repmat(sig,N,1);
rc = repmat(C',N,1);
W = [sum(Y<rc-rs)' sum(Y<rc)' sum(Y<rc+rs)' N*ones(m,1)];
[W(:,1) diff(W,1,2)]/N
min([W(:,1) diff(W,1,2)]/N) % Possible Exception: empty set A_ij

% prior measure
p = ones(N,1)/N;

% IPF iteration
q = [0.05 0.45 0.45 0.05];
x = 1;
eps = 1e-6;
format short e;

[i1 j1] = find(Y<rc-rs);
[i2 j2] = find((Y>=rc-rs)&(Y<rc));
[i3 j3] = find((Y>=rc)&(Y<rc+rs));
[i4 j4] = find(Y>=rc+rs);

while (x>eps)

 x = p;

 for meas = 1:m

 %if q(1)>0
 % update for the 1st quantile
 Aij = sum(p(i1(find(j1==meas)))); % P(A_ij)
 if Aij > 0
 p(i1(find(j1==meas))) = p(i1(find(j1==meas)))*q(1)/Aij;
 end;

 % update for the 2nd quantile
 Aij = sum(p(i2(find(j2==meas)))); % P(A_ij)
 p(i2(find(j2==meas))) = p(i2(find(j2==meas)))*q(2)/Aij;

 % update for the 3rd quantile
 Aij = sum(p(i3(find(j3==meas)))); % P(A_ij)
 p(i3(find(j3==meas))) = p(i3(find(j3==meas)))*q(3)/Aij;

 % if q(4)>0

 - 55 -

 % update for the 4th quantile
 Aij = sum(p(i4(find(j4==meas)))); % P(A_ij)
 if Aij >0
 p(i4(find(j4==meas))) = p(i4(find(j4==meas)))*q(4)/Aij;
 end;

 p = p/sum(p);

 end;

 x = sum((x-p).^2);

 [x min(p) max(p)]

end;

fprintf('Meas-t P(q1) P(q2) P(q3) P(q4)\n');
for k = 1:m
 fprintf(' %2.0f %1.5f %1.5f %1.5f %1.5f\n', ind(k), sum(p(i1(find(j1==k)))),
sum(p(i2(find(j2==k)))), sum(p(i3(find(j3==k)))), sum(p(i4(find(j4==k)))));
end;

WLSE = sum(((A*S'*p-C)./sig').^2)/m % Forward model, WLSE

% back to initial representation

SS = zeros(N, ns);
SS(:,eff) = S;
S = SS;
clear SS;

Es = S'*p; % mean source values
Vs = S'.^2*p - Es.^2; % source variance

% saving as Excel spreadsheet:
sources = zeros(16,16);
for i=1:16
 sources(17-i,:)=Es(i*16-15:i*16);
end;
XLSWRITE('sources.xls',sources);

% plotting results

figure(4);
clf;
im = imread('mapbw.jpg','jpg');
image(im);
hold on;
Min = min(Es);
Max = max(Es);
L = length(im);
dh = L/16;
% contour([25:dh:800],[25:dh:800],sources*500/Max,[150 200 300 400 470],'linewidth',2);
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[200 300 400],'linewidth',2);
contour([dh/2:dh:L],[dh/2:dh:L],sources*500/Max,[100 425 450 475],'linewidth',1);
colorbar('YTickLabel',num2str([Min:(Max-Min)/5:Max]'));
title('BJW: cylinder release - Reconstruction map in [kg/(hr*km^2)]');
t = annotation('textbox',[.02,.3,0.21,0.6]);
set(t,'string',strvcat(' ','Data Set: BJW cylinder (83,84,85,86,87).txt',' ','Arraysize: 16*16',' ','Plume
blur: 0.2 gb, finite height on',' ','Source projection: 250 m',' ','Added noise: 0 ppb',' ',...

 - 56 -

 ['# samples = ' num2str(N)],' ',['# effective sources = ' num2str(n)],' ',['# measurements = '
num2str(m)],' ',...
 ['Tolerance = ' num2str(eps)],' ',['WLSE = ' num2str(WLSE)],' ',' ',date));
axis square;
axis off;

